File size: 14,868 Bytes
9cc1c25 c310749 4e5d887 c310749 47d3d2a c310749 791c5c3 c310749 791c5c3 c310749 791c5c3 c310749 791c5c3 c310749 791c5c3 6f21d08 9cc1c25 6f21d08 9cc1c25 6f21d08 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 6f21d08 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 6f21d08 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 6f21d08 9cc1c25 ec21716 9cc1c25 6f21d08 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 ec21716 9cc1c25 4e5d887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 |
---
annotations_creators:
- found
language_creators:
- found
languages:
XNLI:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- ru
- sw
- th
- tr
- ur
- vi
- zh
PAWS-X-en:
- en
PAWS-X-de:
- de
PAWS-X-es:
- es
PAWS-X-fr:
- fr
PAWS-X-ja:
- ja
PAWS-X-ko:
- ko
PAWS-X-zh:
- zh
udpos-Afrikans:
- af
udpos-Arabic:
- ar
udpos-Basque:
- eu
udpos-Bulgarian:
- bg
udpos-Dutch:
- nl
udpos-English:
- en
udpos-Estonian:
- et
udpos-Finnish:
- fi
udpos-French:
- fr
udpos-German:
- de
udpos-Greek:
- el
udpos-Hebrew:
- he
udpos-Hindi:
- hi
udpos-Hungarian:
- hu
udpos-Indonesian:
- id
udpos-Italian:
- it
udpos-Japanese:
- ja
udpos-Kazakh:
- kk
udpos-Korean:
- ko
udpos-Chinese:
- zh
udpos-Marathi:
- mr
udpos-Persian:
- fa
udpos-Portuguese:
- pt
udpos-Russian:
- ru
udpos-Spanish:
- es
udpos-Tagalog:
- tl
udpos-Tamil:
- ta
udpos-Telugu:
- te
udpos-Thai:
- th
udpos-Turkish:
- tr
udpos-Urdu:
- ur
udpos-Vietnamese:
- vi
udpos-Yoruba:
- yo
PAN-X-af:
- af
PAN-X-ar:
- ar
PAN-X-bg:
- bg
PAN-X-bn:
- bn
PAN-X-de:
- de
PAN-X-el:
- el
PAN-X-en:
- en
PAN-X-es:
- es
PAN-X-et:
- et
PAN-X-eu:
- eu
PAN-X-fa:
- fa
PAN-X-fi:
- fi
PAN-X-fr:
- fr
PAN-X-he:
- he
PAN-X-hi:
- hi
PAN-X-hu:
- hu
PAN-X-id:
- id
PAN-X-it:
- it
PAN-X-ja:
- ja
PAN-X-jv:
- jv
PAN-X-ka:
- ka
PAN-X-kk:
- kk
PAN-X-ko:
- ko
PAN-X-ml:
- ml
PAN-X-mr:
- mr
PAN-X-ms:
- ms
PAN-X-my:
- my
PAN-X-nl:
- nl
PAN-X-pt:
- pt
PAN-X-ru:
- ru
PAN-X-sw:
- sw
PAN-X-ta:
- ta
PAN-X-te:
- te
PAN-X-th:
- th
PAN-X-tl:
- tl
PAN-X-tr:
- tr
PAN-X-ur:
- ur
PAN-X-vi:
- vi
PAN-X-yo:
- yo
PAN-X-zh:
- zh
XQuAD:
- ar
- de
- vi
- zh
- en
- es
- hi
- el
- ru
- th
- tr
MLQA-ar-ar:
- ar
MLQA-ar-de:
- ar
- de
MLQA-ar-vi:
- ar
- vi
MLQA-ar-zh:
- ar
- zh
MLQA-ar-en:
- ar
- en
MLQA-ar-es:
- ar
- es
MLQA-ar-hi:
- ar
- hi
MLQA-de-ar:
- de
- ar
MLQA-de-de:
- de
MLQA-de-vi:
- de
- vi
MLQA-de-zh:
- de
- zh
MLQA-de-en:
- de
- en
MLQA-de-es:
- de
- es
MLQA-de-hi:
- de
- hi
MLQA-vi-ar:
- vi
- ar
MLQA-vi-de:
- vi
- de
MLQA-vi-vi:
- vi
MLQA-vi-zh:
- vi
- zh
MLQA-vi-en:
- vi
- en
MLQA-vi-es:
- vi
- es
MLQA-vi-hi:
- vi
- hi
MLQA-zh-ar:
- zh
- ar
MLQA-zh-de:
- zh
- de
MLQA-zh-vi:
- zh
- vi
MLQA-zh-zh:
- zh
MLQA-zh-en:
- zh
- en
MLQA-zh-es:
- zh
- es
MLQA-zh-hi:
- zh
- hi
MLQA-en-ar:
- en
- ar
MLQA-en-de:
- en
- de
MLQA-en-vi:
- en
- vi
MLQA-en-zh:
- en
- zh
MLQA-en-en:
- en
MLQA-en-es:
- en
- es
MLQA-en-hi:
- en
- hi
MLQA-es-ar:
- es
- ar
MLQA-es-de:
- es
- de
MLQA-es-vi:
- es
- vi
MLQA-es-zh:
- es
- zh
MLQA-es-en:
- es
- en
MLQA-es-es:
- es
MLQA-es-hi:
- es
- hi
MLQA-hi-ar:
- hi
- ar
MLQA-hi-de:
- hi
- de
MLQA-hi-vi:
- hi
- vi
MLQA-hi-zh:
- hi
- zh
MLQA-hi-en:
- hi
- en
MLQA-hi-es:
- hi
- es
MLQA-hi-hi:
- hi
tydiqa:
- fi
- te
- ru
- ar
- id
- en
- sw
- ko
- bn
bucc18-de:
- de
bucc18-fr:
- fr
bucc18-zh:
- zh
bucc18-ru:
- ru
tatoeba-afr:
- af
tatoeba-ara:
- ar
tatoeba-ben:
- bn
tatoeba-bul:
- bg
tatoeba-deu:
- de
tatoeba-cmn:
- zh
tatoeba-ell:
- el
tatoeba-est:
- et
tatoeba-eus:
- eu
tatoeba-fin:
- fi
tatoeba-fra:
- fr
tatoeba-heb:
- he
tatoeba-hin:
- hi
tatoeba-hun:
- hu
tatoeba-ind:
- id
tatoeba-ita:
- it
tatoeba-jav:
- jv
tatoeba-jpn:
- ja
tatoeba-kat:
- ka
tatoeba-kaz:
- kk
tatoeba-kor:
- ko
tatoeba-mal:
- ml
tatoeba-mar:
- mr
tatoeba-nld:
- nl
tatoeba-pes:
- fa-IR
tatoeba-por:
- pt
tatoeba-rus:
- ru
tatoeba-spa:
- es
tatoeba-swh:
- sw
tatoeba-tam:
- ta
tatoeba-tel:
- te
tatoeba-tgl:
- tl
tatoeba-tha:
- th
tatoeba-tur:
- tr
tatoeba-urd:
- ur
tatoeba-vie:
- vi
SQuAD:
- en
licenses:
- apache-2-0
- cc-by-4-0
- cc-by-2-0
- cc-by-sa-4-0
- other-Licence Universal Dependencies v2-5
- cc-by-nc-4-0
multilinguality:
- multilingual
- translation
pretty_name: XTREME
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
source_datasets:
- extended|xnli
- extended|paws-x
- extended|wikiann
- extended|xquad
- extended|mlqa
- extended|tydiqa
- extended|tatoeba
- extended|squad
task_categories:
- multiple-choice
- question-answering
- text-classification
- text-retrieval
- token-classification
task_ids:
- multiple-choice-qa
- extractive-qa
- open-domain-qa
- natural-language-inference
- text-classification-other-paraphrase-identification
- text-retrieval-other-parallel-sentence-retrieval
- named-entity-recognition
- part-of-speech-tagging
paperswithcode_id: xtreme
---
# Dataset Card for "xtreme"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/google-research/xtreme](https://github.com/google-research/xtreme)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 15143.21 MB
- **Size of the generated dataset:** 1027.42 MB
- **Total amount of disk used:** 16170.64 MB
### Dataset Summary
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
We show detailed information for up to 5 configurations of the dataset.
### Data Instances
#### MLQA.ar.ar
- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 8.77 MB
- **Total amount of disk used:** 80.98 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.de
- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 2.43 MB
- **Total amount of disk used:** 74.64 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.en
- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 8.62 MB
- **Total amount of disk used:** 80.83 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.es
- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 3.12 MB
- **Total amount of disk used:** 75.33 MB
An example of 'validation' looks as follows.
```
```
#### MLQA.ar.hi
- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 3.17 MB
- **Total amount of disk used:** 75.38 MB
An example of 'validation' looks as follows.
```
```
### Data Fields
The data fields are the same among all splits.
#### MLQA.ar.ar
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.de
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.en
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.es
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
#### MLQA.ar.hi
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
- `answer_start`: a `int32` feature.
- `text`: a `string` feature.
### Data Splits
| name |validation|test|
|----------|---------:|---:|
|MLQA.ar.ar| 517|5335|
|MLQA.ar.de| 207|1649|
|MLQA.ar.en| 517|5335|
|MLQA.ar.es| 161|1978|
|MLQA.ar.hi| 186|1831|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Citation Information
```
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}
@article{hu2020xtreme,
author = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
title = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
journal = {CoRR},
volume = {abs/2003.11080},
year = {2020},
archivePrefix = {arXiv},
eprint = {2003.11080}
}
```
### Contributions
Thanks to [@thomwolf](https://github.com/thomwolf), [@jplu](https://github.com/jplu), [@lewtun](https://github.com/lewtun), [@lvwerra](https://github.com/lvwerra), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset. |