Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
Italian
Size:
100M<n<1B
ArXiv:
License:
File size: 6,388 Bytes
1fc7f0a b426581 1fc7f0a 0e61b7b 1fc7f0a 0e61b7b 1fc7f0a 0e61b7b 1fc7f0a 0e61b7b 1fc7f0a 0e61b7b 1fc7f0a 523fcd6 1fc7f0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleaned Italian split of the mC4 corpus."""
import json
import gzip
import textwrap
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """
@article{JMLR:v21:20-074,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {140},
pages = {1-67},
url = {http://jmlr.org/papers/v21/20-074.html}
}
"""
_DESCRIPTION = """\
A thoroughly cleaned version of the Italian portion of the multilingual
colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI.
Based on Common Crawl dataset: "https://commoncrawl.org".
This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning
detailed in the repository README file.
"""
_HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056"
_LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0"
_BASE_URL = "https://huggingface.co/datasets/gsarti/clean_mc4_it/resolve/main/clean-mc4-it/c4-it{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz"
_CONFIGS = {
"tiny": {"train": 100, "validation": 1},
"small": {"train": 250, "validation": 2},
"medium": {"train": 500, "validation": 4},
"large": {"train": 750, "validation": 6},
"full": {"train": 1024, "validation": 8}
}
class CleanMc4ItConfig(datasets.BuilderConfig):
"""BuilderConfig for the Clean mC4 Italian."""
def __init__(self, **kwargs):
"""BuilderConfig for Clean mC4 Italian.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
class Mc4(datasets.GeneratorBasedBuilder):
"""mC4, a colossal, cleaned version of Common Crawl's web crawl corpus."""
BUILDER_CONFIGS = [
CleanMc4ItConfig(
name="tiny",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A tiny cleaned version of the Italian portion of the multilingual C4 corpus.
Estimated size of compressed files: 10GB
"""
)
),
CleanMc4ItConfig(
name="small",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A small cleaned version of the Italian portion of the multilingual C4 corpus.
Estimated size of compressed files: 25GB
"""
)
),
CleanMc4ItConfig(
name="medium",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A medium cleaned version of the Italian portion of the multilingual C4 corpus.
Estimated size of compressed files: 50GB
"""
)
),
CleanMc4ItConfig(
name="large",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
A large cleaned version of the Italian portion of the multilingual C4 corpus.
Estimated size of compressed files: 75GB
"""
)
),
CleanMc4ItConfig(
name="full",
version=datasets.Version("1.0.0"),
description=textwrap.dedent(
f"""\
The full cleaned version of the Italian portion of the multilingual C4 corpus.
Estimated size of compressed files: 103GB
"""
)
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_urls = {}
for split in ["train", "validation"]:
data_urls[split] = [
_BASE_URL.format(
split_suffix="-validation" if split == "validation" else "",
index=index,
n_shards=8 if split == "validation" else 1024,
)
for index in range(_CONFIGS[self.config.name][split])
]
train_downloaded_files = dl_manager.download(data_urls["train"])
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info(f"Generating examples from {filepath}")
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1
|