Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
English
Size:
100K - 1M
License:
File size: 79,652 Bytes
4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 4365a98 fc5e983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 |
/-
Copyright (c) 2017 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl
-/
import algebra.group.pi
import algebra.hom.equiv
import algebra.ring.opposite
import data.finset.fold
import data.fintype.basic
import data.set.pairwise
/-!
# Big operators
In this file we define products and sums indexed by finite sets (specifically, `finset`).
## Notation
We introduce the following notation, localized in `big_operators`.
To enable the notation, use `open_locale big_operators`.
Let `s` be a `finset α`, and `f : α → β` a function.
* `∏ x in s, f x` is notation for `finset.prod s f` (assuming `β` is a `comm_monoid`)
* `∑ x in s, f x` is notation for `finset.sum s f` (assuming `β` is an `add_comm_monoid`)
* `∏ x, f x` is notation for `finset.prod finset.univ f`
(assuming `α` is a `fintype` and `β` is a `comm_monoid`)
* `∑ x, f x` is notation for `finset.sum finset.univ f`
(assuming `α` is a `fintype` and `β` is an `add_comm_monoid`)
## Implementation Notes
The first arguments in all definitions and lemmas is the codomain of the function of the big
operator. This is necessary for the heuristic in `@[to_additive]`.
See the documentation of `to_additive.attr` for more information.
-/
universes u v w
variables {ι : Type*} {β : Type u} {α : Type v} {γ : Type w}
open fin
namespace finset
/--
`∏ x in s, f x` is the product of `f x`
as `x` ranges over the elements of the finite set `s`.
-/
@[to_additive "`∑ x in s, f x` is the sum of `f x` as `x` ranges over the elements
of the finite set `s`."]
protected def prod [comm_monoid β] (s : finset α) (f : α → β) : β := (s.1.map f).prod
@[simp, to_additive] lemma prod_mk [comm_monoid β] (s : multiset α) (hs : s.nodup) (f : α → β) :
(⟨s, hs⟩ : finset α).prod f = (s.map f).prod :=
rfl
@[simp, to_additive] lemma prod_val [comm_monoid α] (s : finset α) : s.1.prod = s.prod id :=
by rw [finset.prod, multiset.map_id]
end finset
/--
There is no established mathematical convention
for the operator precedence of big operators like `∏` and `∑`.
We will have to make a choice.
Online discussions, such as https://math.stackexchange.com/q/185538/30839
seem to suggest that `∏` and `∑` should have the same precedence,
and that this should be somewhere between `*` and `+`.
The latter have precedence levels `70` and `65` respectively,
and we therefore choose the level `67`.
In practice, this means that parentheses should be placed as follows:
```lean
∑ k in K, (a k + b k) = ∑ k in K, a k + ∑ k in K, b k →
∏ k in K, a k * b k = (∏ k in K, a k) * (∏ k in K, b k)
```
(Example taken from page 490 of Knuth's *Concrete Mathematics*.)
-/
library_note "operator precedence of big operators"
localized "notation `∑` binders `, ` r:(scoped:67 f, finset.sum finset.univ f) := r"
in big_operators
localized "notation `∏` binders `, ` r:(scoped:67 f, finset.prod finset.univ f) := r"
in big_operators
localized "notation `∑` binders ` in ` s `, ` r:(scoped:67 f, finset.sum s f) := r"
in big_operators
localized "notation `∏` binders ` in ` s `, ` r:(scoped:67 f, finset.prod s f) := r"
in big_operators
open_locale big_operators
namespace finset
variables {s s₁ s₂ : finset α} {a : α} {f g : α → β}
@[to_additive] lemma prod_eq_multiset_prod [comm_monoid β] (s : finset α) (f : α → β) :
∏ x in s, f x = (s.1.map f).prod := rfl
@[to_additive]
theorem prod_eq_fold [comm_monoid β] (s : finset α) (f : α → β) :
∏ x in s, f x = s.fold (*) 1 f :=
rfl
@[simp] lemma sum_multiset_singleton (s : finset α) :
s.sum (λ x, {x}) = s.val :=
by simp only [sum_eq_multiset_sum, multiset.sum_map_singleton]
end finset
@[to_additive]
lemma map_prod [comm_monoid β] [comm_monoid γ] {G : Type*} [monoid_hom_class G β γ] (g : G)
(f : α → β) (s : finset α) :
g (∏ x in s, f x) = ∏ x in s, g (f x) :=
by simp only [finset.prod_eq_multiset_prod, map_multiset_prod, multiset.map_map]
section deprecated
/-- Deprecated: use `_root_.map_prod` instead. -/
@[to_additive "Deprecated: use `_root_.map_sum` instead."]
protected lemma monoid_hom.map_prod [comm_monoid β] [comm_monoid γ] (g : β →* γ) (f : α → β)
(s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) :=
map_prod g f s
/-- Deprecated: use `_root_.map_prod` instead. -/
@[to_additive "Deprecated: use `_root_.map_sum` instead."]
protected lemma mul_equiv.map_prod [comm_monoid β] [comm_monoid γ] (g : β ≃* γ) (f : α → β)
(s : finset α) : g (∏ x in s, f x) = ∏ x in s, g (f x) :=
map_prod g f s
/-- Deprecated: use `_root_.map_list_prod` instead. -/
protected lemma ring_hom.map_list_prod [semiring β] [semiring γ] (f : β →+* γ) (l : list β) :
f l.prod = (l.map f).prod :=
map_list_prod f l
/-- Deprecated: use `_root_.map_list_sum` instead. -/
protected lemma ring_hom.map_list_sum [non_assoc_semiring β] [non_assoc_semiring γ]
(f : β →+* γ) (l : list β) :
f l.sum = (l.map f).sum :=
map_list_sum f l
/-- A morphism into the opposite ring acts on the product by acting on the reversed elements.
Deprecated: use `_root_.unop_map_list_prod` instead.
-/
protected lemma ring_hom.unop_map_list_prod [semiring β] [semiring γ] (f : β →+* γᵐᵒᵖ)
(l : list β) : mul_opposite.unop (f l.prod) = (l.map (mul_opposite.unop ∘ f)).reverse.prod :=
unop_map_list_prod f l
/-- Deprecated: use `_root_.map_multiset_prod` instead. -/
protected lemma ring_hom.map_multiset_prod [comm_semiring β] [comm_semiring γ] (f : β →+* γ)
(s : multiset β) :
f s.prod = (s.map f).prod :=
map_multiset_prod f s
/-- Deprecated: use `_root_.map_multiset_sum` instead. -/
protected lemma ring_hom.map_multiset_sum [non_assoc_semiring β] [non_assoc_semiring γ]
(f : β →+* γ) (s : multiset β) :
f s.sum = (s.map f).sum :=
map_multiset_sum f s
/-- Deprecated: use `_root_.map_prod` instead. -/
protected lemma ring_hom.map_prod [comm_semiring β] [comm_semiring γ] (g : β →+* γ) (f : α → β)
(s : finset α) :
g (∏ x in s, f x) = ∏ x in s, g (f x) :=
map_prod g f s
/-- Deprecated: use `_root_.map_sum` instead. -/
protected lemma ring_hom.map_sum [non_assoc_semiring β] [non_assoc_semiring γ]
(g : β →+* γ) (f : α → β) (s : finset α) :
g (∑ x in s, f x) = ∑ x in s, g (f x) :=
map_sum g f s
end deprecated
@[to_additive]
lemma monoid_hom.coe_finset_prod [mul_one_class β] [comm_monoid γ] (f : α → β →* γ) (s : finset α) :
⇑(∏ x in s, f x) = ∏ x in s, f x :=
(monoid_hom.coe_fn β γ).map_prod _ _
-- See also `finset.prod_apply`, with the same conclusion
-- but with the weaker hypothesis `f : α → β → γ`.
@[simp, to_additive]
lemma monoid_hom.finset_prod_apply [mul_one_class β] [comm_monoid γ] (f : α → β →* γ)
(s : finset α) (b : β) : (∏ x in s, f x) b = ∏ x in s, f x b :=
(monoid_hom.eval b).map_prod _ _
variables {s s₁ s₂ : finset α} {a : α} {f g : α → β}
namespace finset
section comm_monoid
variables [comm_monoid β]
@[simp, to_additive] lemma prod_empty : ∏ x in ∅, f x = 1 := rfl
@[to_additive] lemma prod_of_empty [is_empty α] : ∏ i, f i = 1 := by rw [univ_eq_empty, prod_empty]
@[simp, to_additive]
lemma prod_cons (h : a ∉ s) : (∏ x in (cons a s h), f x) = f a * ∏ x in s, f x :=
fold_cons h
@[simp, to_additive]
lemma prod_insert [decidable_eq α] : a ∉ s → (∏ x in (insert a s), f x) = f a * ∏ x in s, f x :=
fold_insert
/--
The product of `f` over `insert a s` is the same as
the product over `s`, as long as `a` is in `s` or `f a = 1`.
-/
@[simp, to_additive "The sum of `f` over `insert a s` is the same as
the sum over `s`, as long as `a` is in `s` or `f a = 0`."]
lemma prod_insert_of_eq_one_if_not_mem [decidable_eq α] (h : a ∉ s → f a = 1) :
∏ x in insert a s, f x = ∏ x in s, f x :=
begin
by_cases hm : a ∈ s,
{ simp_rw insert_eq_of_mem hm },
{ rw [prod_insert hm, h hm, one_mul] },
end
/--
The product of `f` over `insert a s` is the same as the product over `s`, as long as `f a = 1`.
-/
@[simp, to_additive "The sum of `f` over `insert a s` is the same as
the sum over `s`, as long as `f a = 0`."]
lemma prod_insert_one [decidable_eq α] (h : f a = 1) :
∏ x in insert a s, f x = ∏ x in s, f x :=
prod_insert_of_eq_one_if_not_mem (λ _, h)
@[simp, to_additive]
lemma prod_singleton : (∏ x in (singleton a), f x) = f a :=
eq.trans fold_singleton $ mul_one _
@[to_additive]
lemma prod_pair [decidable_eq α] {a b : α} (h : a ≠ b) :
(∏ x in ({a, b} : finset α), f x) = f a * f b :=
by rw [prod_insert (not_mem_singleton.2 h), prod_singleton]
@[simp, priority 1100, to_additive]
lemma prod_const_one : (∏ x in s, (1 : β)) = 1 :=
by simp only [finset.prod, multiset.map_const, multiset.prod_repeat, one_pow]
@[simp, to_additive]
lemma prod_image [decidable_eq α] {s : finset γ} {g : γ → α} :
(∀ x ∈ s, ∀ y ∈ s, g x = g y → x = y) → (∏ x in (s.image g), f x) = ∏ x in s, f (g x) :=
fold_image
@[simp, to_additive]
lemma prod_map (s : finset α) (e : α ↪ γ) (f : γ → β) :
(∏ x in (s.map e), f x) = ∏ x in s, f (e x) :=
by rw [finset.prod, finset.map_val, multiset.map_map]; refl
@[congr, to_additive]
lemma prod_congr (h : s₁ = s₂) : (∀ x ∈ s₂, f x = g x) → s₁.prod f = s₂.prod g :=
by rw [h]; exact fold_congr
attribute [congr] finset.sum_congr
@[to_additive]
lemma prod_disj_union (h) : ∏ x in s₁.disj_union s₂ h, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x :=
by { refine eq.trans _ (fold_disj_union h), rw one_mul, refl }
@[to_additive]
lemma prod_union_inter [decidable_eq α] :
(∏ x in (s₁ ∪ s₂), f x) * (∏ x in (s₁ ∩ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) :=
fold_union_inter
@[to_additive]
lemma prod_union [decidable_eq α] (h : disjoint s₁ s₂) :
(∏ x in (s₁ ∪ s₂), f x) = (∏ x in s₁, f x) * (∏ x in s₂, f x) :=
by rw [←prod_union_inter, (disjoint_iff_inter_eq_empty.mp h)]; exact (mul_one _).symm
@[to_additive]
lemma prod_filter_mul_prod_filter_not (s : finset α) (p : α → Prop) [decidable_pred p]
[decidable_pred (λ x, ¬p x)] (f : α → β) :
(∏ x in s.filter p, f x) * (∏ x in s.filter (λ x, ¬p x), f x) = ∏ x in s, f x :=
begin
haveI := classical.dec_eq α,
rw [← prod_union (filter_inter_filter_neg_eq p s).le, filter_union_filter_neg_eq]
end
section to_list
@[simp, to_additive]
lemma prod_to_list (s : finset α) (f : α → β) : (s.to_list.map f).prod = s.prod f :=
by rw [finset.prod, ← multiset.coe_prod, ← multiset.coe_map, finset.coe_to_list]
end to_list
@[to_additive]
lemma _root_.equiv.perm.prod_comp (σ : equiv.perm α) (s : finset α) (f : α → β)
(hs : {a | σ a ≠ a} ⊆ s) :
(∏ x in s, f (σ x)) = ∏ x in s, f x :=
by { convert (prod_map _ σ.to_embedding _).symm, exact (map_perm hs).symm }
@[to_additive]
lemma _root_.equiv.perm.prod_comp' (σ : equiv.perm α) (s : finset α) (f : α → α → β)
(hs : {a | σ a ≠ a} ⊆ s) :
(∏ x in s, f (σ x) x) = ∏ x in s, f x (σ.symm x) :=
by { convert σ.prod_comp s (λ x, f x (σ.symm x)) hs, ext, rw equiv.symm_apply_apply }
end comm_monoid
end finset
section
open finset
variables [fintype α] [decidable_eq α] [comm_monoid β]
@[to_additive]
lemma is_compl.prod_mul_prod {s t : finset α} (h : is_compl s t) (f : α → β) :
(∏ i in s, f i) * (∏ i in t, f i) = ∏ i, f i :=
(finset.prod_union h.disjoint).symm.trans $ by rw [← finset.sup_eq_union, h.sup_eq_top]; refl
end
namespace finset
section comm_monoid
variables [comm_monoid β]
/-- Multiplying the products of a function over `s` and over `sᶜ` gives the whole product.
For a version expressed with subtypes, see `fintype.prod_subtype_mul_prod_subtype`. -/
@[to_additive "Adding the sums of a function over `s` and over `sᶜ` gives the whole sum.
For a version expressed with subtypes, see `fintype.sum_subtype_add_sum_subtype`. "]
lemma prod_mul_prod_compl [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
(∏ i in s, f i) * (∏ i in sᶜ, f i) = ∏ i, f i :=
is_compl.prod_mul_prod is_compl_compl f
@[to_additive]
lemma prod_compl_mul_prod [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
(∏ i in sᶜ, f i) * (∏ i in s, f i) = ∏ i, f i :=
(@is_compl_compl _ s _).symm.prod_mul_prod f
@[to_additive]
lemma prod_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) :
(∏ x in (s₂ \ s₁), f x) * (∏ x in s₁, f x) = (∏ x in s₂, f x) :=
by rw [←prod_union sdiff_disjoint, sdiff_union_of_subset h]
@[simp, to_additive]
lemma prod_sum_elim [decidable_eq (α ⊕ γ)]
(s : finset α) (t : finset γ) (f : α → β) (g : γ → β) :
∏ x in s.map function.embedding.inl ∪ t.map function.embedding.inr, sum.elim f g x =
(∏ x in s, f x) * (∏ x in t, g x) :=
begin
rw [prod_union, prod_map, prod_map],
{ simp only [sum.elim_inl, function.embedding.inl_apply, function.embedding.inr_apply,
sum.elim_inr] },
{ simp only [disjoint_left, finset.mem_map, finset.mem_map],
rintros _ ⟨i, hi, rfl⟩ ⟨j, hj, H⟩,
cases H }
end
@[simp, to_additive]
lemma prod_on_sum [fintype α] [fintype γ] (f : α ⊕ γ → β) :
∏ (x : α ⊕ γ), f x =
(∏ (x : α), f (sum.inl x)) * (∏ (x : γ), f (sum.inr x)) :=
begin
haveI := classical.dec_eq (α ⊕ γ),
convert prod_sum_elim univ univ (λ x, f (sum.inl x)) (λ x, f (sum.inr x)),
{ ext a,
split,
{ intro x,
cases a,
{ simp only [mem_union, mem_map, mem_univ, function.embedding.inl_apply, or_false,
exists_true_left, exists_apply_eq_apply, function.embedding.inr_apply, exists_false], },
{ simp only [mem_union, mem_map, mem_univ, function.embedding.inl_apply, false_or,
exists_true_left, exists_false, function.embedding.inr_apply,
exists_apply_eq_apply], }, },
{ simp only [mem_univ, implies_true_iff], }, },
{ simp only [sum.elim_comp_inl_inr], },
end
@[to_additive]
lemma prod_bUnion [decidable_eq α] {s : finset γ} {t : γ → finset α}
(hs : set.pairwise_disjoint ↑s t) :
(∏ x in (s.bUnion t), f x) = ∏ x in s, ∏ i in t x, f i :=
begin
haveI := classical.dec_eq γ,
induction s using finset.induction_on with x s hxs ih hd,
{ simp_rw [bUnion_empty, prod_empty] },
{ simp_rw [coe_insert, set.pairwise_disjoint_insert, mem_coe] at hs,
have : disjoint (t x) (finset.bUnion s t),
{ exact (disjoint_bUnion_right _ _ _).mpr (λ y hy, hs.2 y hy $ λ H, hxs $ H.substr hy) },
rw [bUnion_insert, prod_insert hxs, prod_union this, ih hs.1] }
end
/-- Product over a sigma type equals the product of fiberwise products. For rewriting
in the reverse direction, use `finset.prod_sigma'`. -/
@[to_additive "Sum over a sigma type equals the sum of fiberwise sums. For rewriting
in the reverse direction, use `finset.sum_sigma'`"]
lemma prod_sigma {σ : α → Type*}
(s : finset α) (t : Π a, finset (σ a)) (f : sigma σ → β) :
(∏ x in s.sigma t, f x) = ∏ a in s, ∏ s in (t a), f ⟨a, s⟩ :=
by classical;
calc (∏ x in s.sigma t, f x) =
∏ x in s.bUnion (λ a, (t a).map (function.embedding.sigma_mk a)), f x : by rw sigma_eq_bUnion
... = ∏ a in s, ∏ x in (t a).map (function.embedding.sigma_mk a), f x :
prod_bUnion $ assume a₁ ha a₂ ha₂ h x hx,
by { simp only [inf_eq_inter, mem_inter, mem_map, function.embedding.sigma_mk_apply] at hx,
rcases hx with ⟨⟨y, hy, rfl⟩, ⟨z, hz, hz'⟩⟩, cc }
... = ∏ a in s, ∏ s in t a, f ⟨a, s⟩ :
prod_congr rfl $ λ _ _, prod_map _ _ _
@[to_additive]
lemma prod_sigma' {σ : α → Type*}
(s : finset α) (t : Π a, finset (σ a)) (f : Π a, σ a → β) :
(∏ a in s, ∏ s in (t a), f a s) = ∏ x in s.sigma t, f x.1 x.2 :=
eq.symm $ prod_sigma s t (λ x, f x.1 x.2)
/--
Reorder a product.
The difference with `prod_bij'` is that the bijection is specified as a surjective injection,
rather than by an inverse function.
-/
@[to_additive "
Reorder a sum.
The difference with `sum_bij'` is that the bijection is specified as a surjective injection,
rather than by an inverse function.
"]
lemma prod_bij {s : finset α} {t : finset γ} {f : α → β} {g : γ → β}
(i : Π a ∈ s, γ) (hi : ∀ a ha, i a ha ∈ t) (h : ∀ a ha, f a = g (i a ha))
(i_inj : ∀ a₁ a₂ ha₁ ha₂, i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂) (i_surj : ∀ b ∈ t, ∃ a ha, b = i a ha) :
(∏ x in s, f x) = (∏ x in t, g x) :=
congr_arg multiset.prod
(multiset.map_eq_map_of_bij_of_nodup f g s.2 t.2 i hi h i_inj i_surj)
/--
Reorder a product.
The difference with `prod_bij` is that the bijection is specified with an inverse, rather than
as a surjective injection.
-/
@[to_additive "
Reorder a sum.
The difference with `sum_bij` is that the bijection is specified with an inverse, rather than
as a surjective injection.
"]
lemma prod_bij' {s : finset α} {t : finset γ} {f : α → β} {g : γ → β}
(i : Π a ∈ s, γ) (hi : ∀ a ha, i a ha ∈ t) (h : ∀ a ha, f a = g (i a ha))
(j : Π a ∈ t, α) (hj : ∀ a ha, j a ha ∈ s) (left_inv : ∀ a ha, j (i a ha) (hi a ha) = a)
(right_inv : ∀ a ha, i (j a ha) (hj a ha) = a) :
(∏ x in s, f x) = (∏ x in t, g x) :=
begin
refine prod_bij i hi h _ _,
{intros a1 a2 h1 h2 eq, rw [←left_inv a1 h1, ←left_inv a2 h2], cc,},
{intros b hb, use j b hb, use hj b hb, exact (right_inv b hb).symm,},
end
@[to_additive] lemma prod_finset_product
(r : finset (γ × α)) (s : finset γ) (t : γ → finset α)
(h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ × α → β} :
∏ p in r, f p = ∏ c in s, ∏ a in t c, f (c, a) :=
begin
refine eq.trans _ (prod_sigma s t (λ p, f (p.1, p.2))),
exact prod_bij' (λ p hp, ⟨p.1, p.2⟩) (λ p, mem_sigma.mpr ∘ (h p).mp)
(λ p hp, congr_arg f prod.mk.eta.symm) (λ p hp, (p.1, p.2))
(λ p, (h (p.1, p.2)).mpr ∘ mem_sigma.mp) (λ p hp, prod.mk.eta) (λ p hp, p.eta),
end
@[to_additive] lemma prod_finset_product'
(r : finset (γ × α)) (s : finset γ) (t : γ → finset α)
(h : ∀ p : γ × α, p ∈ r ↔ p.1 ∈ s ∧ p.2 ∈ t p.1) {f : γ → α → β} :
∏ p in r, f p.1 p.2 = ∏ c in s, ∏ a in t c, f c a :=
prod_finset_product r s t h
@[to_additive] lemma prod_finset_product_right
(r : finset (α × γ)) (s : finset γ) (t : γ → finset α)
(h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α × γ → β} :
∏ p in r, f p = ∏ c in s, ∏ a in t c, f (a, c) :=
begin
refine eq.trans _ (prod_sigma s t (λ p, f (p.2, p.1))),
exact prod_bij' (λ p hp, ⟨p.2, p.1⟩) (λ p, mem_sigma.mpr ∘ (h p).mp)
(λ p hp, congr_arg f prod.mk.eta.symm) (λ p hp, (p.2, p.1))
(λ p, (h (p.2, p.1)).mpr ∘ mem_sigma.mp) (λ p hp, prod.mk.eta) (λ p hp, p.eta),
end
@[to_additive] lemma prod_finset_product_right'
(r : finset (α × γ)) (s : finset γ) (t : γ → finset α)
(h : ∀ p : α × γ, p ∈ r ↔ p.2 ∈ s ∧ p.1 ∈ t p.2) {f : α → γ → β} :
∏ p in r, f p.1 p.2 = ∏ c in s, ∏ a in t c, f a c :=
prod_finset_product_right r s t h
@[to_additive]
lemma prod_fiberwise_of_maps_to [decidable_eq γ] {s : finset α} {t : finset γ} {g : α → γ}
(h : ∀ x ∈ s, g x ∈ t) (f : α → β) :
(∏ y in t, ∏ x in s.filter (λ x, g x = y), f x) = ∏ x in s, f x :=
begin
letI := classical.dec_eq α,
rw [← bUnion_filter_eq_of_maps_to h] {occs := occurrences.pos [2]},
refine (prod_bUnion $ λ x' hx y' hy hne, _).symm,
rw [function.on_fun, disjoint_filter],
rintros x hx rfl,
exact hne
end
@[to_additive]
lemma prod_image' [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β)
(eq : ∀ c ∈ s, f (g c) = ∏ x in s.filter (λ c', g c' = g c), h x) :
(∏ x in s.image g, f x) = ∏ x in s, h x :=
calc (∏ x in s.image g, f x) = ∏ x in s.image g, ∏ x in s.filter (λ c', g c' = x), h x :
prod_congr rfl $ λ x hx, let ⟨c, hcs, hc⟩ := mem_image.1 hx in hc ▸ (eq c hcs)
... = ∏ x in s, h x : prod_fiberwise_of_maps_to (λ x, mem_image_of_mem g) _
@[to_additive]
lemma prod_mul_distrib : ∏ x in s, (f x * g x) = (∏ x in s, f x) * (∏ x in s, g x) :=
eq.trans (by rw one_mul; refl) fold_op_distrib
@[to_additive]
lemma prod_product {s : finset γ} {t : finset α} {f : γ×α → β} :
(∏ x in s ×ˢ t, f x) = ∏ x in s, ∏ y in t, f (x, y) :=
prod_finset_product (s ×ˢ t) s (λ a, t) (λ p, mem_product)
/-- An uncurried version of `finset.prod_product`. -/
@[to_additive "An uncurried version of `finset.sum_product`"]
lemma prod_product' {s : finset γ} {t : finset α} {f : γ → α → β} :
(∏ x in s ×ˢ t, f x.1 x.2) = ∏ x in s, ∏ y in t, f x y :=
prod_product
@[to_additive]
lemma prod_product_right {s : finset γ} {t : finset α} {f : γ×α → β} :
(∏ x in s ×ˢ t, f x) = ∏ y in t, ∏ x in s, f (x, y) :=
prod_finset_product_right (s ×ˢ t) t (λ a, s) (λ p, mem_product.trans and.comm)
/-- An uncurried version of `finset.prod_product_right`. -/
@[to_additive "An uncurried version of `finset.prod_product_right`"]
lemma prod_product_right' {s : finset γ} {t : finset α} {f : γ → α → β} :
(∏ x in s ×ˢ t, f x.1 x.2) = ∏ y in t, ∏ x in s, f x y :=
prod_product_right
/-- Generalization of `finset.prod_comm` to the case when the inner `finset`s depend on the outer
variable. -/
@[to_additive "Generalization of `finset.sum_comm` to the case when the inner `finset`s depend on
the outer variable."]
lemma prod_comm' {s : finset γ} {t : γ → finset α} {t' : finset α} {s' : α → finset γ}
(h : ∀ x y, x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t') {f : γ → α → β} :
(∏ x in s, ∏ y in t x, f x y) = (∏ y in t', ∏ x in s' y, f x y) :=
begin
classical,
have : ∀ z : γ × α,
z ∈ s.bUnion (λ x, (t x).map $ function.embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1,
{ rintro ⟨x, y⟩, simp },
exact (prod_finset_product' _ _ _ this).symm.trans
(prod_finset_product_right' _ _ _ $ λ ⟨x, y⟩, (this _).trans ((h x y).trans and.comm))
end
@[to_additive]
lemma prod_comm {s : finset γ} {t : finset α} {f : γ → α → β} :
(∏ x in s, ∏ y in t, f x y) = (∏ y in t, ∏ x in s, f x y) :=
prod_comm' $ λ _ _, iff.rfl
@[to_additive]
lemma prod_hom_rel [comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α}
(h₁ : r 1 1) (h₂ : ∀ a b c, r b c → r (f a * b) (g a * c)) : r (∏ x in s, f x) (∏ x in s, g x) :=
by { delta finset.prod, apply multiset.prod_hom_rel; assumption }
@[to_additive]
lemma prod_eq_one {f : α → β} {s : finset α} (h : ∀ x ∈ s, f x = 1) : (∏ x in s, f x) = 1 :=
calc (∏ x in s, f x) = ∏ x in s, 1 : finset.prod_congr rfl h
... = 1 : finset.prod_const_one
@[to_additive]
lemma prod_subset_one_on_sdiff [decidable_eq α] (h : s₁ ⊆ s₂) (hg : ∀ x ∈ (s₂ \ s₁), g x = 1)
(hfg : ∀ x ∈ s₁, f x = g x) : ∏ i in s₁, f i = ∏ i in s₂, g i :=
begin
rw [← prod_sdiff h, prod_eq_one hg, one_mul],
exact prod_congr rfl hfg
end
@[to_additive]
lemma prod_subset (h : s₁ ⊆ s₂) (hf : ∀ x ∈ s₂, x ∉ s₁ → f x = 1) :
(∏ x in s₁, f x) = ∏ x in s₂, f x :=
by haveI := classical.dec_eq α; exact prod_subset_one_on_sdiff h (by simpa) (λ _ _, rfl)
@[to_additive]
lemma prod_filter_of_ne {p : α → Prop} [decidable_pred p] (hp : ∀ x ∈ s, f x ≠ 1 → p x) :
(∏ x in (s.filter p), f x) = (∏ x in s, f x) :=
prod_subset (filter_subset _ _) $ λ x,
by { classical, rw [not_imp_comm, mem_filter], exact λ h₁ h₂, ⟨h₁, hp _ h₁ h₂⟩ }
-- If we use `[decidable_eq β]` here, some rewrites fail because they find a wrong `decidable`
-- instance first; `{∀ x, decidable (f x ≠ 1)}` doesn't work with `rw ← prod_filter_ne_one`
@[to_additive]
lemma prod_filter_ne_one [∀ x, decidable (f x ≠ 1)] :
(∏ x in (s.filter $ λ x, f x ≠ 1), f x) = (∏ x in s, f x) :=
prod_filter_of_ne $ λ _ _, id
@[to_additive]
lemma prod_filter (p : α → Prop) [decidable_pred p] (f : α → β) :
(∏ a in s.filter p, f a) = (∏ a in s, if p a then f a else 1) :=
calc (∏ a in s.filter p, f a) = ∏ a in s.filter p, if p a then f a else 1 :
prod_congr rfl (assume a h, by rw [if_pos (mem_filter.1 h).2])
... = ∏ a in s, if p a then f a else 1 :
begin
refine prod_subset (filter_subset _ s) (assume x hs h, _),
rw [mem_filter, not_and] at h,
exact if_neg (h hs)
end
@[to_additive]
lemma prod_eq_single_of_mem {s : finset α} {f : α → β} (a : α) (h : a ∈ s)
(h₀ : ∀ b ∈ s, b ≠ a → f b = 1) : (∏ x in s, f x) = f a :=
begin
haveI := classical.dec_eq α,
calc (∏ x in s, f x) = ∏ x in {a}, f x :
begin
refine (prod_subset _ _).symm,
{ intros _ H, rwa mem_singleton.1 H },
{ simpa only [mem_singleton] }
end
... = f a : prod_singleton
end
@[to_additive]
lemma prod_eq_single {s : finset α} {f : α → β} (a : α)
(h₀ : ∀ b ∈ s, b ≠ a → f b = 1) (h₁ : a ∉ s → f a = 1) : (∏ x in s, f x) = f a :=
by haveI := classical.dec_eq α;
from classical.by_cases
(assume : a ∈ s, prod_eq_single_of_mem a this h₀)
(assume : a ∉ s,
(prod_congr rfl $ λ b hb, h₀ b hb $ by rintro rfl; cc).trans $
prod_const_one.trans (h₁ this).symm)
@[to_additive]
lemma prod_eq_mul_of_mem {s : finset α} {f : α → β} (a b : α) (ha : a ∈ s) (hb : b ∈ s) (hn : a ≠ b)
(h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) : (∏ x in s, f x) = (f a) * (f b) :=
begin
haveI := classical.dec_eq α;
let s' := ({a, b} : finset α),
have hu : s' ⊆ s,
{ refine insert_subset.mpr _, apply and.intro ha, apply singleton_subset_iff.mpr hb },
have hf : ∀ c ∈ s, c ∉ s' → f c = 1,
{ intros c hc hcs,
apply h₀ c hc,
apply not_or_distrib.mp,
intro hab,
apply hcs,
apply mem_insert.mpr,
rw mem_singleton,
exact hab },
rw ←prod_subset hu hf,
exact finset.prod_pair hn
end
@[to_additive]
lemma prod_eq_mul {s : finset α} {f : α → β} (a b : α) (hn : a ≠ b)
(h₀ : ∀ c ∈ s, c ≠ a ∧ c ≠ b → f c = 1) (ha : a ∉ s → f a = 1) (hb : b ∉ s → f b = 1) :
(∏ x in s, f x) = (f a) * (f b) :=
begin
haveI := classical.dec_eq α;
by_cases h₁ : a ∈ s; by_cases h₂ : b ∈ s,
{ exact prod_eq_mul_of_mem a b h₁ h₂ hn h₀ },
{ rw [hb h₂, mul_one],
apply prod_eq_single_of_mem a h₁,
exact λ c hc hca, h₀ c hc ⟨hca, ne_of_mem_of_not_mem hc h₂⟩ },
{ rw [ha h₁, one_mul],
apply prod_eq_single_of_mem b h₂,
exact λ c hc hcb, h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, hcb⟩ },
{ rw [ha h₁, hb h₂, mul_one],
exact trans
(prod_congr rfl (λ c hc, h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, ne_of_mem_of_not_mem hc h₂⟩))
prod_const_one }
end
@[to_additive]
lemma prod_attach {f : α → β} : (∏ x in s.attach, f x) = (∏ x in s, f x) :=
by haveI := classical.dec_eq α; exact
calc (∏ x in s.attach, f x.val) = (∏ x in (s.attach).image subtype.val, f x) :
by rw [prod_image]; exact assume x _ y _, subtype.eq
... = _ : by rw [attach_image_val]
/-- A product over `s.subtype p` equals one over `s.filter p`. -/
@[simp, to_additive "A sum over `s.subtype p` equals one over `s.filter p`."]
lemma prod_subtype_eq_prod_filter (f : α → β) {p : α → Prop} [decidable_pred p] :
∏ x in s.subtype p, f x = ∏ x in s.filter p, f x :=
begin
conv_lhs { erw ←prod_map (s.subtype p) (function.embedding.subtype _) f },
exact prod_congr (subtype_map _) (λ x hx, rfl)
end
/-- If all elements of a `finset` satisfy the predicate `p`, a product
over `s.subtype p` equals that product over `s`. -/
@[to_additive "If all elements of a `finset` satisfy the predicate `p`, a sum
over `s.subtype p` equals that sum over `s`."]
lemma prod_subtype_of_mem (f : α → β) {p : α → Prop} [decidable_pred p]
(h : ∀ x ∈ s, p x) : ∏ x in s.subtype p, f x = ∏ x in s, f x :=
by simp_rw [prod_subtype_eq_prod_filter, filter_true_of_mem h]
/-- A product of a function over a `finset` in a subtype equals a
product in the main type of a function that agrees with the first
function on that `finset`. -/
@[to_additive "A sum of a function over a `finset` in a subtype equals a
sum in the main type of a function that agrees with the first
function on that `finset`."]
lemma prod_subtype_map_embedding {p : α → Prop} {s : finset {x // p x}} {f : {x // p x} → β}
{g : α → β} (h : ∀ x : {x // p x}, x ∈ s → g x = f x) :
∏ x in s.map (function.embedding.subtype _), g x = ∏ x in s, f x :=
begin
rw finset.prod_map,
exact finset.prod_congr rfl h
end
variables (f s)
@[to_additive]
lemma prod_coe_sort_eq_attach (f : s → β) :
∏ (i : s), f i = ∏ i in s.attach, f i :=
rfl
@[to_additive]
lemma prod_coe_sort :
∏ (i : s), f i = ∏ i in s, f i :=
prod_attach
@[to_additive]
lemma prod_finset_coe (f : α → β) (s : finset α) :
∏ (i : (s : set α)), f i = ∏ i in s, f i :=
prod_coe_sort s f
variables {f s}
@[to_additive]
lemma prod_subtype {p : α → Prop} {F : fintype (subtype p)} (s : finset α)
(h : ∀ x, x ∈ s ↔ p x) (f : α → β) :
∏ a in s, f a = ∏ a : subtype p, f a :=
have (∈ s) = p, from set.ext h, by { substI p, rw ← prod_coe_sort, congr }
/-- The product of a function `g` defined only on a set `s` is equal to
the product of a function `f` defined everywhere,
as long as `f` and `g` agree on `s`, and `f = 1` off `s`. -/
@[to_additive "The sum of a function `g` defined only on a set `s` is equal to
the sum of a function `f` defined everywhere,
as long as `f` and `g` agree on `s`, and `f = 0` off `s`."]
lemma prod_congr_set
{α : Type*} [comm_monoid α] {β : Type*} [fintype β]
(s : set β) [decidable_pred (∈s)] (f : β → α) (g : s → α)
(w : ∀ (x : β) (h : x ∈ s), f x = g ⟨x, h⟩) (w' : ∀ (x : β), x ∉ s → f x = 1) :
finset.univ.prod f = finset.univ.prod g :=
begin
rw ←@finset.prod_subset _ _ s.to_finset finset.univ f _ (by simp),
{ rw finset.prod_subtype,
{ apply finset.prod_congr rfl,
exact λ ⟨x, h⟩ _, w x h, },
{ simp, }, },
{ rintro x _ h, exact w' x (by simpa using h), },
end
@[to_additive] lemma prod_apply_dite {s : finset α} {p : α → Prop} {hp : decidable_pred p}
[decidable_pred (λ x, ¬ p x)] (f : Π (x : α), p x → γ) (g : Π (x : α), ¬p x → γ)
(h : γ → β) :
(∏ x in s, h (if hx : p x then f x hx else g x hx)) =
(∏ x in (s.filter p).attach, h (f x.1 (mem_filter.mp x.2).2)) *
(∏ x in (s.filter (λ x, ¬ p x)).attach, h (g x.1 (mem_filter.mp x.2).2)) :=
calc ∏ x in s, h (if hx : p x then f x hx else g x hx)
= (∏ x in s.filter p, h (if hx : p x then f x hx else g x hx)) *
(∏ x in s.filter (λ x, ¬ p x), h (if hx : p x then f x hx else g x hx)) :
(prod_filter_mul_prod_filter_not s p _).symm
... = (∏ x in (s.filter p).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx)) *
(∏ x in (s.filter (λ x, ¬ p x)).attach, h (if hx : p x.1 then f x.1 hx else g x.1 hx)) :
congr_arg2 _ prod_attach.symm prod_attach.symm
... = (∏ x in (s.filter p).attach, h (f x.1 (mem_filter.mp x.2).2)) *
(∏ x in (s.filter (λ x, ¬ p x)).attach, h (g x.1 (mem_filter.mp x.2).2)) :
congr_arg2 _
(prod_congr rfl (λ x hx, congr_arg h (dif_pos (mem_filter.mp x.2).2)))
(prod_congr rfl (λ x hx, congr_arg h (dif_neg (mem_filter.mp x.2).2)))
@[to_additive] lemma prod_apply_ite {s : finset α}
{p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) :
(∏ x in s, h (if p x then f x else g x)) =
(∏ x in s.filter p, h (f x)) * (∏ x in s.filter (λ x, ¬ p x), h (g x)) :=
trans (prod_apply_dite _ _ _)
(congr_arg2 _ (@prod_attach _ _ _ _ (h ∘ f)) (@prod_attach _ _ _ _ (h ∘ g)))
@[to_additive] lemma prod_dite {s : finset α} {p : α → Prop} {hp : decidable_pred p}
(f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
(∏ x in s, if hx : p x then f x hx else g x hx) =
(∏ x in (s.filter p).attach, f x.1 (mem_filter.mp x.2).2) *
(∏ x in (s.filter (λ x, ¬ p x)).attach, g x.1 (mem_filter.mp x.2).2) :=
by simp [prod_apply_dite _ _ (λ x, x)]
@[to_additive] lemma prod_ite {s : finset α}
{p : α → Prop} {hp : decidable_pred p} (f g : α → β) :
(∏ x in s, if p x then f x else g x) =
(∏ x in s.filter p, f x) * (∏ x in s.filter (λ x, ¬ p x), g x) :=
by simp [prod_apply_ite _ _ (λ x, x)]
@[to_additive] lemma prod_ite_of_false {p : α → Prop} {hp : decidable_pred p} (f g : α → β)
(h : ∀ x ∈ s, ¬p x) : (∏ x in s, if p x then f x else g x) = (∏ x in s, g x) :=
by { rw prod_ite, simp [filter_false_of_mem h, filter_true_of_mem h] }
@[to_additive] lemma prod_ite_of_true {p : α → Prop} {hp : decidable_pred p} (f g : α → β)
(h : ∀ x ∈ s, p x) : (∏ x in s, if p x then f x else g x) = (∏ x in s, f x) :=
by { simp_rw ←(ite_not (p _)), apply prod_ite_of_false, simpa }
@[to_additive] lemma prod_apply_ite_of_false {p : α → Prop} {hp : decidable_pred p} (f g : α → γ)
(k : γ → β) (h : ∀ x ∈ s, ¬p x) :
(∏ x in s, k (if p x then f x else g x)) = (∏ x in s, k (g x)) :=
by { simp_rw apply_ite k, exact prod_ite_of_false _ _ h }
@[to_additive] lemma prod_apply_ite_of_true {p : α → Prop} {hp : decidable_pred p} (f g : α → γ)
(k : γ → β) (h : ∀ x ∈ s, p x) :
(∏ x in s, k (if p x then f x else g x)) = (∏ x in s, k (f x)) :=
by { simp_rw apply_ite k, exact prod_ite_of_true _ _ h }
@[to_additive]
lemma prod_extend_by_one [decidable_eq α] (s : finset α) (f : α → β) :
∏ i in s, (if i ∈ s then f i else 1) = ∏ i in s, f i :=
prod_congr rfl $ λ i hi, if_pos hi
@[simp, to_additive]
lemma prod_dite_eq [decidable_eq α] (s : finset α) (a : α) (b : Π x : α, a = x → β) :
(∏ x in s, (if h : a = x then b x h else 1)) = ite (a ∈ s) (b a rfl) 1 :=
begin
split_ifs with h,
{ rw [finset.prod_eq_single a, dif_pos rfl],
{ intros, rw dif_neg, cc },
{ cc } },
{ rw finset.prod_eq_one,
intros, rw dif_neg, intro, cc }
end
@[simp, to_additive]
lemma prod_dite_eq' [decidable_eq α] (s : finset α) (a : α) (b : Π x : α, x = a → β) :
(∏ x in s, (if h : x = a then b x h else 1)) = ite (a ∈ s) (b a rfl) 1 :=
begin
split_ifs with h,
{ rw [finset.prod_eq_single a, dif_pos rfl],
{ intros, rw dif_neg, cc },
{ cc } },
{ rw finset.prod_eq_one,
intros, rw dif_neg, intro, cc }
end
@[simp, to_additive] lemma prod_ite_eq [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
(∏ x in s, (ite (a = x) (b x) 1)) = ite (a ∈ s) (b a) 1 :=
prod_dite_eq s a (λ x _, b x)
/-- A product taken over a conditional whose condition is an equality test on the index and whose
alternative is `1` has value either the term at that index or `1`.
The difference with `finset.prod_ite_eq` is that the arguments to `eq` are swapped. -/
@[simp, to_additive "A sum taken over a conditional whose condition is an equality test on the index
and whose alternative is `0` has value either the term at that index or `0`.
The difference with `finset.sum_ite_eq` is that the arguments to `eq` are swapped."]
lemma prod_ite_eq' [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
(∏ x in s, (ite (x = a) (b x) 1)) = ite (a ∈ s) (b a) 1 :=
prod_dite_eq' s a (λ x _, b x)
@[to_additive]
lemma prod_ite_index (p : Prop) [decidable p] (s t : finset α) (f : α → β) :
(∏ x in if p then s else t, f x) = if p then ∏ x in s, f x else ∏ x in t, f x :=
apply_ite (λ s, ∏ x in s, f x) _ _ _
@[simp, to_additive]
lemma prod_ite_irrel (p : Prop) [decidable p] (s : finset α) (f g : α → β) :
(∏ x in s, if p then f x else g x) = if p then ∏ x in s, f x else ∏ x in s, g x :=
by { split_ifs with h; refl }
@[simp, to_additive]
lemma prod_dite_irrel (p : Prop) [decidable p] (s : finset α) (f : p → α → β) (g : ¬p → α → β) :
(∏ x in s, if h : p then f h x else g h x) = if h : p then ∏ x in s, f h x else ∏ x in s, g h x :=
by { split_ifs with h; refl }
@[simp] lemma sum_pi_single' {ι M : Type*} [decidable_eq ι] [add_comm_monoid M]
(i : ι) (x : M) (s : finset ι) :
∑ j in s, pi.single i x j = if i ∈ s then x else 0 :=
sum_dite_eq' _ _ _
@[simp] lemma sum_pi_single {ι : Type*} {M : ι → Type*}
[decidable_eq ι] [Π i, add_comm_monoid (M i)] (i : ι) (f : Π i, M i) (s : finset ι) :
∑ j in s, pi.single j (f j) i = if i ∈ s then f i else 0 :=
sum_dite_eq _ _ _
@[to_additive]
lemma prod_bij_ne_one {s : finset α} {t : finset γ} {f : α → β} {g : γ → β}
(i : Π a ∈ s, f a ≠ 1 → γ) (hi : ∀ a h₁ h₂, i a h₁ h₂ ∈ t)
(i_inj : ∀ a₁ a₂ h₁₁ h₁₂ h₂₁ h₂₂, i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂)
(i_surj : ∀ b ∈ t, g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂)
(h : ∀ a h₁ h₂, f a = g (i a h₁ h₂)) :
(∏ x in s, f x) = (∏ x in t, g x) :=
by classical; exact
calc (∏ x in s, f x) = ∏ x in (s.filter $ λ x, f x ≠ 1), f x : prod_filter_ne_one.symm
... = ∏ x in (t.filter $ λ x, g x ≠ 1), g x :
prod_bij (assume a ha, i a (mem_filter.mp ha).1 (mem_filter.mp ha).2)
(assume a ha, (mem_filter.mp ha).elim $ λ h₁ h₂, mem_filter.mpr
⟨hi a h₁ h₂, λ hg, h₂ (hg ▸ h a h₁ h₂)⟩)
(assume a ha, (mem_filter.mp ha).elim $ h a)
(assume a₁ a₂ ha₁ ha₂,
(mem_filter.mp ha₁).elim $ λ ha₁₁ ha₁₂,
(mem_filter.mp ha₂).elim $ λ ha₂₁ ha₂₂, i_inj a₁ a₂ _ _ _ _)
(assume b hb, (mem_filter.mp hb).elim $ λ h₁ h₂,
let ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ h₂ in ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩)
... = (∏ x in t, g x) : prod_filter_ne_one
@[to_additive] lemma prod_dite_of_false {p : α → Prop} {hp : decidable_pred p}
(h : ∀ x ∈ s, ¬ p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
(∏ x in s, if hx : p x then f x hx else g x hx) =
∏ (x : s), g x.val (h x.val x.property) :=
prod_bij (λ x hx, ⟨x,hx⟩) (λ x hx, by simp) (λ a ha, by { dsimp, rw dif_neg })
(λ a₁ a₂ h₁ h₂ hh, congr_arg coe hh) (λ b hb, ⟨b.1, b.2, by simp⟩)
@[to_additive] lemma prod_dite_of_true {p : α → Prop} {hp : decidable_pred p}
(h : ∀ x ∈ s, p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
(∏ x in s, if hx : p x then f x hx else g x hx) =
∏ (x : s), f x.val (h x.val x.property) :=
prod_bij (λ x hx, ⟨x,hx⟩) (λ x hx, by simp) (λ a ha, by { dsimp, rw dif_pos })
(λ a₁ a₂ h₁ h₂ hh, congr_arg coe hh) (λ b hb, ⟨b.1, b.2, by simp⟩)
@[to_additive]
lemma nonempty_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : s.nonempty :=
s.eq_empty_or_nonempty.elim (λ H, false.elim $ h $ H.symm ▸ prod_empty) id
@[to_additive]
lemma exists_ne_one_of_prod_ne_one (h : (∏ x in s, f x) ≠ 1) : ∃ a ∈ s, f a ≠ 1 :=
begin
classical,
rw ← prod_filter_ne_one at h,
rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩,
exact ⟨x, (mem_filter.1 hx).1, (mem_filter.1 hx).2⟩
end
@[to_additive]
lemma prod_range_succ_comm (f : ℕ → β) (n : ℕ) :
∏ x in range (n + 1), f x = f n * ∏ x in range n, f x :=
by rw [range_succ, prod_insert not_mem_range_self]
@[to_additive]
lemma prod_range_succ (f : ℕ → β) (n : ℕ) :
∏ x in range (n + 1), f x = (∏ x in range n, f x) * f n :=
by simp only [mul_comm, prod_range_succ_comm]
@[to_additive]
lemma prod_range_succ' (f : ℕ → β) :
∀ n : ℕ, (∏ k in range (n + 1), f k) = (∏ k in range n, f (k+1)) * f 0
| 0 := prod_range_succ _ _
| (n + 1) := by rw [prod_range_succ _ n, mul_right_comm, ← prod_range_succ', prod_range_succ]
@[to_additive]
lemma eventually_constant_prod {u : ℕ → β} {N : ℕ} (hu : ∀ n ≥ N, u n = 1) {n : ℕ} (hn : N ≤ n) :
∏ k in range (n + 1), u k = ∏ k in range (N + 1), u k :=
begin
obtain ⟨m, rfl : n = N + m⟩ := le_iff_exists_add.mp hn,
clear hn,
induction m with m hm,
{ simp },
erw [prod_range_succ, hm],
simp [hu]
end
@[to_additive]
lemma prod_range_add (f : ℕ → β) (n m : ℕ) :
∏ x in range (n + m), f x =
(∏ x in range n, f x) * (∏ x in range m, f (n + x)) :=
begin
induction m with m hm,
{ simp },
{ rw [nat.add_succ, prod_range_succ, hm, prod_range_succ, mul_assoc], },
end
@[to_additive]
lemma prod_range_add_div_prod_range {α : Type*} [comm_group α] (f : ℕ → α) (n m : ℕ) :
(∏ k in range (n + m), f k) / (∏ k in range n, f k) = ∏ k in finset.range m, f (n + k) :=
div_eq_of_eq_mul' (prod_range_add f n m)
@[to_additive]
lemma prod_range_zero (f : ℕ → β) :
∏ k in range 0, f k = 1 :=
by rw [range_zero, prod_empty]
@[to_additive sum_range_one]
lemma prod_range_one (f : ℕ → β) :
∏ k in range 1, f k = f 0 :=
by { rw [range_one], apply @prod_singleton β ℕ 0 f }
open list
@[to_additive] lemma prod_list_map_count [decidable_eq α] (l : list α)
{M : Type*} [comm_monoid M] (f : α → M) :
(l.map f).prod = ∏ m in l.to_finset, (f m) ^ (l.count m) :=
begin
induction l with a s IH, { simp only [map_nil, prod_nil, count_nil, pow_zero, prod_const_one] },
simp only [list.map, list.prod_cons, to_finset_cons, IH],
by_cases has : a ∈ s.to_finset,
{ rw [insert_eq_of_mem has, ← insert_erase has, prod_insert (not_mem_erase _ _),
prod_insert (not_mem_erase _ _), ← mul_assoc, count_cons_self, pow_succ],
congr' 1,
refine prod_congr rfl (λ x hx, _),
rw [count_cons_of_ne (ne_of_mem_erase hx)] },
rw [prod_insert has, count_cons_self, count_eq_zero_of_not_mem (mt mem_to_finset.2 has), pow_one],
congr' 1,
refine prod_congr rfl (λ x hx, _),
rw count_cons_of_ne,
rintro rfl,
exact has hx,
end
@[to_additive]
lemma prod_list_count [decidable_eq α] [comm_monoid α] (s : list α) :
s.prod = ∏ m in s.to_finset, m ^ (s.count m) :=
by simpa using prod_list_map_count s id
@[to_additive]
lemma prod_list_count_of_subset [decidable_eq α] [comm_monoid α]
(m : list α) (s : finset α) (hs : m.to_finset ⊆ s) :
m.prod = ∏ i in s, i ^ (m.count i) :=
begin
rw prod_list_count,
refine prod_subset hs (λ x _ hx, _),
rw [mem_to_finset] at hx,
rw [count_eq_zero_of_not_mem hx, pow_zero],
end
lemma sum_filter_count_eq_countp [decidable_eq α] (p : α → Prop) [decidable_pred p] (l : list α) :
∑ x in l.to_finset.filter p, l.count x = l.countp p :=
by simp [finset.sum, sum_map_count_dedup_filter_eq_countp p l]
open multiset
@[to_additive] lemma prod_multiset_map_count [decidable_eq α] (s : multiset α)
{M : Type*} [comm_monoid M] (f : α → M) :
(s.map f).prod = ∏ m in s.to_finset, (f m) ^ (s.count m) :=
by { refine quot.induction_on s (λ l, _), simp [prod_list_map_count l f] }
@[to_additive]
lemma prod_multiset_count [decidable_eq α] [comm_monoid α] (s : multiset α) :
s.prod = ∏ m in s.to_finset, m ^ (s.count m) :=
by { convert prod_multiset_map_count s id, rw multiset.map_id }
@[to_additive]
lemma prod_multiset_count_of_subset [decidable_eq α] [comm_monoid α]
(m : multiset α) (s : finset α) (hs : m.to_finset ⊆ s) :
m.prod = ∏ i in s, i ^ (m.count i) :=
begin
revert hs,
refine quot.induction_on m (λ l, _),
simp only [quot_mk_to_coe'', coe_prod, coe_count],
apply prod_list_count_of_subset l s
end
@[to_additive] lemma prod_mem_multiset [decidable_eq α]
(m : multiset α) (f : {x // x ∈ m} → β) (g : α → β)
(hfg : ∀ x, f x = g x) :
∏ (x : {x // x ∈ m}), f x = ∏ x in m.to_finset, g x :=
prod_bij (λ x _, x.1) (λ x _, multiset.mem_to_finset.mpr x.2)
(λ _ _, hfg _)
(λ _ _ _ _ h, by { ext, assumption })
(λ y hy, ⟨⟨y, multiset.mem_to_finset.mp hy⟩, finset.mem_univ _, rfl⟩)
/--
To prove a property of a product, it suffices to prove that
the property is multiplicative and holds on factors.
-/
@[to_additive "To prove a property of a sum, it suffices to prove that
the property is additive and holds on summands."]
lemma prod_induction {M : Type*} [comm_monoid M] (f : α → M) (p : M → Prop)
(p_mul : ∀ a b, p a → p b → p (a * b)) (p_one : p 1) (p_s : ∀ x ∈ s, p $ f x) :
p $ ∏ x in s, f x :=
multiset.prod_induction _ _ p_mul p_one (multiset.forall_mem_map_iff.mpr p_s)
/--
To prove a property of a product, it suffices to prove that
the property is multiplicative and holds on factors.
-/
@[to_additive "To prove a property of a sum, it suffices to prove that
the property is additive and holds on summands."]
lemma prod_induction_nonempty {M : Type*} [comm_monoid M] (f : α → M) (p : M → Prop)
(p_mul : ∀ a b, p a → p b → p (a * b)) (hs_nonempty : s.nonempty) (p_s : ∀ x ∈ s, p $ f x) :
p $ ∏ x in s, f x :=
multiset.prod_induction_nonempty p p_mul (by simp [nonempty_iff_ne_empty.mp hs_nonempty])
(multiset.forall_mem_map_iff.mpr p_s)
/-- For any product along `{0, ..., n - 1}` of a commutative-monoid-valued function, we can verify
that it's equal to a different function just by checking ratios of adjacent terms.
This is a multiplicative discrete analogue of the fundamental theorem of calculus. -/
@[to_additive "For any sum along `{0, ..., n - 1}` of a commutative-monoid-valued function, we can
verify that it's equal to a different function just by checking differences of adjacent terms.
This is a discrete analogue of the fundamental theorem of calculus."]
lemma prod_range_induction (f s : ℕ → β) (h0 : s 0 = 1) (h : ∀ n, s (n + 1) = s n * f n) (n : ℕ) :
∏ k in finset.range n, f k = s n :=
begin
induction n with k hk,
{ simp only [h0, finset.prod_range_zero] },
{ simp only [hk, finset.prod_range_succ, h, mul_comm] }
end
/-- A telescoping product along `{0, ..., n - 1}` of a commutative group valued function reduces to
the ratio of the last and first factors. -/
@[to_additive "A telescoping sum along `{0, ..., n - 1}` of an additive commutative group valued
function reduces to the difference of the last and first terms."]
lemma prod_range_div {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
∏ i in range n, (f (i + 1) / f i) = f n / f 0 :=
by apply prod_range_induction; simp
@[to_additive]
lemma prod_range_div' {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
∏ i in range n, (f i / f (i + 1)) = f 0 / f n :=
by apply prod_range_induction; simp
@[to_additive]
lemma eq_prod_range_div {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
f n = f 0 * ∏ i in range n, (f (i + 1) / f i) :=
by rw [prod_range_div, mul_div_cancel'_right]
@[to_additive]
lemma eq_prod_range_div' {M : Type*} [comm_group M] (f : ℕ → M) (n : ℕ) :
f n = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1) :=
by { conv_lhs { rw [finset.eq_prod_range_div f] }, simp [finset.prod_range_succ', mul_comm] }
/--
A telescoping sum along `{0, ..., n-1}` of an `ℕ`-valued function
reduces to the difference of the last and first terms
when the function we are summing is monotone.
-/
lemma sum_range_tsub [canonically_ordered_add_monoid α] [has_sub α] [has_ordered_sub α]
[contravariant_class α α (+) (≤)] {f : ℕ → α} (h : monotone f) (n : ℕ) :
∑ i in range n, (f (i+1) - f i) = f n - f 0 :=
begin
refine sum_range_induction _ _ (tsub_self _) (λ n, _) _,
have h₁ : f n ≤ f (n+1) := h (nat.le_succ _),
have h₂ : f 0 ≤ f n := h (nat.zero_le _),
rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁],
end
@[simp, to_additive] lemma prod_const (b : β) : (∏ x in s, b) = b ^ s.card :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (λ a s has ih,
by rw [prod_insert has, card_insert_of_not_mem has, pow_succ, ih])
@[to_additive]
lemma pow_eq_prod_const (b : β) : ∀ n, b ^ n = ∏ k in range n, b := by simp
@[to_additive]
lemma prod_pow (s : finset α) (n : ℕ) (f : α → β) :
∏ x in s, f x ^ n = (∏ x in s, f x) ^ n :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp) (by simp [mul_pow] {contextual := tt})
@[to_additive]
lemma prod_flip {n : ℕ} (f : ℕ → β) :
∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k :=
begin
induction n with n ih,
{ rw [prod_range_one, prod_range_one] },
{ rw [prod_range_succ', prod_range_succ _ (nat.succ n)],
simp [← ih] }
end
@[to_additive]
lemma prod_involution {s : finset α} {f : α → β} :
∀ (g : Π a ∈ s, α)
(h : ∀ a ha, f a * f (g a ha) = 1)
(g_ne : ∀ a ha, f a ≠ 1 → g a ha ≠ a)
(g_mem : ∀ a ha, g a ha ∈ s)
(g_inv : ∀ a ha, g (g a ha) (g_mem a ha) = a),
(∏ x in s, f x) = 1 :=
by haveI := classical.dec_eq α;
haveI := classical.dec_eq β; exact
finset.strong_induction_on s
(λ s ih g h g_ne g_mem g_inv,
s.eq_empty_or_nonempty.elim (λ hs, hs.symm ▸ rfl)
(λ ⟨x, hx⟩,
have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s,
from λ y hy, (mem_of_mem_erase (mem_of_mem_erase hy)),
have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y,
from λ x hx y hy h, by rw [← g_inv x hx, ← g_inv y hy]; simp [h],
have ih': ∏ y in erase (erase s x) (g x hx), f y = (1 : β) :=
ih ((s.erase x).erase (g x hx))
⟨subset.trans (erase_subset _ _) (erase_subset _ _),
λ h, not_mem_erase (g x hx) (s.erase x) (h (g_mem x hx))⟩
(λ y hy, g y (hmem y hy))
(λ y hy, h y (hmem y hy))
(λ y hy, g_ne y (hmem y hy))
(λ y hy, mem_erase.2 ⟨λ (h : g y _ = g x hx), by simpa [g_inj h] using hy,
mem_erase.2 ⟨λ (h : g y _ = x),
have y = g x hx, from g_inv y (hmem y hy) ▸ by simp [h],
by simpa [this] using hy, g_mem y (hmem y hy)⟩⟩)
(λ y hy, g_inv y (hmem y hy)),
if hx1 : f x = 1
then ih' ▸ eq.symm (prod_subset hmem
(λ y hy hy₁,
have y = x ∨ y = g x hx, by simpa [hy, not_and_distrib, or_comm] using hy₁,
this.elim (λ hy, hy.symm ▸ hx1)
(λ hy, h x hx ▸ hy ▸ hx1.symm ▸ (one_mul _).symm)))
else by rw [← insert_erase hx, prod_insert (not_mem_erase _ _),
← insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩),
prod_insert (not_mem_erase _ _), ih', mul_one, h x hx]))
/-- The product of the composition of functions `f` and `g`, is the product over `b ∈ s.image g` of
`f b` to the power of the cardinality of the fibre of `b`. See also `finset.prod_image`. -/
@[to_additive "The sum of the composition of functions `f` and `g`, is the sum over `b ∈ s.image g`
of `f b` times of the cardinality of the fibre of `b`. See also `finset.sum_image`."]
lemma prod_comp [decidable_eq γ] (f : γ → β) (g : α → γ) :
∏ a in s, f (g a) = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card :=
calc ∏ a in s, f (g a)
= ∏ x in (s.image g).sigma (λ b : γ, s.filter (λ a, g a = b)), f (g x.2) :
prod_bij (λ a ha, ⟨g a, a⟩) (by simp; tauto) (λ _ _, rfl) (by simp) -- `(by finish)` closes this
(by { rintro ⟨b_fst, b_snd⟩ H,
simp only [mem_image, exists_prop, mem_filter, mem_sigma] at H,
tauto })
... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f (g a) : prod_sigma _ _ _
... = ∏ b in s.image g, ∏ a in s.filter (λ a, g a = b), f b :
prod_congr rfl (λ b hb, prod_congr rfl (by simp {contextual := tt}))
... = ∏ b in s.image g, f b ^ (s.filter (λ a, g a = b)).card :
prod_congr rfl (λ _ _, prod_const _)
@[to_additive]
lemma prod_piecewise [decidable_eq α] (s t : finset α) (f g : α → β) :
(∏ x in s, (t.piecewise f g) x) = (∏ x in s ∩ t, f x) * (∏ x in s \ t, g x) :=
by { rw [piecewise, prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter], }
@[to_additive]
lemma prod_inter_mul_prod_diff [decidable_eq α] (s t : finset α) (f : α → β) :
(∏ x in s ∩ t, f x) * (∏ x in s \ t, f x) = (∏ x in s, f x) :=
by { convert (s.prod_piecewise t f f).symm, simp [finset.piecewise] }
@[to_additive]
lemma prod_eq_mul_prod_diff_singleton [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s)
(f : α → β) : ∏ x in s, f x = f i * ∏ x in s \ {i}, f x :=
by { convert (s.prod_inter_mul_prod_diff {i} f).symm, simp [h] }
@[to_additive]
lemma prod_eq_prod_diff_singleton_mul [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s)
(f : α → β) : ∏ x in s, f x = (∏ x in s \ {i}, f x) * f i :=
by { rw [prod_eq_mul_prod_diff_singleton h, mul_comm] }
@[to_additive]
lemma _root_.fintype.prod_eq_mul_prod_compl [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∏ i, f i = (f a) * ∏ i in {a}ᶜ, f i :=
prod_eq_mul_prod_diff_singleton (mem_univ a) f
@[to_additive]
lemma _root_.fintype.prod_eq_prod_compl_mul [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∏ i, f i = (∏ i in {a}ᶜ, f i) * f a :=
prod_eq_prod_diff_singleton_mul (mem_univ a) f
lemma dvd_prod_of_mem (f : α → β) {a : α} {s : finset α} (ha : a ∈ s) :
f a ∣ ∏ i in s, f i :=
begin
classical,
rw finset.prod_eq_mul_prod_diff_singleton ha,
exact dvd_mul_right _ _,
end
/-- A product can be partitioned into a product of products, each equivalent under a setoid. -/
@[to_additive "A sum can be partitioned into a sum of sums, each equivalent under a setoid."]
lemma prod_partition (R : setoid α) [decidable_rel R.r] :
(∏ x in s, f x) = ∏ xbar in s.image quotient.mk, ∏ y in s.filter (λ y, ⟦y⟧ = xbar), f y :=
begin
refine (finset.prod_image' f (λ x hx, _)).symm,
refl,
end
/-- If we can partition a product into subsets that cancel out, then the whole product cancels. -/
@[to_additive "If we can partition a sum into subsets that cancel out, then the whole sum cancels."]
lemma prod_cancels_of_partition_cancels (R : setoid α) [decidable_rel R.r]
(h : ∀ x ∈ s, (∏ a in s.filter (λ y, y ≈ x), f a) = 1) : (∏ x in s, f x) = 1 :=
begin
rw [prod_partition R, ←finset.prod_eq_one],
intros xbar xbar_in_s,
obtain ⟨x, x_in_s, xbar_eq_x⟩ := mem_image.mp xbar_in_s,
rw [←xbar_eq_x, filter_congr (λ y _, @quotient.eq _ R y x)],
apply h x x_in_s,
end
@[to_additive]
lemma prod_update_of_not_mem [decidable_eq α] {s : finset α} {i : α}
(h : i ∉ s) (f : α → β) (b : β) : (∏ x in s, function.update f i b x) = (∏ x in s, f x) :=
begin
apply prod_congr rfl (λ j hj, _),
have : j ≠ i, by { assume eq, rw eq at hj, exact h hj },
simp [this]
end
@[to_additive]
lemma prod_update_of_mem [decidable_eq α] {s : finset α} {i : α} (h : i ∈ s) (f : α → β) (b : β) :
(∏ x in s, function.update f i b x) = b * (∏ x in s \ (singleton i), f x) :=
by { rw [update_eq_piecewise, prod_piecewise], simp [h] }
/-- If a product of a `finset` of size at most 1 has a given value, so
do the terms in that product. -/
@[to_additive eq_of_card_le_one_of_sum_eq "If a sum of a `finset` of size at most 1 has a given
value, so do the terms in that sum."]
lemma eq_of_card_le_one_of_prod_eq {s : finset α} (hc : s.card ≤ 1) {f : α → β} {b : β}
(h : ∏ x in s, f x = b) : ∀ x ∈ s, f x = b :=
begin
intros x hx,
by_cases hc0 : s.card = 0,
{ exact false.elim (card_ne_zero_of_mem hx hc0) },
{ have h1 : s.card = 1 := le_antisymm hc (nat.one_le_of_lt (nat.pos_of_ne_zero hc0)),
rw card_eq_one at h1,
cases h1 with x2 hx2,
rw [hx2, mem_singleton] at hx,
simp_rw hx2 at h,
rw hx,
rw prod_singleton at h,
exact h }
end
/-- Taking a product over `s : finset α` is the same as multiplying the value on a single element
`f a` by the product of `s.erase a`.
See `multiset.prod_map_erase` for the `multiset` version. -/
@[to_additive "Taking a sum over `s : finset α` is the same as adding the value on a single element
`f a` to the sum over `s.erase a`.
See `multiset.sum_map_erase` for the `multiset` version."]
lemma mul_prod_erase [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) :
f a * (∏ x in s.erase a, f x) = ∏ x in s, f x :=
by rw [← prod_insert (not_mem_erase a s), insert_erase h]
/-- A variant of `finset.mul_prod_erase` with the multiplication swapped. -/
@[to_additive "A variant of `finset.add_sum_erase` with the addition swapped."]
lemma prod_erase_mul [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a ∈ s) :
(∏ x in s.erase a, f x) * f a = ∏ x in s, f x :=
by rw [mul_comm, mul_prod_erase s f h]
/-- If a function applied at a point is 1, a product is unchanged by
removing that point, if present, from a `finset`. -/
@[to_additive "If a function applied at a point is 0, a sum is unchanged by
removing that point, if present, from a `finset`."]
lemma prod_erase [decidable_eq α] (s : finset α) {f : α → β} {a : α} (h : f a = 1) :
∏ x in s.erase a, f x = ∏ x in s, f x :=
begin
rw ←sdiff_singleton_eq_erase,
refine prod_subset (sdiff_subset _ _) (λ x hx hnx, _),
rw sdiff_singleton_eq_erase at hnx,
rwa eq_of_mem_of_not_mem_erase hx hnx
end
lemma sum_erase_lt_of_pos {γ : Type*} [decidable_eq α] [ordered_add_comm_monoid γ]
[covariant_class γ γ (+) (<)] {s : finset α} {d : α} (hd : d ∈ s) {f : α → γ} (hdf : 0 < f d) :
∑ (m : α) in s.erase d, f m < ∑ (m : α) in s, f m :=
begin
nth_rewrite_rhs 0 ←finset.insert_erase hd,
rw finset.sum_insert (finset.not_mem_erase d s),
exact lt_add_of_pos_left _ hdf,
end
/-- If a product is 1 and the function is 1 except possibly at one
point, it is 1 everywhere on the `finset`. -/
@[to_additive "If a sum is 0 and the function is 0 except possibly at one
point, it is 0 everywhere on the `finset`."]
lemma eq_one_of_prod_eq_one {s : finset α} {f : α → β} {a : α} (hp : ∏ x in s, f x = 1)
(h1 : ∀ x ∈ s, x ≠ a → f x = 1) : ∀ x ∈ s, f x = 1 :=
begin
intros x hx,
classical,
by_cases h : x = a,
{ rw h,
rw h at hx,
rw [←prod_subset (singleton_subset_iff.2 hx)
(λ t ht ha, h1 t ht (not_mem_singleton.1 ha)),
prod_singleton] at hp,
exact hp },
{ exact h1 x hx h }
end
lemma prod_pow_boole [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
(∏ x in s, (f x)^(ite (a = x) 1 0)) = ite (a ∈ s) (f a) 1 :=
by simp
lemma prod_dvd_prod_of_dvd {S : finset α} (g1 g2 : α → β) (h : ∀ a ∈ S, g1 a ∣ g2 a) :
S.prod g1 ∣ S.prod g2 :=
begin
classical,
apply finset.induction_on' S, { simp },
intros a T haS _ haT IH,
repeat {rw finset.prod_insert haT},
exact mul_dvd_mul (h a haS) IH,
end
lemma prod_dvd_prod_of_subset {ι M : Type*} [comm_monoid M] (s t : finset ι) (f : ι → M)
(h : s ⊆ t) : ∏ i in s, f i ∣ ∏ i in t, f i :=
multiset.prod_dvd_prod_of_le $ multiset.map_le_map $ by simpa
end comm_monoid
/-- If `f = g = h` everywhere but at `i`, where `f i = g i + h i`, then the product of `f` over `s`
is the sum of the products of `g` and `h`. -/
lemma prod_add_prod_eq [comm_semiring β] {s : finset α} {i : α} {f g h : α → β}
(hi : i ∈ s) (h1 : g i + h i = f i) (h2 : ∀ j ∈ s, j ≠ i → g j = f j)
(h3 : ∀ j ∈ s, j ≠ i → h j = f j) : ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i :=
by { classical, simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib],
congr' 2; apply prod_congr rfl; simpa }
lemma card_eq_sum_ones (s : finset α) : s.card = ∑ _ in s, 1 :=
by simp
lemma sum_const_nat {m : ℕ} {f : α → ℕ} (h₁ : ∀ x ∈ s, f x = m) :
(∑ x in s, f x) = card s * m :=
begin
rw [← nat.nsmul_eq_mul, ← sum_const],
apply sum_congr rfl h₁
end
@[simp]
lemma sum_boole {s : finset α} {p : α → Prop} [non_assoc_semiring β] {hp : decidable_pred p} :
(∑ x in s, if p x then (1 : β) else (0 : β)) = (s.filter p).card :=
by simp [sum_ite]
lemma _root_.commute.sum_right [non_unital_non_assoc_semiring β] (s : finset α)
(f : α → β) (b : β) (h : ∀ i ∈ s, commute b (f i)) :
commute b (∑ i in s, f i) :=
commute.multiset_sum_right _ _ $ λ b hb, begin
obtain ⟨i, hi, rfl⟩ := multiset.mem_map.mp hb,
exact h _ hi
end
lemma _root_.commute.sum_left [non_unital_non_assoc_semiring β] (s : finset α)
(f : α → β) (b : β) (h : ∀ i ∈ s, commute (f i) b) :
commute (∑ i in s, f i) b :=
(commute.sum_right _ _ _ $ λ i hi, (h _ hi).symm).symm
section opposite
open mul_opposite
/-- Moving to the opposite additive commutative monoid commutes with summing. -/
@[simp] lemma op_sum [add_comm_monoid β] {s : finset α} (f : α → β) :
op (∑ x in s, f x) = ∑ x in s, op (f x) :=
(op_add_equiv : β ≃+ βᵐᵒᵖ).map_sum _ _
@[simp] lemma unop_sum [add_comm_monoid β] {s : finset α} (f : α → βᵐᵒᵖ) :
unop (∑ x in s, f x) = ∑ x in s, unop (f x) :=
(op_add_equiv : β ≃+ βᵐᵒᵖ).symm.map_sum _ _
end opposite
section division_comm_monoid
variables [division_comm_monoid β]
@[simp, to_additive] lemma prod_inv_distrib : (∏ x in s, (f x)⁻¹) = (∏ x in s, f x)⁻¹ :=
multiset.prod_map_inv
@[simp, to_additive]
lemma prod_div_distrib : (∏ x in s, f x / g x) = (∏ x in s, f x) / ∏ x in s, g x :=
multiset.prod_map_div
@[to_additive]
lemma prod_zpow (f : α → β) (s : finset α) (n : ℤ) : ∏ a in s, (f a) ^ n = (∏ a in s, f a) ^ n :=
multiset.prod_map_zpow
end division_comm_monoid
section comm_group
variables [comm_group β] [decidable_eq α]
@[simp, to_additive] lemma prod_sdiff_eq_div (h : s₁ ⊆ s₂) :
(∏ x in (s₂ \ s₁), f x) = (∏ x in s₂, f x) / (∏ x in s₁, f x) :=
by rw [eq_div_iff_mul_eq', prod_sdiff h]
@[to_additive] lemma prod_sdiff_div_prod_sdiff :
(∏ x in s₂ \ s₁, f x) / (∏ x in s₁ \ s₂, f x) = (∏ x in s₂, f x) / (∏ x in s₁, f x) :=
by simp [← finset.prod_sdiff (@inf_le_left _ _ s₁ s₂),
← finset.prod_sdiff (@inf_le_right _ _ s₁ s₂)]
@[simp, to_additive]
lemma prod_erase_eq_div {a : α} (h : a ∈ s) : (∏ x in s.erase a, f x) = (∏ x in s, f x) / f a :=
by rw [eq_div_iff_mul_eq', prod_erase_mul _ _ h]
end comm_group
@[simp] theorem card_sigma {σ : α → Type*} (s : finset α) (t : Π a, finset (σ a)) :
card (s.sigma t) = ∑ a in s, card (t a) :=
multiset.card_sigma _ _
lemma card_bUnion [decidable_eq β] {s : finset α} {t : α → finset β}
(h : ∀ x ∈ s, ∀ y ∈ s, x ≠ y → disjoint (t x) (t y)) :
(s.bUnion t).card = ∑ u in s, card (t u) :=
calc (s.bUnion t).card = ∑ i in s.bUnion t, 1 : by simp
... = ∑ a in s, ∑ i in t a, 1 : finset.sum_bUnion h
... = ∑ u in s, card (t u) : by simp
lemma card_bUnion_le [decidable_eq β] {s : finset α} {t : α → finset β} :
(s.bUnion t).card ≤ ∑ a in s, (t a).card :=
by haveI := classical.dec_eq α; exact
finset.induction_on s (by simp)
(λ a s has ih,
calc ((insert a s).bUnion t).card ≤ (t a).card + (s.bUnion t).card :
by rw bUnion_insert; exact finset.card_union_le _ _
... ≤ ∑ a in insert a s, card (t a) :
by rw sum_insert has; exact add_le_add_left ih _)
theorem card_eq_sum_card_fiberwise [decidable_eq β] {f : α → β} {s : finset α} {t : finset β}
(H : ∀ x ∈ s, f x ∈ t) :
s.card = ∑ a in t, (s.filter (λ x, f x = a)).card :=
by simp only [card_eq_sum_ones, sum_fiberwise_of_maps_to H]
theorem card_eq_sum_card_image [decidable_eq β] (f : α → β) (s : finset α) :
s.card = ∑ a in s.image f, (s.filter (λ x, f x = a)).card :=
card_eq_sum_card_fiberwise (λ _, mem_image_of_mem _)
lemma mem_sum {f : α → multiset β} (s : finset α) (b : β) :
b ∈ ∑ x in s, f x ↔ ∃ a ∈ s, b ∈ f a :=
begin
classical,
refine s.induction_on (by simp) _,
{ intros a t hi ih,
simp [sum_insert hi, ih, or_and_distrib_right, exists_or_distrib] }
end
section prod_eq_zero
variables [comm_monoid_with_zero β]
lemma prod_eq_zero (ha : a ∈ s) (h : f a = 0) : (∏ x in s, f x) = 0 :=
by { haveI := classical.dec_eq α, rw [←prod_erase_mul _ _ ha, h, mul_zero] }
lemma prod_boole {s : finset α} {p : α → Prop} [decidable_pred p] :
∏ i in s, ite (p i) (1 : β) (0 : β) = ite (∀ i ∈ s, p i) 1 0 :=
begin
split_ifs,
{ apply prod_eq_one,
intros i hi,
rw if_pos (h i hi) },
{ push_neg at h,
rcases h with ⟨i, hi, hq⟩,
apply prod_eq_zero hi,
rw [if_neg hq] },
end
variables [nontrivial β] [no_zero_divisors β]
lemma prod_eq_zero_iff : (∏ x in s, f x) = 0 ↔ (∃ a ∈ s, f a = 0) :=
begin
classical,
apply finset.induction_on s,
exact ⟨not.elim one_ne_zero, λ ⟨_, H, _⟩, H.elim⟩,
assume a s ha ih,
rw [prod_insert ha, mul_eq_zero, bex_def, exists_mem_insert, ih, ← bex_def]
end
theorem prod_ne_zero_iff : (∏ x in s, f x) ≠ 0 ↔ (∀ a ∈ s, f a ≠ 0) :=
by { rw [ne, prod_eq_zero_iff], push_neg }
end prod_eq_zero
@[to_additive]
lemma prod_unique_nonempty {α β : Type*} [comm_monoid β] [unique α]
(s : finset α) (f : α → β) (h : s.nonempty) :
(∏ x in s, f x) = f default :=
by rw [h.eq_singleton_default, finset.prod_singleton]
end finset
namespace fintype
open finset
/-- `fintype.prod_bijective` is a variant of `finset.prod_bij` that accepts `function.bijective`.
See `function.bijective.prod_comp` for a version without `h`. -/
@[to_additive "`fintype.sum_equiv` is a variant of `finset.sum_bij` that accepts
`function.bijective`.
See `function.bijective.sum_comp` for a version without `h`. "]
lemma prod_bijective {α β M : Type*} [fintype α] [fintype β] [comm_monoid M]
(e : α → β) (he : function.bijective e) (f : α → M) (g : β → M) (h : ∀ x, f x = g (e x)) :
∏ x : α, f x = ∏ x : β, g x :=
prod_bij
(λ x _, e x)
(λ x _, mem_univ (e x))
(λ x _, h x)
(λ x x' _ _ h, he.injective h)
(λ y _, (he.surjective y).imp $ λ a h, ⟨mem_univ _, h.symm⟩)
/-- `fintype.prod_equiv` is a specialization of `finset.prod_bij` that
automatically fills in most arguments.
See `equiv.prod_comp` for a version without `h`.
-/
@[to_additive "`fintype.sum_equiv` is a specialization of `finset.sum_bij` that
automatically fills in most arguments.
See `equiv.sum_comp` for a version without `h`.
"]
lemma prod_equiv {α β M : Type*} [fintype α] [fintype β] [comm_monoid M]
(e : α ≃ β) (f : α → M) (g : β → M) (h : ∀ x, f x = g (e x)) :
∏ x : α, f x = ∏ x : β, g x :=
prod_bijective e e.bijective f g h
variables {f s}
@[to_additive]
lemma prod_unique {α β : Type*} [comm_monoid β] [unique α] (f : α → β) :
(∏ x : α, f x) = f default :=
by rw [univ_unique, prod_singleton]
@[to_additive] lemma prod_empty {α β : Type*} [comm_monoid β] [is_empty α] (f : α → β) :
(∏ x : α, f x) = 1 :=
by rw [eq_empty_of_is_empty (univ : finset α), finset.prod_empty]
@[to_additive] lemma prod_subsingleton {α β : Type*} [comm_monoid β] [subsingleton α] [fintype α]
(f : α → β) (a : α) :
(∏ x : α, f x) = f a :=
begin
haveI : unique α := unique_of_subsingleton a,
convert prod_unique f
end
@[to_additive]
lemma prod_subtype_mul_prod_subtype {α β : Type*} [fintype α] [comm_monoid β]
(p : α → Prop) (f : α → β) [decidable_pred p] :
(∏ (i : {x // p x}), f i) * (∏ i : {x // ¬ p x}, f i) = ∏ i, f i :=
begin
classical,
let s := {x | p x}.to_finset,
rw [← finset.prod_subtype s, ← finset.prod_subtype sᶜ],
{ exact finset.prod_mul_prod_compl _ _ },
{ simp },
{ simp }
end
end fintype
namespace list
@[to_additive] lemma prod_to_finset {M : Type*} [decidable_eq α] [comm_monoid M]
(f : α → M) : ∀ {l : list α} (hl : l.nodup), l.to_finset.prod f = (l.map f).prod
| [] _ := by simp
| (a :: l) hl := let ⟨not_mem, hl⟩ := list.nodup_cons.mp hl in
by simp [finset.prod_insert (mt list.mem_to_finset.mp not_mem), prod_to_finset hl]
end list
namespace multiset
lemma disjoint_list_sum_left {a : multiset α} {l : list (multiset α)} :
multiset.disjoint l.sum a ↔ ∀ b ∈ l, multiset.disjoint b a :=
begin
induction l with b bs ih,
{ simp only [zero_disjoint, list.not_mem_nil, is_empty.forall_iff, forall_const, list.sum_nil], },
{ simp_rw [list.sum_cons, disjoint_add_left, list.mem_cons_iff, forall_eq_or_imp],
simp [and.congr_left_iff, iff_self, ih], },
end
lemma disjoint_list_sum_right {a : multiset α} {l : list (multiset α)} :
multiset.disjoint a l.sum ↔ ∀ b ∈ l, multiset.disjoint a b :=
by simpa only [disjoint_comm] using disjoint_list_sum_left
lemma disjoint_sum_left {a : multiset α} {i : multiset (multiset α)} :
multiset.disjoint i.sum a ↔ ∀ b ∈ i, multiset.disjoint b a :=
quotient.induction_on i $ λ l, begin
rw [quot_mk_to_coe, multiset.coe_sum],
exact disjoint_list_sum_left,
end
lemma disjoint_sum_right {a : multiset α} {i : multiset (multiset α)} :
multiset.disjoint a i.sum ↔ ∀ b ∈ i, multiset.disjoint a b :=
by simpa only [disjoint_comm] using disjoint_sum_left
lemma disjoint_finset_sum_left {β : Type*} {i : finset β} {f : β → multiset α} {a : multiset α} :
multiset.disjoint (i.sum f) a ↔ ∀ b ∈ i, multiset.disjoint (f b) a :=
begin
convert (@disjoint_sum_left _ a) (map f i.val),
simp [finset.mem_def, and.congr_left_iff, iff_self],
end
lemma disjoint_finset_sum_right {β : Type*} {i : finset β} {f : β → multiset α} {a : multiset α} :
multiset.disjoint a (i.sum f) ↔ ∀ b ∈ i, multiset.disjoint a (f b) :=
by simpa only [disjoint_comm] using disjoint_finset_sum_left
variables [decidable_eq α]
lemma add_eq_union_left_of_le {x y z : multiset α} (h : y ≤ x) :
z + x = z ∪ y ↔ z.disjoint x ∧ x = y :=
begin
rw ←add_eq_union_iff_disjoint,
split,
{ intro h0,
rw and_iff_right_of_imp,
{ exact (le_of_add_le_add_left $ h0.trans_le $ union_le_add z y).antisymm h, },
{ rintro rfl,
exact h0, } },
{ rintro ⟨h0, rfl⟩,
exact h0, }
end
lemma add_eq_union_right_of_le {x y z : multiset α} (h : z ≤ y) :
x + y = x ∪ z ↔ y = z ∧ x.disjoint y :=
by simpa only [and_comm] using add_eq_union_left_of_le h
lemma finset_sum_eq_sup_iff_disjoint {β : Type*} {i : finset β} {f : β → multiset α} :
i.sum f = i.sup f ↔ ∀ x y ∈ i, x ≠ y → multiset.disjoint (f x) (f y) :=
begin
induction i using finset.cons_induction_on with z i hz hr,
{ simp only [finset.not_mem_empty, is_empty.forall_iff, implies_true_iff,
finset.sum_empty, finset.sup_empty, bot_eq_zero, eq_self_iff_true], },
{ simp_rw [finset.sum_cons hz, finset.sup_cons, finset.mem_cons, multiset.sup_eq_union,
forall_eq_or_imp, ne.def, eq_self_iff_true, not_true, is_empty.forall_iff, true_and,
imp_and_distrib, forall_and_distrib, ←hr, @eq_comm _ z],
have := λ x ∈ i, ne_of_mem_of_not_mem H hz,
simp only [this, not_false_iff, true_implies_iff] {contextual := tt},
simp_rw [←disjoint_finset_sum_left, ←disjoint_finset_sum_right, disjoint_comm, ←and_assoc,
and_self],
exact add_eq_union_left_of_le (finset.sup_le (λ x hx, le_sum_of_mem (mem_map_of_mem f hx))), },
end
lemma sup_powerset_len {α : Type*} [decidable_eq α] (x : multiset α) :
finset.sup (finset.range (x.card + 1)) (λ k, x.powerset_len k) = x.powerset :=
begin
convert bind_powerset_len x,
rw [multiset.bind, multiset.join, ←finset.range_coe, ←finset.sum_eq_multiset_sum],
exact eq.symm (finset_sum_eq_sup_iff_disjoint.mpr (λ _ _ _ _ h, disjoint_powerset_len x h)),
end
@[simp] lemma to_finset_sum_count_eq (s : multiset α) :
(∑ a in s.to_finset, s.count a) = s.card :=
multiset.induction_on s rfl
(assume a s ih,
calc (∑ x in to_finset (a ::ₘ s), count x (a ::ₘ s)) =
∑ x in to_finset (a ::ₘ s), ((if x = a then 1 else 0) + count x s) :
finset.sum_congr rfl $ λ _ _, by split_ifs;
[simp only [h, count_cons_self, nat.one_add], simp only [count_cons_of_ne h, zero_add]]
... = card (a ::ₘ s) :
begin
by_cases a ∈ s.to_finset,
{ have : ∑ x in s.to_finset, ite (x = a) 1 0 = ∑ x in {a}, ite (x = a) 1 0,
{ rw [finset.sum_ite_eq', if_pos h, finset.sum_singleton, if_pos rfl], },
rw [to_finset_cons, finset.insert_eq_of_mem h, finset.sum_add_distrib, ih, this,
finset.sum_singleton, if_pos rfl, add_comm, card_cons] },
{ have ha : a ∉ s, by rwa mem_to_finset at h,
have : ∑ x in to_finset s, ite (x = a) 1 0 = ∑ x in to_finset s, 0, from
finset.sum_congr rfl (λ x hx, if_neg $ by rintro rfl; cc),
rw [to_finset_cons, finset.sum_insert h, if_pos rfl, finset.sum_add_distrib, this,
finset.sum_const_zero, ih, count_eq_zero_of_not_mem ha, zero_add, add_comm, card_cons] }
end)
lemma count_sum' {s : finset β} {a : α} {f : β → multiset α} :
count a (∑ x in s, f x) = ∑ x in s, count a (f x) :=
by { dunfold finset.sum, rw count_sum }
@[simp] lemma to_finset_sum_count_nsmul_eq (s : multiset α) :
(∑ a in s.to_finset, s.count a • {a}) = s :=
begin
apply ext', intro b,
rw count_sum',
have h : count b s = count b (count b s • {b}),
{ rw [count_nsmul, count_singleton_self, mul_one] },
rw h, clear h,
apply finset.sum_eq_single b,
{ intros c h hcb, rw count_nsmul, convert mul_zero (count c s),
apply count_eq_zero.mpr, exact finset.not_mem_singleton.mpr (ne.symm hcb) },
{ intro hb, rw [count_eq_zero_of_not_mem (mt mem_to_finset.2 hb), count_nsmul, zero_mul]}
end
theorem exists_smul_of_dvd_count (s : multiset α) {k : ℕ}
(h : ∀ (a : α), a ∈ s → k ∣ multiset.count a s) :
∃ (u : multiset α), s = k • u :=
begin
use ∑ a in s.to_finset, (s.count a / k) • {a},
have h₂ : ∑ (x : α) in s.to_finset, k • (count x s / k) • ({x} : multiset α) =
∑ (x : α) in s.to_finset, count x s • {x},
{ apply finset.sum_congr rfl,
intros x hx,
rw [← mul_nsmul, nat.mul_div_cancel' (h x (mem_to_finset.mp hx))] },
rw [← finset.sum_nsmul, h₂, to_finset_sum_count_nsmul_eq]
end
lemma to_finset_prod_dvd_prod [comm_monoid α] (S : multiset α) : S.to_finset.prod id ∣ S.prod :=
begin
rw finset.prod_eq_multiset_prod,
refine multiset.prod_dvd_prod_of_le _,
simp [multiset.dedup_le S],
end
@[to_additive]
lemma prod_sum {α : Type*} {ι : Type*} [comm_monoid α] (f : ι → multiset α) (s : finset ι) :
(∑ x in s, f x).prod = ∏ x in s, (f x).prod :=
begin
classical,
induction s using finset.induction_on with a t hat ih,
{ rw [finset.sum_empty, finset.prod_empty, multiset.prod_zero] },
{ rw [finset.sum_insert hat, finset.prod_insert hat, multiset.prod_add, ih] }
end
end multiset
namespace nat
@[simp, norm_cast] lemma cast_list_sum [add_monoid_with_one β] (s : list ℕ) :
(↑(s.sum) : β) = (s.map coe).sum :=
map_list_sum (cast_add_monoid_hom β) _
@[simp, norm_cast] lemma cast_list_prod [semiring β] (s : list ℕ) :
(↑(s.prod) : β) = (s.map coe).prod :=
map_list_prod (cast_ring_hom β) _
@[simp, norm_cast] lemma cast_multiset_sum [add_comm_monoid_with_one β] (s : multiset ℕ) :
(↑(s.sum) : β) = (s.map coe).sum :=
map_multiset_sum (cast_add_monoid_hom β) _
@[simp, norm_cast] lemma cast_multiset_prod [comm_semiring β] (s : multiset ℕ) :
(↑(s.prod) : β) = (s.map coe).prod :=
map_multiset_prod (cast_ring_hom β) _
@[simp, norm_cast] lemma cast_sum [add_comm_monoid_with_one β] (s : finset α) (f : α → ℕ) :
↑(∑ x in s, f x : ℕ) = (∑ x in s, (f x : β)) :=
map_sum (cast_add_monoid_hom β) _ _
@[simp, norm_cast] lemma cast_prod [comm_semiring β] (f : α → ℕ) (s : finset α) :
(↑∏ i in s, f i : β) = ∏ i in s, f i :=
map_prod (cast_ring_hom β) _ _
end nat
namespace int
@[simp, norm_cast] lemma cast_list_sum [add_group_with_one β] (s : list ℤ) :
(↑(s.sum) : β) = (s.map coe).sum :=
map_list_sum (cast_add_hom β) _
@[simp, norm_cast] lemma cast_list_prod [ring β] (s : list ℤ) :
(↑(s.prod) : β) = (s.map coe).prod :=
map_list_prod (cast_ring_hom β) _
@[simp, norm_cast] lemma cast_multiset_sum [add_comm_group_with_one β] (s : multiset ℤ) :
(↑(s.sum) : β) = (s.map coe).sum :=
map_multiset_sum (cast_add_hom β) _
@[simp, norm_cast] lemma cast_multiset_prod {R : Type*} [comm_ring R] (s : multiset ℤ) :
(↑(s.prod) : R) = (s.map coe).prod :=
map_multiset_prod (cast_ring_hom R) _
@[simp, norm_cast] lemma cast_sum [add_comm_group_with_one β] (s : finset α) (f : α → ℤ) :
↑(∑ x in s, f x : ℤ) = (∑ x in s, (f x : β)) :=
map_sum (cast_add_hom β) _ _
@[simp, norm_cast] lemma cast_prod {R : Type*} [comm_ring R] (f : α → ℤ) (s : finset α) :
(↑∏ i in s, f i : R) = ∏ i in s, f i :=
(int.cast_ring_hom R).map_prod _ _
end int
@[simp, norm_cast] lemma units.coe_prod {M : Type*} [comm_monoid M] (f : α → Mˣ)
(s : finset α) : (↑∏ i in s, f i : M) = ∏ i in s, f i :=
(units.coe_hom M).map_prod _ _
lemma units.mk0_prod [comm_group_with_zero β] (s : finset α) (f : α → β) (h) :
units.mk0 (∏ b in s, f b) h =
∏ b in s.attach, units.mk0 (f b) (λ hh, h (finset.prod_eq_zero b.2 hh)) :=
by { classical, induction s using finset.induction_on; simp* }
lemma nat_abs_sum_le {ι : Type*} (s : finset ι) (f : ι → ℤ) :
(∑ i in s, f i).nat_abs ≤ ∑ i in s, (f i).nat_abs :=
begin
classical,
apply finset.induction_on s,
{ simp only [finset.sum_empty, int.nat_abs_zero] },
{ intros i s his IH,
simp only [his, finset.sum_insert, not_false_iff],
exact (int.nat_abs_add_le _ _).trans (add_le_add le_rfl IH) }
end
/-! ### `additive`, `multiplicative` -/
open additive multiplicative
section monoid
variables [monoid α]
@[simp] lemma of_mul_list_prod (s : list α) : of_mul s.prod = (s.map of_mul).sum :=
by simpa [of_mul]
@[simp] lemma to_mul_list_sum (s : list (additive α)) :
to_mul s.sum = (s.map to_mul).prod := by simpa [to_mul, of_mul]
end monoid
section add_monoid
variables [add_monoid α]
@[simp] lemma of_add_list_prod (s : list α) : of_add s.sum = (s.map of_add).prod :=
by simpa [of_add]
@[simp] lemma to_add_list_sum (s : list (multiplicative α)) :
to_add s.prod = (s.map to_add).sum := by simpa [to_add, of_add]
end add_monoid
section comm_monoid
variables [comm_monoid α]
@[simp] lemma of_mul_multiset_prod (s : multiset α) :
of_mul s.prod = (s.map of_mul).sum := by simpa [of_mul]
@[simp] lemma to_mul_multiset_sum (s : multiset (additive α)) :
to_mul s.sum = (s.map to_mul).prod := by simpa [to_mul, of_mul]
@[simp] lemma of_mul_prod (s : finset ι) (f : ι → α) :
of_mul (∏ i in s, f i) = ∑ i in s, of_mul (f i) := rfl
@[simp] lemma to_mul_sum (s : finset ι) (f : ι → additive α) :
to_mul (∑ i in s, f i) = ∏ i in s, to_mul (f i) := rfl
end comm_monoid
section add_comm_monoid
variables [add_comm_monoid α]
@[simp] lemma of_add_multiset_prod (s : multiset α) :
of_add s.sum = (s.map of_add).prod := by simpa [of_add]
@[simp] lemma to_add_multiset_sum (s : multiset (multiplicative α)) :
to_add s.prod = (s.map to_add).sum := by simpa [to_add, of_add]
@[simp] lemma of_add_sum (s : finset ι) (f : ι → α) :
of_add (∑ i in s, f i) = ∏ i in s, of_add (f i) := rfl
@[simp] lemma to_add_prod (s : finset ι) (f : ι → multiplicative α) :
to_add (∏ i in s, f i) = ∑ i in s, to_add (f i) := rfl
end add_comm_monoid
|