Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 21,637 Bytes
4365a98 fc5e983 4365a98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 |
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
import algebra.group.opposite
/-!
# Monoid, group etc structures on `M × N`
In this file we define one-binop (`monoid`, `group` etc) structures on `M × N`. We also prove
trivial `simp` lemmas, and define the following operations on `monoid_hom`s:
* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd`
as `monoid_hom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
into the product;
* `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`;
* `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`;
* `f.prod_map g : M × N → M' × N'`: `prod.map f g` as a `monoid_hom`,
sends `(x, y)` to `(f x, g y)`.
## Main declarations
* `mul_mul_hom`/`mul_monoid_hom`/`mul_monoid_with_zero_hom`: Multiplication bundled as a
multiplicative/monoid/monoid with zero homomorphism.
* `div_monoid_hom`/`div_monoid_with_zero_hom`: Division bundled as a monoid/monoid with zero
homomorphism.
-/
variables {A : Type*} {B : Type*} {G : Type*} {H : Type*} {M : Type*} {N : Type*} {P : Type*}
namespace prod
@[to_additive]
instance [has_mul M] [has_mul N] : has_mul (M × N) := ⟨λ p q, ⟨p.1 * q.1, p.2 * q.2⟩⟩
@[simp, to_additive]
lemma fst_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 := rfl
@[simp, to_additive]
lemma snd_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 := rfl
@[simp, to_additive]
lemma mk_mul_mk [has_mul M] [has_mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
(a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) := rfl
@[simp, to_additive]
lemma swap_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).swap = p.swap * q.swap := rfl
@[to_additive]
lemma mul_def [has_mul M] [has_mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) := rfl
@[to_additive]
instance [has_one M] [has_one N] : has_one (M × N) := ⟨(1, 1)⟩
@[simp, to_additive]
lemma fst_one [has_one M] [has_one N] : (1 : M × N).1 = 1 := rfl
@[simp, to_additive]
lemma snd_one [has_one M] [has_one N] : (1 : M × N).2 = 1 := rfl
@[to_additive]
lemma one_eq_mk [has_one M] [has_one N] : (1 : M × N) = (1, 1) := rfl
@[simp, to_additive]
lemma mk_eq_one [has_one M] [has_one N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 :=
mk.inj_iff
@[simp, to_additive]
lemma swap_one [has_one M] [has_one N] : (1 : M × N).swap = 1 := rfl
@[to_additive]
lemma fst_mul_snd [mul_one_class M] [mul_one_class N] (p : M × N) :
(p.fst, 1) * (1, p.snd) = p :=
ext (mul_one p.1) (one_mul p.2)
@[to_additive]
instance [has_inv M] [has_inv N] : has_inv (M × N) := ⟨λp, (p.1⁻¹, p.2⁻¹)⟩
@[simp, to_additive]
lemma fst_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).1 = (p.1)⁻¹ := rfl
@[simp, to_additive]
lemma snd_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).2 = (p.2)⁻¹ := rfl
@[simp, to_additive]
lemma inv_mk [has_inv G] [has_inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) := rfl
@[simp, to_additive]
lemma swap_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).swap = p.swap⁻¹ := rfl
@[to_additive]
instance [has_involutive_inv M] [has_involutive_inv N] : has_involutive_inv (M × N) :=
{ inv_inv := λ a, ext (inv_inv _) (inv_inv _),
..prod.has_inv }
@[to_additive]
instance [has_div M] [has_div N] : has_div (M × N) := ⟨λ p q, ⟨p.1 / q.1, p.2 / q.2⟩⟩
@[simp, to_additive] lemma fst_div [has_div G] [has_div H] (a b : G × H) : (a / b).1 = a.1 / b.1 :=
rfl
@[simp, to_additive] lemma snd_div [has_div G] [has_div H] (a b : G × H) : (a / b).2 = a.2 / b.2 :=
rfl
@[simp, to_additive] lemma mk_div_mk [has_div G] [has_div H] (x₁ x₂ : G) (y₁ y₂ : H) :
(x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) := rfl
@[simp, to_additive] lemma swap_div [has_div G] [has_div H] (a b : G × H) :
(a / b).swap = a.swap / b.swap := rfl
instance [mul_zero_class M] [mul_zero_class N] : mul_zero_class (M × N) :=
{ zero_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨zero_mul _, zero_mul _⟩,
mul_zero := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩,
.. prod.has_zero, .. prod.has_mul }
@[to_additive]
instance [semigroup M] [semigroup N] : semigroup (M × N) :=
{ mul_assoc := assume a b c, mk.inj_iff.mpr ⟨mul_assoc _ _ _, mul_assoc _ _ _⟩,
.. prod.has_mul }
@[to_additive]
instance [comm_semigroup G] [comm_semigroup H] : comm_semigroup (G × H) :=
{ mul_comm := assume a b, mk.inj_iff.mpr ⟨mul_comm _ _, mul_comm _ _⟩,
.. prod.semigroup }
instance [semigroup_with_zero M] [semigroup_with_zero N] : semigroup_with_zero (M × N) :=
{ .. prod.mul_zero_class, .. prod.semigroup }
@[to_additive]
instance [mul_one_class M] [mul_one_class N] : mul_one_class (M × N) :=
{ one_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨one_mul _, one_mul _⟩,
mul_one := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_one _, mul_one _⟩,
.. prod.has_mul, .. prod.has_one }
@[to_additive]
instance [monoid M] [monoid N] : monoid (M × N) :=
{ npow := λ z a, ⟨monoid.npow z a.1, monoid.npow z a.2⟩,
npow_zero' := λ z, ext (monoid.npow_zero' _) (monoid.npow_zero' _),
npow_succ' := λ z a, ext (monoid.npow_succ' _ _) (monoid.npow_succ' _ _),
.. prod.semigroup, .. prod.mul_one_class }
@[to_additive prod.sub_neg_monoid]
instance [div_inv_monoid G] [div_inv_monoid H] : div_inv_monoid (G × H) :=
{ div_eq_mul_inv := λ a b, mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩,
zpow := λ z a, ⟨div_inv_monoid.zpow z a.1, div_inv_monoid.zpow z a.2⟩,
zpow_zero' := λ z, ext (div_inv_monoid.zpow_zero' _) (div_inv_monoid.zpow_zero' _),
zpow_succ' := λ z a, ext (div_inv_monoid.zpow_succ' _ _) (div_inv_monoid.zpow_succ' _ _),
zpow_neg' := λ z a, ext (div_inv_monoid.zpow_neg' _ _) (div_inv_monoid.zpow_neg' _ _),
.. prod.monoid, .. prod.has_inv, .. prod.has_div }
@[to_additive subtraction_monoid]
instance [division_monoid G] [division_monoid H] : division_monoid (G × H) :=
{ mul_inv_rev := λ a b, ext (mul_inv_rev _ _) (mul_inv_rev _ _),
inv_eq_of_mul := λ a b h, ext (inv_eq_of_mul_eq_one_right $ congr_arg fst h)
(inv_eq_of_mul_eq_one_right $ congr_arg snd h),
.. prod.div_inv_monoid, .. prod.has_involutive_inv }
@[to_additive subtraction_comm_monoid]
instance [division_comm_monoid G] [division_comm_monoid H] : division_comm_monoid (G × H) :=
{ .. prod.division_monoid, .. prod.comm_semigroup }
@[to_additive]
instance [group G] [group H] : group (G × H) :=
{ mul_left_inv := assume a, mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩,
.. prod.div_inv_monoid }
@[to_additive]
instance [left_cancel_semigroup G] [left_cancel_semigroup H] :
left_cancel_semigroup (G × H) :=
{ mul_left_cancel := λ a b c h, prod.ext (mul_left_cancel (prod.ext_iff.1 h).1)
(mul_left_cancel (prod.ext_iff.1 h).2),
.. prod.semigroup }
@[to_additive]
instance [right_cancel_semigroup G] [right_cancel_semigroup H] :
right_cancel_semigroup (G × H) :=
{ mul_right_cancel := λ a b c h, prod.ext (mul_right_cancel (prod.ext_iff.1 h).1)
(mul_right_cancel (prod.ext_iff.1 h).2),
.. prod.semigroup }
@[to_additive]
instance [left_cancel_monoid M] [left_cancel_monoid N] : left_cancel_monoid (M × N) :=
{ .. prod.left_cancel_semigroup, .. prod.monoid }
@[to_additive]
instance [right_cancel_monoid M] [right_cancel_monoid N] : right_cancel_monoid (M × N) :=
{ .. prod.right_cancel_semigroup, .. prod.monoid }
@[to_additive]
instance [cancel_monoid M] [cancel_monoid N] : cancel_monoid (M × N) :=
{ .. prod.right_cancel_monoid, .. prod.left_cancel_monoid }
@[to_additive]
instance [comm_monoid M] [comm_monoid N] : comm_monoid (M × N) :=
{ .. prod.comm_semigroup, .. prod.monoid }
@[to_additive]
instance [cancel_comm_monoid M] [cancel_comm_monoid N] : cancel_comm_monoid (M × N) :=
{ .. prod.left_cancel_monoid, .. prod.comm_monoid }
instance [mul_zero_one_class M] [mul_zero_one_class N] : mul_zero_one_class (M × N) :=
{ .. prod.mul_zero_class, .. prod.mul_one_class }
instance [monoid_with_zero M] [monoid_with_zero N] : monoid_with_zero (M × N) :=
{ .. prod.monoid, .. prod.mul_zero_one_class }
instance [comm_monoid_with_zero M] [comm_monoid_with_zero N] : comm_monoid_with_zero (M × N) :=
{ .. prod.comm_monoid, .. prod.monoid_with_zero }
@[to_additive]
instance [comm_group G] [comm_group H] : comm_group (G × H) :=
{ .. prod.comm_semigroup, .. prod.group }
end prod
namespace mul_hom
section prod
variables (M N) [has_mul M] [has_mul N] [has_mul P]
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
def fst : (M × N) →ₙ* M := ⟨prod.fst, λ _ _, rfl⟩
/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
def snd : (M × N) →ₙ* N := ⟨prod.snd, λ _ _, rfl⟩
variables {M N}
@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl
/-- Combine two `monoid_hom`s `f : M →ₙ* N`, `g : M →ₙ* P` into
`f.prod g : M →ₙ* (N × P)` given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive prod "Combine two `add_monoid_hom`s `f : add_hom M N`, `g : add_hom M P` into
`f.prod g : add_hom M (N × P)` given by `(f.prod g) x = (f x, g x)`"]
protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* (N × P) :=
{ to_fun := pi.prod f g,
map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) }
@[to_additive coe_prod]
lemma coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.prod g) = pi.prod f g := rfl
@[simp, to_additive prod_apply]
lemma prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.prod g x = (f x, g x) := rfl
@[simp, to_additive fst_comp_prod]
lemma fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.prod g) = f :=
ext $ λ x, rfl
@[simp, to_additive snd_comp_prod]
lemma snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.prod g) = g :=
ext $ λ x, rfl
@[simp, to_additive prod_unique]
lemma prod_unique (f : M →ₙ* (N × P)) :
((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta]
end prod
section prod_map
variables {M' : Type*} {N' : Type*} [has_mul M] [has_mul N] [has_mul M'] [has_mul N'] [has_mul P]
(f : M →ₙ* M') (g : N →ₙ* N')
/-- `prod.map` as a `monoid_hom`. -/
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"]
def prod_map : (M × N) →ₙ* (M' × N') := (f.comp (fst M N)).prod (g.comp (snd M N))
@[to_additive prod_map_def]
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl
@[simp, to_additive coe_prod_map]
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl
@[to_additive prod_comp_prod_map]
lemma prod_comp_prod_map (f : P →ₙ* M) (g : P →ₙ* N)
(f' : M →ₙ* M') (g' : N →ₙ* N') :
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
rfl
end prod_map
section coprod
variables [has_mul M] [has_mul N] [comm_semigroup P] (f : M →ₙ* P) (g : N →ₙ* P)
/-- Coproduct of two `mul_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive "Coproduct of two `add_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 + g p.2`."]
def coprod : (M × N) →ₙ* P := f.comp (fst M N) * g.comp (snd M N)
@[simp, to_additive]
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl
@[to_additive]
lemma comp_coprod {Q : Type*} [comm_semigroup Q]
(h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext $ λ x, by simp
end coprod
end mul_hom
namespace monoid_hom
variables (M N) [mul_one_class M] [mul_one_class N]
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
def fst : M × N →* M := ⟨prod.fst, rfl, λ _ _, rfl⟩
/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
def snd : M × N →* N := ⟨prod.snd, rfl, λ _ _, rfl⟩
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism
from `A` to `A × B`."]
def inl : M →* M × N :=
⟨λ x, (x, 1), rfl, λ _ _, prod.ext rfl (one_mul 1).symm⟩
/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism
from `B` to `A × B`."]
def inr : N →* M × N :=
⟨λ y, (1, y), rfl, λ _ _, prod.ext (one_mul 1).symm rfl⟩
variables {M N}
@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl
@[simp, to_additive] lemma inl_apply (x) : inl M N x = (x, 1) := rfl
@[simp, to_additive] lemma inr_apply (y) : inr M N y = (1, y) := rfl
@[simp, to_additive] lemma fst_comp_inl : (fst M N).comp (inl M N) = id M := rfl
@[simp, to_additive] lemma snd_comp_inl : (snd M N).comp (inl M N) = 1 := rfl
@[simp, to_additive] lemma fst_comp_inr : (fst M N).comp (inr M N) = 1 := rfl
@[simp, to_additive] lemma snd_comp_inr : (snd M N).comp (inr M N) = id N := rfl
section prod
variable [mul_one_class P]
/-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P`
given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive prod "Combine two `add_monoid_hom`s `f : M →+ N`, `g : M →+ P` into
`f.prod g : M →+ N × P` given by `(f.prod g) x = (f x, g x)`"]
protected def prod (f : M →* N) (g : M →* P) : M →* N × P :=
{ to_fun := pi.prod f g,
map_one' := prod.ext f.map_one g.map_one,
map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) }
@[to_additive coe_prod]
lemma coe_prod (f : M →* N) (g : M →* P) : ⇑(f.prod g) = pi.prod f g := rfl
@[simp, to_additive prod_apply]
lemma prod_apply (f : M →* N) (g : M →* P) (x) : f.prod g x = (f x, g x) := rfl
@[simp, to_additive fst_comp_prod]
lemma fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.prod g) = f :=
ext $ λ x, rfl
@[simp, to_additive snd_comp_prod]
lemma snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g) = g :=
ext $ λ x, rfl
@[simp, to_additive prod_unique]
lemma prod_unique (f : M →* N × P) :
((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta]
end prod
section prod_map
variables {M' : Type*} {N' : Type*} [mul_one_class M'] [mul_one_class N'] [mul_one_class P]
(f : M →* M') (g : N →* N')
/-- `prod.map` as a `monoid_hom`. -/
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"]
def prod_map : M × N →* M' × N' := (f.comp (fst M N)).prod (g.comp (snd M N))
@[to_additive prod_map_def]
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl
@[simp, to_additive coe_prod_map]
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl
@[to_additive prod_comp_prod_map]
lemma prod_comp_prod_map (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') :
(f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
rfl
end prod_map
section coprod
variables [comm_monoid P] (f : M →* P) (g : N →* P)
/-- Coproduct of two `monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive "Coproduct of two `add_monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 + g p.2`."]
def coprod : M × N →* P := f.comp (fst M N) * g.comp (snd M N)
@[simp, to_additive]
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl
@[simp, to_additive]
lemma coprod_comp_inl : (f.coprod g).comp (inl M N) = f :=
ext $ λ x, by simp [coprod_apply]
@[simp, to_additive]
lemma coprod_comp_inr : (f.coprod g).comp (inr M N) = g :=
ext $ λ x, by simp [coprod_apply]
@[simp, to_additive] lemma coprod_unique (f : M × N →* P) :
(f.comp (inl M N)).coprod (f.comp (inr M N)) = f :=
ext $ λ x, by simp [coprod_apply, inl_apply, inr_apply, ← map_mul]
@[simp, to_additive] lemma coprod_inl_inr {M N : Type*} [comm_monoid M] [comm_monoid N] :
(inl M N).coprod (inr M N) = id (M × N) :=
coprod_unique (id $ M × N)
@[to_additive]
lemma comp_coprod {Q : Type*} [comm_monoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext $ λ x, by simp
end coprod
end monoid_hom
namespace mul_equiv
section
variables {M N} [mul_one_class M] [mul_one_class N]
/-- The equivalence between `M × N` and `N × M` given by swapping the components
is multiplicative. -/
@[to_additive prod_comm "The equivalence between `M × N` and `N × M` given by swapping the
components is additive."]
def prod_comm : M × N ≃* N × M :=
{ map_mul' := λ ⟨x₁, y₁⟩ ⟨x₂, y₂⟩, rfl, ..equiv.prod_comm M N }
@[simp, to_additive coe_prod_comm] lemma coe_prod_comm :
⇑(prod_comm : M × N ≃* N × M) = prod.swap := rfl
@[simp, to_additive coe_prod_comm_symm] lemma coe_prod_comm_symm :
⇑((prod_comm : M × N ≃* N × M).symm) = prod.swap := rfl
variables {M' N' : Type*} [mul_one_class M'] [mul_one_class N']
/--Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prod_congr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
{ map_mul' := λ x y, prod.ext (f.map_mul _ _) (g.map_mul _ _),
..f.to_equiv.prod_congr g.to_equiv }
/--Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."]
def unique_prod [unique N] : N × M ≃* M :=
{ map_mul' := λ x y, rfl,
..equiv.unique_prod M N }
/--Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."]
def prod_unique [unique N] : M × N ≃* M :=
{ map_mul' := λ x y, rfl,
..equiv.prod_unique M N }
end
section
variables {M N} [monoid M] [monoid N]
/-- The monoid equivalence between units of a product of two monoids, and the product of the
units of each monoid. -/
@[to_additive prod_add_units "The additive monoid equivalence between additive units of a product
of two additive monoids, and the product of the additive units of each additive monoid."]
def prod_units : (M × N)ˣ ≃* Mˣ × Nˣ :=
{ to_fun := (units.map (monoid_hom.fst M N)).prod (units.map (monoid_hom.snd M N)),
inv_fun := λ u, ⟨(u.1, u.2), (↑u.1⁻¹, ↑u.2⁻¹), by simp, by simp⟩,
left_inv := λ u, by simp,
right_inv := λ ⟨u₁, u₂⟩, by simp [units.map],
map_mul' := monoid_hom.map_mul _ }
end
end mul_equiv
namespace units
open mul_opposite
/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
@[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`.
Used mainly to define the natural topology of `add_units α`.", simps]
def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ :=
{ to_fun := λ x, ⟨x, op ↑x⁻¹⟩,
map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one,
and_self],
map_mul' := λ x y, by simp only [mul_inv_rev, op_mul, units.coe_mul, prod.mk_mul_mk] }
@[to_additive]
lemma embed_product_injective (α : Type*) [monoid α] : function.injective (embed_product α) :=
λ a₁ a₂ h, units.ext $ (congr_arg prod.fst h : _)
end units
/-! ### Multiplication and division as homomorphisms -/
section bundled_mul_div
variables {α : Type*}
/-- Multiplication as a multiplicative homomorphism. -/
@[to_additive "Addition as an additive homomorphism.", simps]
def mul_mul_hom [comm_semigroup α] : (α × α) →ₙ* α :=
{ to_fun := λ a, a.1 * a.2,
map_mul' := λ a b, mul_mul_mul_comm _ _ _ _ }
/-- Multiplication as a monoid homomorphism. -/
@[to_additive "Addition as an additive monoid homomorphism.", simps]
def mul_monoid_hom [comm_monoid α] : α × α →* α :=
{ map_one' := mul_one _,
.. mul_mul_hom }
/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mul_monoid_with_zero_hom [comm_monoid_with_zero α] : α × α →*₀ α :=
{ map_zero' := mul_zero _,
.. mul_monoid_hom }
/-- Division as a monoid homomorphism. -/
@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
def div_monoid_hom [division_comm_monoid α] : α × α →* α :=
{ to_fun := λ a, a.1 / a.2,
map_one' := div_one _,
map_mul' := λ a b, mul_div_mul_comm _ _ _ _ }
/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
def div_monoid_with_zero_hom [comm_group_with_zero α] : α × α →*₀ α :=
{ to_fun := λ a, a.1 / a.2,
map_zero' := zero_div _,
map_one' := div_one _,
map_mul' := λ a b, mul_div_mul_comm _ _ _ _ }
end bundled_mul_div
|