File size: 14,868 Bytes
9cc1c25
c310749
 
 
 
4e5d887
c310749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d3d2a
 
c310749
791c5c3
c310749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791c5c3
c310749
 
 
791c5c3
c310749
 
 
791c5c3
c310749
 
 
791c5c3
 
6f21d08
9cc1c25
 
 
 
 
 
 
6f21d08
9cc1c25
 
 
 
6f21d08
9cc1c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec21716
9cc1c25
ec21716
9cc1c25
 
 
 
 
 
 
ec21716
9cc1c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f21d08
9cc1c25
 
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec21716
9cc1c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f21d08
9cc1c25
 
 
 
 
 
 
 
 
ec21716
9cc1c25
ec21716
9cc1c25
 
 
ec21716
9cc1c25
6f21d08
 
 
 
 
 
9cc1c25
 
ec21716
9cc1c25
6f21d08
 
 
 
 
 
9cc1c25
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
ec21716
9cc1c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e5d887
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
---
annotations_creators:
- found
language_creators:
- found
languages:
  XNLI:
  - ar
  - bg
  - de
  - el
  - en
  - es
  - fr
  - hi
  - ru
  - sw
  - th
  - tr
  - ur
  - vi
  - zh
  PAWS-X-en:
  - en
  PAWS-X-de:
  - de
  PAWS-X-es:
  - es
  PAWS-X-fr:
  - fr
  PAWS-X-ja:
  - ja
  PAWS-X-ko:
  - ko
  PAWS-X-zh:
  - zh
  udpos-Afrikans:
  - af
  udpos-Arabic:
  - ar
  udpos-Basque:
  - eu
  udpos-Bulgarian:
  - bg
  udpos-Dutch:
  - nl
  udpos-English:
  - en
  udpos-Estonian:
  - et
  udpos-Finnish:
  - fi
  udpos-French:
  - fr
  udpos-German:
  - de
  udpos-Greek:
  - el
  udpos-Hebrew:
  - he
  udpos-Hindi:
  - hi
  udpos-Hungarian:
  - hu
  udpos-Indonesian:
  - id
  udpos-Italian:
  - it
  udpos-Japanese:
  - ja
  udpos-Kazakh:
  - kk
  udpos-Korean:
  - ko
  udpos-Chinese:
  - zh
  udpos-Marathi:
  - mr
  udpos-Persian:
  - fa
  udpos-Portuguese:
  - pt
  udpos-Russian:
  - ru
  udpos-Spanish:
  - es
  udpos-Tagalog:
  - tl
  udpos-Tamil:
  - ta
  udpos-Telugu:
  - te
  udpos-Thai:
  - th
  udpos-Turkish:
  - tr
  udpos-Urdu:
  - ur
  udpos-Vietnamese:
  - vi
  udpos-Yoruba:
  - yo
  PAN-X-af:
  - af
  PAN-X-ar:
  - ar
  PAN-X-bg:
  - bg
  PAN-X-bn:
  - bn
  PAN-X-de:
  - de
  PAN-X-el:
  - el
  PAN-X-en:
  - en
  PAN-X-es:
  - es
  PAN-X-et:
  - et
  PAN-X-eu:
  - eu
  PAN-X-fa:
  - fa
  PAN-X-fi:
  - fi
  PAN-X-fr:
  - fr
  PAN-X-he:
  - he
  PAN-X-hi:
  - hi
  PAN-X-hu:
  - hu
  PAN-X-id:
  - id
  PAN-X-it:
  - it
  PAN-X-ja:
  - ja
  PAN-X-jv:
  - jv
  PAN-X-ka:
  - ka
  PAN-X-kk:
  - kk
  PAN-X-ko:
  - ko
  PAN-X-ml:
  - ml
  PAN-X-mr:
  - mr
  PAN-X-ms:
  - ms
  PAN-X-my:
  - my
  PAN-X-nl:
  - nl
  PAN-X-pt:
  - pt
  PAN-X-ru:
  - ru
  PAN-X-sw:
  - sw
  PAN-X-ta:
  - ta
  PAN-X-te:
  - te
  PAN-X-th:
  - th
  PAN-X-tl:
  - tl
  PAN-X-tr:
  - tr
  PAN-X-ur:
  - ur
  PAN-X-vi:
  - vi
  PAN-X-yo:
  - yo
  PAN-X-zh:
  - zh
  XQuAD:
  - ar
  - de
  - vi
  - zh
  - en
  - es
  - hi
  - el
  - ru
  - th
  - tr
  MLQA-ar-ar:
  - ar
  MLQA-ar-de:
  - ar
  - de
  MLQA-ar-vi:
  - ar
  - vi
  MLQA-ar-zh:
  - ar
  - zh
  MLQA-ar-en:
  - ar
  - en
  MLQA-ar-es:
  - ar
  - es
  MLQA-ar-hi:
  - ar
  - hi
  MLQA-de-ar:
  - de
  - ar
  MLQA-de-de:
  - de
  MLQA-de-vi:
  - de
  - vi
  MLQA-de-zh:
  - de
  - zh
  MLQA-de-en:
  - de
  - en
  MLQA-de-es:
  - de
  - es
  MLQA-de-hi:
  - de
  - hi
  MLQA-vi-ar:
  - vi
  - ar
  MLQA-vi-de:
  - vi
  - de
  MLQA-vi-vi:
  - vi
  MLQA-vi-zh:
  - vi
  - zh
  MLQA-vi-en:
  - vi
  - en
  MLQA-vi-es:
  - vi
  - es
  MLQA-vi-hi:
  - vi
  - hi
  MLQA-zh-ar:
  - zh
  - ar
  MLQA-zh-de:
  - zh
  - de
  MLQA-zh-vi:
  - zh
  - vi
  MLQA-zh-zh:
  - zh
  MLQA-zh-en:
  - zh
  - en
  MLQA-zh-es:
  - zh
  - es
  MLQA-zh-hi:
  - zh
  - hi
  MLQA-en-ar:
  - en
  - ar
  MLQA-en-de:
  - en
  - de
  MLQA-en-vi:
  - en
  - vi
  MLQA-en-zh:
  - en
  - zh
  MLQA-en-en:
  - en
  MLQA-en-es:
  - en
  - es
  MLQA-en-hi:
  - en
  - hi
  MLQA-es-ar:
  - es
  - ar
  MLQA-es-de:
  - es
  - de
  MLQA-es-vi:
  - es
  - vi
  MLQA-es-zh:
  - es
  - zh
  MLQA-es-en:
  - es
  - en
  MLQA-es-es:
  - es
  MLQA-es-hi:
  - es
  - hi
  MLQA-hi-ar:
  - hi
  - ar
  MLQA-hi-de:
  - hi
  - de
  MLQA-hi-vi:
  - hi
  - vi
  MLQA-hi-zh:
  - hi
  - zh
  MLQA-hi-en:
  - hi
  - en
  MLQA-hi-es:
  - hi
  - es
  MLQA-hi-hi:
  - hi
  tydiqa:
  - fi
  - te
  - ru
  - ar
  - id
  - en
  - sw
  - ko
  - bn
  bucc18-de:
  - de
  bucc18-fr:
  - fr
  bucc18-zh:
  - zh
  bucc18-ru:
  - ru
  tatoeba-afr:
  - af
  tatoeba-ara:
  - ar
  tatoeba-ben:
  - bn
  tatoeba-bul:
  - bg
  tatoeba-deu:
  - de
  tatoeba-cmn:
  - zh
  tatoeba-ell:
  - el
  tatoeba-est:
  - et
  tatoeba-eus:
  - eu
  tatoeba-fin:
  - fi
  tatoeba-fra:
  - fr
  tatoeba-heb:
  - he
  tatoeba-hin:
  - hi
  tatoeba-hun:
  - hu
  tatoeba-ind:
  - id
  tatoeba-ita:
  - it
  tatoeba-jav:
  - jv
  tatoeba-jpn:
  - ja
  tatoeba-kat:
  - ka
  tatoeba-kaz:
  - kk
  tatoeba-kor:
  - ko
  tatoeba-mal:
  - ml
  tatoeba-mar:
  - mr
  tatoeba-nld:
  - nl
  tatoeba-pes:
  - fa-IR
  tatoeba-por:
  - pt
  tatoeba-rus:
  - ru
  tatoeba-spa:
  - es
  tatoeba-swh:
  - sw
  tatoeba-tam:
  - ta
  tatoeba-tel:
  - te
  tatoeba-tgl:
  - tl
  tatoeba-tha:
  - th
  tatoeba-tur:
  - tr
  tatoeba-urd:
  - ur
  tatoeba-vie:
  - vi
  SQuAD:
  - en
licenses:
- apache-2-0
- cc-by-4-0
- cc-by-2-0
- cc-by-sa-4-0
- other-Licence Universal Dependencies v2-5
- cc-by-nc-4-0
multilinguality:
- multilingual
- translation
pretty_name: XTREME
size_categories:
- n<1K
- 1K<n<10K
- 10K<n<100K
- 100K<n<1M
source_datasets:
- extended|xnli
- extended|paws-x
- extended|wikiann
- extended|xquad
- extended|mlqa
- extended|tydiqa
- extended|tatoeba
- extended|squad
task_categories:
- multiple-choice
- question-answering
- text-classification
- text-retrieval
- token-classification
task_ids:
- multiple-choice-qa
- extractive-qa
- open-domain-qa
- natural-language-inference
- text-classification-other-paraphrase-identification
- text-retrieval-other-parallel-sentence-retrieval
- named-entity-recognition
- part-of-speech-tagging
paperswithcode_id: xtreme
---

# Dataset Card for "xtreme"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/google-research/xtreme](https://github.com/google-research/xtreme)
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 15143.21 MB
- **Size of the generated dataset:** 1027.42 MB
- **Total amount of disk used:** 16170.64 MB

### Dataset Summary

The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark.
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.

### Supported Tasks and Leaderboards

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Languages

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Dataset Structure

We show detailed information for up to 5 configurations of the dataset.

### Data Instances

#### MLQA.ar.ar

- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 8.77 MB
- **Total amount of disk used:** 80.98 MB

An example of 'validation' looks as follows.
```

```

#### MLQA.ar.de

- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 2.43 MB
- **Total amount of disk used:** 74.64 MB

An example of 'validation' looks as follows.
```

```

#### MLQA.ar.en

- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 8.62 MB
- **Total amount of disk used:** 80.83 MB

An example of 'validation' looks as follows.
```

```

#### MLQA.ar.es

- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 3.12 MB
- **Total amount of disk used:** 75.33 MB

An example of 'validation' looks as follows.
```

```

#### MLQA.ar.hi

- **Size of downloaded dataset files:** 72.21 MB
- **Size of the generated dataset:** 3.17 MB
- **Total amount of disk used:** 75.38 MB

An example of 'validation' looks as follows.
```

```

### Data Fields

The data fields are the same among all splits.

#### MLQA.ar.ar
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
  - `answer_start`: a `int32` feature.
  - `text`: a `string` feature.

#### MLQA.ar.de
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
  - `answer_start`: a `int32` feature.
  - `text`: a `string` feature.

#### MLQA.ar.en
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
  - `answer_start`: a `int32` feature.
  - `text`: a `string` feature.

#### MLQA.ar.es
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
  - `answer_start`: a `int32` feature.
  - `text`: a `string` feature.

#### MLQA.ar.hi
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answers`: a dictionary feature containing:
  - `answer_start`: a `int32` feature.
  - `text`: a `string` feature.

### Data Splits

|   name   |validation|test|
|----------|---------:|---:|
|MLQA.ar.ar|       517|5335|
|MLQA.ar.de|       207|1649|
|MLQA.ar.en|       517|5335|
|MLQA.ar.es|       161|1978|
|MLQA.ar.hi|       186|1831|

## Dataset Creation

### Curation Rationale

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the source language producers?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Annotations

#### Annotation process

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

#### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Personal and Sensitive Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Licensing Information

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Citation Information

```
  @InProceedings{conneau2018xnli,
  author = {Conneau, Alexis
                 and Rinott, Ruty
                 and Lample, Guillaume
                 and Williams, Adina
                 and Bowman, Samuel R.
                 and Schwenk, Holger
                 and Stoyanov, Veselin},
  title = {XNLI: Evaluating Cross-lingual Sentence Representations},
  booktitle = {Proceedings of the 2018 Conference on Empirical Methods
               in Natural Language Processing},
  year = {2018},
  publisher = {Association for Computational Linguistics},
  location = {Brussels, Belgium},
}
@article{hu2020xtreme,
      author    = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
      title     = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
      journal   = {CoRR},
      volume    = {abs/2003.11080},
      year      = {2020},
      archivePrefix = {arXiv},
      eprint    = {2003.11080}
}

```


### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@jplu](https://github.com/jplu), [@lewtun](https://github.com/lewtun), [@lvwerra](https://github.com/lvwerra), [@lhoestq](https://github.com/lhoestq), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.