Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
File size: 21,637 Bytes
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc5e983
4365a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/-
Copyright (c) 2020 Yury Kudryashov. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Simon Hudon, Patrick Massot, Yury Kudryashov
-/
import algebra.group.opposite

/-!
# Monoid, group etc structures on `M × N`

In this file we define one-binop (`monoid`, `group` etc) structures on `M × N`. We also prove
trivial `simp` lemmas, and define the following operations on `monoid_hom`s:

* `fst M N : M × N →* M`, `snd M N : M × N →* N`: projections `prod.fst` and `prod.snd`
  as `monoid_hom`s;
* `inl M N : M →* M × N`, `inr M N : N →* M × N`: inclusions of first/second monoid
  into the product;
* `f.prod g : `M →* N × P`: sends `x` to `(f x, g x)`;
* `f.coprod g : M × N →* P`: sends `(x, y)` to `f x * g y`;
* `f.prod_map g : M × N → M' × N'`: `prod.map f g` as a `monoid_hom`,
  sends `(x, y)` to `(f x, g y)`.

## Main declarations

* `mul_mul_hom`/`mul_monoid_hom`/`mul_monoid_with_zero_hom`: Multiplication bundled as a
  multiplicative/monoid/monoid with zero homomorphism.
* `div_monoid_hom`/`div_monoid_with_zero_hom`: Division bundled as a monoid/monoid with zero
  homomorphism.
-/

variables {A : Type*} {B : Type*} {G : Type*} {H : Type*} {M : Type*} {N : Type*} {P : Type*}

namespace prod

@[to_additive]
instance [has_mul M] [has_mul N] : has_mul (M × N) := ⟨λ p q, ⟨p.1 * q.1, p.2 * q.2⟩⟩

@[simp, to_additive]
lemma fst_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).1 = p.1 * q.1 := rfl
@[simp, to_additive]
lemma snd_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).2 = p.2 * q.2 := rfl
@[simp, to_additive]
lemma mk_mul_mk [has_mul M] [has_mul N] (a₁ a₂ : M) (b₁ b₂ : N) :
  (a₁, b₁) * (a₂, b₂) = (a₁ * a₂, b₁ * b₂) := rfl
@[simp, to_additive]
lemma swap_mul [has_mul M] [has_mul N] (p q : M × N) : (p * q).swap = p.swap * q.swap := rfl
@[to_additive]
lemma mul_def [has_mul M] [has_mul N] (p q : M × N) : p * q = (p.1 * q.1, p.2 * q.2) := rfl

@[to_additive]
instance [has_one M] [has_one N] : has_one (M × N) := ⟨(1, 1)⟩

@[simp, to_additive]
lemma fst_one [has_one M] [has_one N] : (1 : M × N).1 = 1 := rfl
@[simp, to_additive]
lemma snd_one [has_one M] [has_one N] : (1 : M × N).2 = 1 := rfl
@[to_additive]
lemma one_eq_mk [has_one M] [has_one N] : (1 : M × N) = (1, 1) := rfl
@[simp, to_additive]
lemma mk_eq_one [has_one M] [has_one N] {x : M} {y : N} : (x, y) = 1 ↔ x = 1 ∧ y = 1 :=
mk.inj_iff
@[simp, to_additive]
lemma swap_one [has_one M] [has_one N] : (1 : M × N).swap = 1 := rfl

@[to_additive]
lemma fst_mul_snd [mul_one_class M] [mul_one_class N] (p : M × N) :
  (p.fst, 1) * (1, p.snd) = p :=
ext (mul_one p.1) (one_mul p.2)

@[to_additive]
instance [has_inv M] [has_inv N] : has_inv (M × N) := ⟨λp, (p.1⁻¹, p.2⁻¹)⟩

@[simp, to_additive]
lemma fst_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).1 = (p.1)⁻¹ := rfl
@[simp, to_additive]
lemma snd_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).2 = (p.2)⁻¹ := rfl
@[simp, to_additive]
lemma inv_mk [has_inv G] [has_inv H] (a : G) (b : H) : (a, b)⁻¹ = (a⁻¹, b⁻¹) := rfl
@[simp, to_additive]
lemma swap_inv [has_inv G] [has_inv H] (p : G × H) : (p⁻¹).swap = p.swap⁻¹ := rfl

@[to_additive]
instance [has_involutive_inv M] [has_involutive_inv N] : has_involutive_inv (M × N) :=
{ inv_inv := λ a, ext (inv_inv _) (inv_inv _),
  ..prod.has_inv }

@[to_additive]
instance [has_div M] [has_div N] : has_div (M × N) := ⟨λ p q, ⟨p.1 / q.1, p.2 / q.2⟩⟩

@[simp, to_additive] lemma fst_div [has_div G] [has_div H] (a b : G × H) : (a / b).1 = a.1 / b.1 :=
rfl
@[simp, to_additive] lemma snd_div [has_div G] [has_div H] (a b : G × H) : (a / b).2 = a.2 / b.2 :=
rfl
@[simp, to_additive] lemma mk_div_mk [has_div G] [has_div H] (x₁ x₂ : G) (y₁ y₂ : H) :
  (x₁, y₁) / (x₂, y₂) = (x₁ / x₂, y₁ / y₂) := rfl
@[simp, to_additive] lemma swap_div [has_div G] [has_div H] (a b : G × H) :
  (a / b).swap = a.swap / b.swap := rfl

instance [mul_zero_class M] [mul_zero_class N] : mul_zero_class (M × N) :=
{ zero_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨zero_mul _, zero_mul _⟩,
  mul_zero := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_zero _, mul_zero _⟩,
  .. prod.has_zero, .. prod.has_mul }

@[to_additive]
instance [semigroup M] [semigroup N] : semigroup (M × N) :=
{ mul_assoc := assume a b c, mk.inj_iff.mpr ⟨mul_assoc _ _ _, mul_assoc _ _ _⟩,
  .. prod.has_mul }

@[to_additive]
instance [comm_semigroup G] [comm_semigroup H] : comm_semigroup (G × H) :=
{ mul_comm := assume a b, mk.inj_iff.mpr ⟨mul_comm _ _, mul_comm _ _⟩,
  .. prod.semigroup }

instance [semigroup_with_zero M] [semigroup_with_zero N] : semigroup_with_zero (M × N) :=
{ .. prod.mul_zero_class, .. prod.semigroup }

@[to_additive]
instance [mul_one_class M] [mul_one_class N] : mul_one_class (M × N) :=
{ one_mul := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨one_mul _, one_mul _⟩,
  mul_one := assume a, prod.rec_on a $ λa b, mk.inj_iff.mpr ⟨mul_one _, mul_one _⟩,
  .. prod.has_mul, .. prod.has_one }

@[to_additive]
instance [monoid M] [monoid N] : monoid (M × N) :=
{ npow := λ z a, ⟨monoid.npow z a.1, monoid.npow z a.2⟩,
  npow_zero' := λ z, ext (monoid.npow_zero' _) (monoid.npow_zero' _),
  npow_succ' := λ z a, ext (monoid.npow_succ' _ _) (monoid.npow_succ' _ _),
  .. prod.semigroup, .. prod.mul_one_class }

@[to_additive prod.sub_neg_monoid]
instance [div_inv_monoid G] [div_inv_monoid H] : div_inv_monoid (G × H) :=
{ div_eq_mul_inv := λ a b, mk.inj_iff.mpr ⟨div_eq_mul_inv _ _, div_eq_mul_inv _ _⟩,
  zpow := λ z a, ⟨div_inv_monoid.zpow z a.1, div_inv_monoid.zpow z a.2⟩,
  zpow_zero' := λ z, ext (div_inv_monoid.zpow_zero' _) (div_inv_monoid.zpow_zero' _),
  zpow_succ' := λ z a, ext (div_inv_monoid.zpow_succ' _ _) (div_inv_monoid.zpow_succ' _ _),
  zpow_neg' := λ z a, ext (div_inv_monoid.zpow_neg' _ _) (div_inv_monoid.zpow_neg' _ _),
  .. prod.monoid, .. prod.has_inv, .. prod.has_div }

@[to_additive subtraction_monoid]
instance [division_monoid G] [division_monoid H] : division_monoid (G × H) :=
{ mul_inv_rev := λ a b, ext (mul_inv_rev _ _) (mul_inv_rev _ _),
  inv_eq_of_mul := λ a b h, ext (inv_eq_of_mul_eq_one_right $ congr_arg fst h)
    (inv_eq_of_mul_eq_one_right $ congr_arg snd h),
  .. prod.div_inv_monoid, .. prod.has_involutive_inv }

@[to_additive subtraction_comm_monoid]
instance [division_comm_monoid G] [division_comm_monoid H] : division_comm_monoid (G × H) :=
{ .. prod.division_monoid, .. prod.comm_semigroup }

@[to_additive]
instance [group G] [group H] : group (G × H) :=
{ mul_left_inv := assume a, mk.inj_iff.mpr ⟨mul_left_inv _, mul_left_inv _⟩,
  .. prod.div_inv_monoid }

@[to_additive]
instance [left_cancel_semigroup G] [left_cancel_semigroup H] :
  left_cancel_semigroup (G × H) :=
{ mul_left_cancel := λ a b c h, prod.ext (mul_left_cancel (prod.ext_iff.1 h).1)
    (mul_left_cancel (prod.ext_iff.1 h).2),
  .. prod.semigroup }

@[to_additive]
instance [right_cancel_semigroup G] [right_cancel_semigroup H] :
  right_cancel_semigroup (G × H) :=
{ mul_right_cancel := λ a b c h, prod.ext (mul_right_cancel (prod.ext_iff.1 h).1)
    (mul_right_cancel (prod.ext_iff.1 h).2),
  .. prod.semigroup }

@[to_additive]
instance [left_cancel_monoid M] [left_cancel_monoid N] : left_cancel_monoid (M × N) :=
{ .. prod.left_cancel_semigroup, .. prod.monoid }

@[to_additive]
instance [right_cancel_monoid M] [right_cancel_monoid N] : right_cancel_monoid (M × N) :=
{ .. prod.right_cancel_semigroup, .. prod.monoid }

@[to_additive]
instance [cancel_monoid M] [cancel_monoid N] : cancel_monoid (M × N) :=
{ .. prod.right_cancel_monoid, .. prod.left_cancel_monoid }

@[to_additive]
instance [comm_monoid M] [comm_monoid N] : comm_monoid (M × N) :=
{ .. prod.comm_semigroup, .. prod.monoid }

@[to_additive]
instance [cancel_comm_monoid M] [cancel_comm_monoid N] : cancel_comm_monoid (M × N) :=
{ .. prod.left_cancel_monoid, .. prod.comm_monoid }

instance [mul_zero_one_class M] [mul_zero_one_class N] : mul_zero_one_class (M × N) :=
{ .. prod.mul_zero_class, .. prod.mul_one_class }

instance [monoid_with_zero M] [monoid_with_zero N] : monoid_with_zero (M × N) :=
{ .. prod.monoid, .. prod.mul_zero_one_class }

instance [comm_monoid_with_zero M] [comm_monoid_with_zero N] : comm_monoid_with_zero (M × N) :=
{ .. prod.comm_monoid, .. prod.monoid_with_zero }

@[to_additive]
instance [comm_group G] [comm_group H] : comm_group (G × H) :=
{ .. prod.comm_semigroup, .. prod.group }

end prod

namespace mul_hom

section prod

variables (M N) [has_mul M] [has_mul N] [has_mul P]

/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
def fst : (M × N) →ₙ* M := ⟨prod.fst, λ _ _, rfl⟩

/-- Given magmas `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive "Given additive magmas `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
def snd : (M × N) →ₙ* N := ⟨prod.snd, λ _ _, rfl⟩

variables {M N}

@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl

/-- Combine two `monoid_hom`s `f : M →ₙ* N`, `g : M →ₙ* P` into
`f.prod g : M →ₙ* (N × P)` given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive prod "Combine two `add_monoid_hom`s `f : add_hom M N`, `g : add_hom M P` into
`f.prod g : add_hom M (N × P)` given by `(f.prod g) x = (f x, g x)`"]
protected def prod (f : M →ₙ* N) (g : M →ₙ* P) : M →ₙ* (N × P) :=
{ to_fun := pi.prod f g,
  map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) }

@[to_additive coe_prod]
lemma coe_prod (f : M →ₙ* N) (g : M →ₙ* P) : ⇑(f.prod g) = pi.prod f g := rfl

@[simp, to_additive prod_apply]
lemma prod_apply (f : M →ₙ* N) (g : M →ₙ* P) (x) : f.prod g x = (f x, g x) := rfl

@[simp, to_additive fst_comp_prod]
lemma fst_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (fst N P).comp (f.prod g) = f :=
ext $ λ x, rfl

@[simp, to_additive snd_comp_prod]
lemma snd_comp_prod (f : M →ₙ* N) (g : M →ₙ* P) : (snd N P).comp (f.prod g) = g :=
ext $ λ x, rfl

@[simp, to_additive prod_unique]
lemma prod_unique (f : M →ₙ* (N × P)) :
  ((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta]

end prod

section prod_map

variables {M' : Type*} {N' : Type*} [has_mul M] [has_mul N] [has_mul M'] [has_mul N'] [has_mul P]
  (f : M →ₙ* M') (g : N →ₙ* N')

/-- `prod.map` as a `monoid_hom`. -/
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"]
def prod_map : (M × N) →ₙ* (M' × N') := (f.comp (fst M N)).prod (g.comp (snd M N))

@[to_additive prod_map_def]
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl

@[simp, to_additive coe_prod_map]
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl

@[to_additive prod_comp_prod_map]
lemma prod_comp_prod_map (f : P →ₙ* M) (g : P →ₙ* N)
  (f' : M →ₙ* M') (g' : N →ₙ* N') :
  (f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
rfl

end prod_map

section coprod

variables [has_mul M] [has_mul N] [comm_semigroup P] (f : M →ₙ* P) (g : N →ₙ* P)

/-- Coproduct of two `mul_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive "Coproduct of two `add_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 + g p.2`."]
def coprod : (M × N) →ₙ* P := f.comp (fst M N) * g.comp (snd M N)

@[simp, to_additive]
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl

@[to_additive]
lemma comp_coprod {Q : Type*} [comm_semigroup Q]
  (h : P →ₙ* Q) (f : M →ₙ* P) (g : N →ₙ* P) :
  h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext $ λ x, by simp

end coprod

end mul_hom

namespace monoid_hom

variables (M N) [mul_one_class M] [mul_one_class N]

/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `M`.-/
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `A`"]
def fst : M × N →* M := ⟨prod.fst, rfl, λ _ _, rfl⟩

/-- Given monoids `M`, `N`, the natural projection homomorphism from `M × N` to `N`.-/
@[to_additive "Given additive monoids `A`, `B`, the natural projection homomorphism
from `A × B` to `B`"]
def snd : M × N →* N := ⟨prod.snd, rfl, λ _ _, rfl⟩

/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `M` to `M × N`. -/
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism
from `A` to `A × B`."]
def inl : M →* M × N :=
⟨λ x, (x, 1), rfl, λ _ _, prod.ext rfl (one_mul 1).symm⟩

/-- Given monoids `M`, `N`, the natural inclusion homomorphism from `N` to `M × N`. -/
@[to_additive "Given additive monoids `A`, `B`, the natural inclusion homomorphism
from `B` to `A × B`."]
def inr : N →* M × N :=
⟨λ y, (1, y), rfl, λ _ _, prod.ext (one_mul 1).symm rfl⟩

variables {M N}

@[simp, to_additive] lemma coe_fst : ⇑(fst M N) = prod.fst := rfl
@[simp, to_additive] lemma coe_snd : ⇑(snd M N) = prod.snd := rfl

@[simp, to_additive] lemma inl_apply (x) : inl M N x = (x, 1) := rfl
@[simp, to_additive] lemma inr_apply (y) : inr M N y = (1, y) := rfl

@[simp, to_additive] lemma fst_comp_inl : (fst M N).comp (inl M N) = id M := rfl
@[simp, to_additive] lemma snd_comp_inl : (snd M N).comp (inl M N) = 1 := rfl
@[simp, to_additive] lemma fst_comp_inr : (fst M N).comp (inr M N) = 1 := rfl
@[simp, to_additive] lemma snd_comp_inr : (snd M N).comp (inr M N) = id N := rfl

section prod

variable [mul_one_class P]

/-- Combine two `monoid_hom`s `f : M →* N`, `g : M →* P` into `f.prod g : M →* N × P`
given by `(f.prod g) x = (f x, g x)`. -/
@[to_additive prod "Combine two `add_monoid_hom`s `f : M →+ N`, `g : M →+ P` into
`f.prod g : M →+ N × P` given by `(f.prod g) x = (f x, g x)`"]
protected def prod (f : M →* N) (g : M →* P) : M →* N × P :=
{ to_fun := pi.prod f g,
  map_one' := prod.ext f.map_one g.map_one,
  map_mul' := λ x y, prod.ext (f.map_mul x y) (g.map_mul x y) }

@[to_additive coe_prod]
lemma coe_prod (f : M →* N) (g : M →* P) : ⇑(f.prod g) = pi.prod f g := rfl

@[simp, to_additive prod_apply]
lemma prod_apply (f : M →* N) (g : M →* P) (x) : f.prod g x = (f x, g x) := rfl

@[simp, to_additive fst_comp_prod]
lemma fst_comp_prod (f : M →* N) (g : M →* P) : (fst N P).comp (f.prod g) = f :=
ext $ λ x, rfl

@[simp, to_additive snd_comp_prod]
lemma snd_comp_prod (f : M →* N) (g : M →* P) : (snd N P).comp (f.prod g) = g :=
ext $ λ x, rfl

@[simp, to_additive prod_unique]
lemma prod_unique (f : M →* N × P) :
  ((fst N P).comp f).prod ((snd N P).comp f) = f :=
ext $ λ x, by simp only [prod_apply, coe_fst, coe_snd, comp_apply, prod.mk.eta]

end prod

section prod_map

variables {M' : Type*} {N' : Type*} [mul_one_class M'] [mul_one_class N'] [mul_one_class P]
  (f : M →* M') (g : N →* N')

/-- `prod.map` as a `monoid_hom`. -/
@[to_additive prod_map "`prod.map` as an `add_monoid_hom`"]
def prod_map : M × N →* M' × N' := (f.comp (fst M N)).prod (g.comp (snd M N))

@[to_additive prod_map_def]
lemma prod_map_def : prod_map f g = (f.comp (fst M N)).prod (g.comp (snd M N)) := rfl

@[simp, to_additive coe_prod_map]
lemma coe_prod_map : ⇑(prod_map f g) = prod.map f g := rfl

@[to_additive prod_comp_prod_map]
lemma prod_comp_prod_map (f : P →* M) (g : P →* N) (f' : M →* M') (g' : N →* N') :
  (f'.prod_map g').comp (f.prod g) = (f'.comp f).prod (g'.comp g) :=
rfl

end prod_map

section coprod

variables [comm_monoid P] (f : M →* P) (g : N →* P)

/-- Coproduct of two `monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 * g p.2`. -/
@[to_additive "Coproduct of two `add_monoid_hom`s with the same codomain:
`f.coprod g (p : M × N) = f p.1 + g p.2`."]
def coprod : M × N →* P := f.comp (fst M N) * g.comp (snd M N)

@[simp, to_additive]
lemma coprod_apply (p : M × N) : f.coprod g p = f p.1 * g p.2 := rfl

@[simp, to_additive]
lemma coprod_comp_inl : (f.coprod g).comp (inl M N) = f :=
ext $ λ x, by simp [coprod_apply]

@[simp, to_additive]
lemma coprod_comp_inr : (f.coprod g).comp (inr M N) = g :=
ext $ λ x, by simp [coprod_apply]

@[simp, to_additive] lemma coprod_unique (f : M × N →* P) :
  (f.comp (inl M N)).coprod (f.comp (inr M N)) = f :=
ext $ λ x, by simp [coprod_apply, inl_apply, inr_apply, ← map_mul]

@[simp, to_additive] lemma coprod_inl_inr {M N : Type*} [comm_monoid M] [comm_monoid N] :
  (inl M N).coprod (inr M N) = id (M × N) :=
coprod_unique (id $ M × N)

@[to_additive]
lemma comp_coprod {Q : Type*} [comm_monoid Q] (h : P →* Q) (f : M →* P) (g : N →* P) :
  h.comp (f.coprod g) = (h.comp f).coprod (h.comp g) :=
ext $ λ x, by simp

end coprod

end monoid_hom

namespace mul_equiv

section
variables {M N} [mul_one_class M] [mul_one_class N]

/-- The equivalence between `M × N` and `N × M` given by swapping the components
is multiplicative. -/
@[to_additive prod_comm "The equivalence between `M × N` and `N × M` given by swapping the
components is additive."]
def prod_comm : M × N ≃* N × M :=
{ map_mul' := λ ⟨x₁, y₁⟩ ⟨x₂, y₂⟩, rfl, ..equiv.prod_comm M N }

@[simp, to_additive coe_prod_comm] lemma coe_prod_comm :
  ⇑(prod_comm : M × N ≃* N × M) = prod.swap := rfl

@[simp, to_additive coe_prod_comm_symm] lemma coe_prod_comm_symm :
  ⇑((prod_comm : M × N ≃* N × M).symm) = prod.swap := rfl

variables {M' N' : Type*} [mul_one_class M'] [mul_one_class N']

/--Product of multiplicative isomorphisms; the maps come from `equiv.prod_congr`.-/
@[to_additive prod_congr "Product of additive isomorphisms; the maps come from `equiv.prod_congr`."]
def prod_congr (f : M ≃* M') (g : N ≃* N') : M × N ≃* M' × N' :=
{ map_mul' := λ x y, prod.ext (f.map_mul _ _) (g.map_mul _ _),
  ..f.to_equiv.prod_congr g.to_equiv }

/--Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive unique_prod "Multiplying by the trivial monoid doesn't change the structure."]
def unique_prod [unique N] : N × M ≃* M :=
{ map_mul' := λ x y, rfl,
  ..equiv.unique_prod M N }

/--Multiplying by the trivial monoid doesn't change the structure.-/
@[to_additive prod_unique "Multiplying by the trivial monoid doesn't change the structure."]
def prod_unique [unique N] : M × N ≃* M :=
{ map_mul' := λ x y, rfl,
  ..equiv.prod_unique M N }

end

section
variables {M N} [monoid M] [monoid N]

/-- The monoid equivalence between units of a product of two monoids, and the product of the
    units of each monoid. -/
@[to_additive prod_add_units "The additive monoid equivalence between additive units of a product
of two additive monoids, and the product of the additive units of each additive monoid."]
def prod_units : (M × N)ˣ ≃* Mˣ × Nˣ :=
{ to_fun := (units.map (monoid_hom.fst M N)).prod (units.map (monoid_hom.snd M N)),
  inv_fun := λ u, ⟨(u.1, u.2), (↑u.1⁻¹, ↑u.2⁻¹), by simp, by simp⟩,
  left_inv := λ u, by simp,
  right_inv := λ ⟨u₁, u₂⟩, by simp [units.map],
  map_mul' := monoid_hom.map_mul _ }

end

end mul_equiv

namespace units

open mul_opposite

/-- Canonical homomorphism of monoids from `αˣ` into `α × αᵐᵒᵖ`.
Used mainly to define the natural topology of `αˣ`. -/
@[to_additive "Canonical homomorphism of additive monoids from `add_units α` into `α × αᵃᵒᵖ`.
Used mainly to define the natural topology of `add_units α`.", simps]
def embed_product (α : Type*) [monoid α] : αˣ →* α × αᵐᵒᵖ :=
{ to_fun := λ x, ⟨x, op ↑x⁻¹⟩,
  map_one' := by simp only [inv_one, eq_self_iff_true, units.coe_one, op_one, prod.mk_eq_one,
    and_self],
  map_mul' := λ x y, by simp only [mul_inv_rev, op_mul, units.coe_mul, prod.mk_mul_mk] }

@[to_additive]
lemma embed_product_injective (α : Type*) [monoid α] : function.injective (embed_product α) :=
λ a₁ a₂ h, units.ext $ (congr_arg prod.fst h : _)

end units

/-! ### Multiplication and division as homomorphisms -/

section bundled_mul_div
variables {α : Type*}

/-- Multiplication as a multiplicative homomorphism. -/
@[to_additive "Addition as an additive homomorphism.", simps]
def mul_mul_hom [comm_semigroup α] : (α × α) →ₙ* α :=
{ to_fun := λ a, a.1 * a.2,
  map_mul' := λ a b, mul_mul_mul_comm _ _ _ _ }

/-- Multiplication as a monoid homomorphism. -/
@[to_additive "Addition as an additive monoid homomorphism.", simps]
def mul_monoid_hom [comm_monoid α] : α × α →* α :=
{ map_one' := mul_one _,
  .. mul_mul_hom }

/-- Multiplication as a multiplicative homomorphism with zero. -/
@[simps]
def mul_monoid_with_zero_hom [comm_monoid_with_zero α] : α × α →*₀ α :=
{ map_zero' := mul_zero _,
  .. mul_monoid_hom }

/-- Division as a monoid homomorphism. -/
@[to_additive "Subtraction as an additive monoid homomorphism.", simps]
def div_monoid_hom [division_comm_monoid α] : α × α →* α :=
{ to_fun := λ a, a.1 / a.2,
  map_one' := div_one _,
  map_mul' := λ a b, mul_div_mul_comm _ _ _ _ }

/-- Division as a multiplicative homomorphism with zero. -/
@[simps]
def div_monoid_with_zero_hom [comm_group_with_zero α] : α × α →*₀ α :=
{ to_fun := λ a, a.1 / a.2,
  map_zero' := zero_div _,
  map_one' := div_one _,
  map_mul' := λ a b, mul_div_mul_comm _ _ _ _ }

end bundled_mul_div