File size: 37,487 Bytes
4269340 12d83de 4269340 6f21d08 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 34615c6 4269340 34615c6 24421eb 4269340 293a5a8 4269340 47d3d2a 4269340 293a5a8 4269340 6f21d08 4269340 12d83de 4269340 34615c6 4269340 791c5c3 6d98a07 4269340 6d98a07 53bd002 6d98a07 4269340 293a5a8 4269340 34615c6 4269340 34615c6 4269340 293a5a8 4269340 293a5a8 4269340 293a5a8 4269340 791c5c3 4269340 293a5a8 4269340 fff9c79 293a5a8 4269340 fff9c79 293a5a8 4269340 fff9c79 4269340 fff9c79 4269340 53bd002 4269340 293a5a8 4269340 34615c6 4269340 6d98a07 4269340 53bd002 4269340 34615c6 4269340 791c5c3 4269340 34615c6 4269340 fff9c79 6873175 fff9c79 6873175 fff9c79 6873175 4269340 6873175 4269340 53bd002 4269340 6d98a07 24421eb 4269340 6d98a07 b64aa22 24421eb 6d98a07 34615c6 6d98a07 24421eb 4269340 24421eb 4269340 34615c6 6d98a07 34615c6 53bd002 791c5c3 53bd002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
"""TODO(xtreme): Add a description here."""
import csv
import json
import os
import textwrap
import datasets
# TODO(xtreme): BibTeX citation
_CITATION = """\
@article{hu2020xtreme,
author = {Junjie Hu and Sebastian Ruder and Aditya Siddhant and Graham Neubig and Orhan Firat and Melvin Johnson},
title = {XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization},
journal = {CoRR},
volume = {abs/2003.11080},
year = {2020},
archivePrefix = {arXiv},
eprint = {2003.11080}
}
"""
# TODO(xtrem):
_DESCRIPTION = """\
The Cross-lingual TRansfer Evaluation of Multilingual Encoders (XTREME) benchmark is a benchmark for the evaluation of
the cross-lingual generalization ability of pre-trained multilingual models. It covers 40 typologically diverse languages
(spanning 12 language families) and includes nine tasks that collectively require reasoning about different levels of
syntax and semantics. The languages in XTREME are selected to maximize language diversity, coverage in existing tasks,
and availability of training data. Among these are many under-studied languages, such as the Dravidian languages Tamil
(spoken in southern India, Sri Lanka, and Singapore), Telugu and Malayalam (spoken mainly in southern India), and the
Niger-Congo languages Swahili and Yoruba, spoken in Africa.
"""
_MLQA_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi"]
_XQUAD_LANG = ["ar", "de", "vi", "zh", "en", "es", "hi", "el", "ru", "th", "tr"]
_PAWSX_LANG = ["de", "en", "es", "fr", "ja", "ko", "zh"]
_BUCC_LANG = ["de", "fr", "zh", "ru"]
_TATOEBA_LANG = [
"afr",
"ara",
"ben",
"bul",
"deu",
"cmn",
"ell",
"est",
"eus",
"fin",
"fra",
"heb",
"hin",
"hun",
"ind",
"ita",
"jav",
"jpn",
"kat",
"kaz",
"kor",
"mal",
"mar",
"nld",
"pes",
"por",
"rus",
"spa",
"swh",
"tam",
"tel",
"tgl",
"tha",
"tur",
"urd",
"vie",
]
_UD_POS_LANG = [
"Afrikaans",
"Arabic",
"Basque",
"Bulgarian",
"Dutch",
"English",
"Estonian",
"Finnish",
"French",
"German",
"Greek",
"Hebrew",
"Hindi",
"Hungarian",
"Indonesian",
"Italian",
"Japanese",
"Kazakh",
"Korean",
"Chinese",
"Marathi",
"Persian",
"Portuguese",
"Russian",
"Spanish",
"Tagalog",
"Tamil",
"Telugu",
"Thai",
"Turkish",
"Urdu",
"Vietnamese",
"Yoruba",
]
_PAN_X_LANG = [
"af",
"ar",
"bg",
"bn",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fr",
"he",
"hi",
"hu",
"id",
"it",
"ja",
"jv",
"ka",
"kk",
"ko",
"ml",
"mr",
"ms",
"my",
"nl",
"pt",
"ru",
"sw",
"ta",
"te",
"th",
"tl",
"tr",
"ur",
"vi",
"yo",
"zh",
]
_NAMES = ["XNLI", "tydiqa", "SQuAD"]
for lang in _PAN_X_LANG:
_NAMES.append(f"PAN-X.{lang}")
for lang1 in _MLQA_LANG:
for lang2 in _MLQA_LANG:
_NAMES.append(f"MLQA.{lang1}.{lang2}")
for lang in _XQUAD_LANG:
_NAMES.append(f"XQuAD.{lang}")
for lang in _BUCC_LANG:
_NAMES.append(f"bucc18.{lang}")
for lang in _PAWSX_LANG:
_NAMES.append(f"PAWS-X.{lang}")
for lang in _TATOEBA_LANG:
_NAMES.append(f"tatoeba.{lang}")
for lang in _UD_POS_LANG:
_NAMES.append(f"udpos.{lang}")
_DESCRIPTIONS = {
"tydiqa": textwrap.dedent(
"""Gold passage task (GoldP): Given a passage that is guaranteed to contain the
answer, predict the single contiguous span of characters that answers the question. This is more similar to
existing reading comprehension datasets (as opposed to the information-seeking task outlined above).
This task is constructed with two goals in mind: (1) more directly comparing with prior work and (2) providing
a simplified way for researchers to use TyDi QA by providing compatibility with existing code for SQuAD 1.1,
XQuAD, and MLQA. Toward these goals, the gold passage task differs from the primary task in several ways:
only the gold answer passage is provided rather than the entire Wikipedia article;
unanswerable questions have been discarded, similar to MLQA and XQuAD;
we evaluate with the SQuAD 1.1 metrics like XQuAD; and
Thai and Japanese are removed since the lack of whitespace breaks some tools.
"""
),
"XNLI": textwrap.dedent(
"""
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese,
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI
is an evaluation benchmark."""
),
"PAWS-X": textwrap.dedent(
"""
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All
translated pairs are sourced from examples in PAWS-Wiki."""
),
"XQuAD": textwrap.dedent(
"""\
XQuAD (Cross-lingual Question Answering Dataset) is a benchmark dataset for evaluating cross-lingual question
answering performance. The dataset consists of a subset of 240 paragraphs and 1190 question-answer pairs from
the development set of SQuAD v1.1 (Rajpurkar et al., 2016) together with their professional translations into
ten languages: Spanish, German, Greek, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, and Hindi. Consequently,
the dataset is entirely parallel across 11 languages."""
),
"MLQA": textwrap.dedent(
"""\
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
4 different languages on average."""
),
"tatoeba": textwrap.dedent(
"""\
his data is extracted from the Tatoeba corpus, dated Saturday 2018/11/17.
For each languages, we have selected 1000 English sentences and their translations, if available. Please check
this paper for a description of the languages, their families and scripts as well as baseline results.
Please note that the English sentences are not identical for all language pairs. This means that the results are
not directly comparable across languages. In particular, the sentences tend to have less variety for several
low-resource languages, e.g. "Tom needed water", "Tom needs water", "Tom is getting water", ...
"""
),
"bucc18": textwrap.dedent(
"""Building and Using Comparable Corpora
"""
),
"udpos": textwrap.dedent(
"""\
Universal Dependencies (UD) is a framework for consistent annotation of grammar (parts of speech, morphological
features, and syntactic dependencies) across different human languages. UD is an open community effort with over 200
contributors producing more than 100 treebanks in over 70 languages. If you’re new to UD, you should start by reading
the first part of the Short Introduction and then browsing the annotation guidelines.
"""
),
"SQuAD": textwrap.dedent(
"""\
Stanford Question Answering Dataset (SQuAD) is a reading comprehension \
dataset, consisting of questions posed by crowdworkers on a set of Wikipedia \
articles, where the answer to every question is a segment of text, or span, \
from the corresponding reading passage, or the question might be unanswerable."""
),
"PAN-X": textwrap.dedent(
"""\
The WikiANN dataset (Pan et al. 2017) is a dataset with NER annotations for PER, ORG and LOC. It has been
constructed using the linked entities in Wikipedia pages for 282 different languages including Danish. The dataset
can be loaded with the DaNLP package:"""
),
}
_CITATIONS = {
"tydiqa": textwrap.dedent(
(
"""\
@article{tydiqa,
title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
year = {2020},
journal = {Transactions of the Association for Computational Linguistics}
}"""
)
),
"XNLI": textwrap.dedent(
"""\
@InProceedings{conneau2018xnli,
author = {Conneau, Alexis
and Rinott, Ruty
and Lample, Guillaume
and Williams, Adina
and Bowman, Samuel R.
and Schwenk, Holger
and Stoyanov, Veselin},
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
booktitle = {Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing},
year = {2018},
publisher = {Association for Computational Linguistics},
location = {Brussels, Belgium},
}"""
),
"XQuAD": textwrap.dedent(
"""
@article{Artetxe:etal:2019,
author = {Mikel Artetxe and Sebastian Ruder and Dani Yogatama},
title = {On the cross-lingual transferability of monolingual representations},
journal = {CoRR},
volume = {abs/1910.11856},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.11856}
}
"""
),
"MLQA": textwrap.dedent(
"""\
@article{lewis2019mlqa,
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
author={Lewis, Patrick and Oguz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
journal={arXiv preprint arXiv:1910.07475},
year={2019}"""
),
"PAWS-X": textwrap.dedent(
"""\
@InProceedings{pawsx2019emnlp,
title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}},
author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason},
booktitle = {Proc. of EMNLP},
year = {2019}
}"""
),
"tatoeba": textwrap.dedent(
"""\
@article{tatoeba,
title={Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond},
author={Mikel, Artetxe and Holger, Schwenk,},
journal={arXiv:1812.10464v2},
year={2018}
}"""
),
"bucc18": textwrap.dedent(""""""),
"udpos": textwrap.dedent(""""""),
"SQuAD": textwrap.dedent(
"""\
@article{2016arXiv160605250R,
author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev},
Konstantin and {Liang}, Percy},
title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}",
journal = {arXiv e-prints},
year = 2016,
eid = {arXiv:1606.05250},
pages = {arXiv:1606.05250},
archivePrefix = {arXiv},
eprint = {1606.05250},
}"""
),
"PAN-X": textwrap.dedent(
"""\
@article{pan-x,
title={Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond},
author={Xiaoman, Pan and Boliang, Zhang and Jonathan, May and Joel, Nothman and Kevin, Knight and Heng, Ji},
volume={Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers}
year={2017}
}"""
),
}
_TEXT_FEATURES = {
"XNLI": {
"language": "language",
"sentence1": "sentence1",
"sentence2": "sentence2",
},
"tydiqa": {
"id": "id",
"title": "title",
"context": "context",
"question": "question",
"answers": "answers",
},
"XQuAD": {
"id": "id",
"context": "context",
"question": "question",
"answers": "answers",
},
"MLQA": {
"id": "id",
"title": "title",
"context": "context",
"question": "question",
"answers": "answers",
},
"tatoeba": {
"source_sentence": "",
"target_sentence": "",
"source_lang": "",
"target_lang": "",
},
"bucc18": {
"source_sentence": "",
"target_sentence": "",
"source_lang": "",
"target_lang": "",
},
"PAWS-X": {"sentence1": "sentence1", "sentence2": "sentence2"},
"udpos": {"tokens": "", "pos_tags": ""},
"SQuAD": {
"id": "id",
"title": "title",
"context": "context",
"question": "question",
"answers": "answers",
},
"PAN-X": {"tokens": "", "ner_tags": "", "lang": ""},
}
_DATA_URLS = {
"tydiqa": "https://storage.googleapis.com/tydiqa/",
"XNLI": "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip",
"XQuAD": "https://github.com/deepmind/xquad/raw/master/",
"MLQA": "https://dl.fbaipublicfiles.com/MLQA/MLQA_V1.zip",
"PAWS-X": "https://storage.googleapis.com/paws/pawsx/x-final.tar.gz",
"bucc18": "https://comparable.limsi.fr/bucc2018/",
"tatoeba": "https://github.com/facebookresearch/LASER/raw/main/data/tatoeba/v1/",
"udpos": "https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-3105/ud-treebanks-v2.5.tgz",
"SQuAD": "https://rajpurkar.github.io/SQuAD-explorer/dataset/",
"PAN-X": "https://s3.amazonaws.com/datasets.huggingface.co/wikiann/1.1.0/panx_dataset.zip",
}
_URLS = {
"tydiqa": "https://github.com/google-research-datasets/tydiqa",
"XQuAD": "https://github.com/deepmind/xquad",
"XNLI": "https://www.nyu.edu/projects/bowman/xnli/",
"MLQA": "https://github.com/facebookresearch/MLQA",
"PAWS-X": "https://github.com/google-research-datasets/paws/tree/master/pawsx",
"bucc18": "https://comparable.limsi.fr/bucc2018/",
"tatoeba": "https://github.com/facebookresearch/LASER/blob/main/data/tatoeba/v1/README.md",
"udpos": "https://universaldependencies.org/",
"SQuAD": "https://rajpurkar.github.io/SQuAD-explorer/",
"PAN-X": "https://github.com/afshinrahimi/mmner",
}
class XtremeConfig(datasets.BuilderConfig):
"""BuilderConfig for Break"""
def __init__(self, data_url, citation, url, text_features, **kwargs):
"""
Args:
text_features: `dict[string, string]`, map from the name of the feature
dict for each text field to the name of the column in the tsv file
label_column:
label_classes
**kwargs: keyword arguments forwarded to super.
"""
super(XtremeConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.text_features = text_features
self.data_url = data_url
self.citation = citation
self.url = url
class Xtreme(datasets.GeneratorBasedBuilder):
"""TODO(xtreme): Short description of my dataset."""
# TODO(xtreme): Set up version.
VERSION = datasets.Version("0.1.0")
BUILDER_CONFIGS = [
XtremeConfig(
name=name,
description=_DESCRIPTIONS[name.split(".")[0]],
citation=_CITATIONS[name.split(".")[0]],
text_features=_TEXT_FEATURES[name.split(".")[0]],
data_url=_DATA_URLS[name.split(".")[0]],
url=_URLS[name.split(".")[0]],
)
for name in _NAMES
]
def _info(self):
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
if "answers" in features.keys():
features["answers"] = datasets.features.Sequence(
{
"answer_start": datasets.Value("int32"),
"text": datasets.Value("string"),
}
)
if self.config.name.startswith("PAWS-X"):
features = PawsxParser.features
elif self.config.name == "XNLI":
features["gold_label"] = datasets.Value("string")
elif self.config.name.startswith("udpos"):
features = UdposParser.features
elif self.config.name.startswith("PAN-X"):
features = PanxParser.features
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self.config.description + "\n" + _DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
features
# These are the features of your dataset like images, labels ...
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/google-research/xtreme" + "\t" + self.config.url,
citation=self.config.citation + "\n" + _CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "tydiqa":
train_url = "v1.1/tydiqa-goldp-v1.1-train.json"
dev_url = "v1.1/tydiqa-goldp-v1.1-dev.json"
urls_to_download = {
"train": self.config.data_url + train_url,
"dev": self.config.data_url + dev_url,
}
dl_dir = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": dl_dir["dev"]},
),
]
if self.config.name == "XNLI":
dl_dir = dl_manager.download_and_extract(self.config.data_url)
data_dir = os.path.join(dl_dir, "XNLI-1.0")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.test.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": os.path.join(data_dir, "xnli.dev.tsv")},
),
]
if self.config.name.startswith("MLQA"):
mlqa_downloaded_files = dl_manager.download_and_extract(self.config.data_url)
l1 = self.config.name.split(".")[1]
l2 = self.config.name.split(".")[2]
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(mlqa_downloaded_files, "MLQA_V1/test"),
f"test-context-{l1}-question-{l2}.json",
)
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(
os.path.join(mlqa_downloaded_files, "MLQA_V1/dev"),
f"dev-context-{l1}-question-{l2}.json",
)
},
),
]
if self.config.name.startswith("XQuAD"):
lang = self.config.name.split(".")[1]
xquad_downloaded_file = dl_manager.download_and_extract(self.config.data_url + f"xquad.{lang}.json")
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": xquad_downloaded_file},
),
]
if self.config.name.startswith("PAWS-X"):
return PawsxParser.split_generators(dl_manager=dl_manager, config=self.config)
elif self.config.name.startswith("tatoeba"):
lang = self.config.name.split(".")[1]
tatoeba_source_data = dl_manager.download_and_extract(self.config.data_url + f"tatoeba.{lang}-eng.{lang}")
tatoeba_eng_data = dl_manager.download_and_extract(self.config.data_url + f"tatoeba.{lang}-eng.eng")
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": (tatoeba_source_data, tatoeba_eng_data)},
),
]
if self.config.name.startswith("bucc18"):
lang = self.config.name.split(".")[1]
bucc18_dl_test_archive = dl_manager.download(
self.config.data_url + f"bucc2018-{lang}-en.training-gold.tar.bz2"
)
bucc18_dl_dev_archive = dl_manager.download(
self.config.data_url + f"bucc2018-{lang}-en.sample-gold.tar.bz2"
)
return [
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": dl_manager.iter_archive(bucc18_dl_dev_archive)},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": dl_manager.iter_archive(bucc18_dl_test_archive)},
),
]
if self.config.name.startswith("udpos"):
return UdposParser.split_generators(dl_manager=dl_manager, config=self.config)
if self.config.name == "SQuAD":
urls_to_download = {
"train": self.config.data_url + "train-v1.1.json",
"dev": self.config.data_url + "dev-v1.1.json",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_files["dev"]},
),
]
if self.config.name.startswith("PAN-X"):
return PanxParser.split_generators(dl_manager=dl_manager, config=self.config)
def _generate_examples(self, filepath=None, **kwargs):
"""Yields examples."""
# TODO(xtreme): Yields (key, example) tuples from the dataset
if self.config.name == "tydiqa" or self.config.name.startswith("MLQA") or self.config.name == "SQuAD":
with open(filepath, encoding="utf-8") as f:
data = json.load(f)
for article in data["data"]:
title = article.get("title", "").strip()
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"title": title,
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
if self.config.name == "XNLI":
with open(filepath, encoding="utf-8") as f:
data = csv.DictReader(f, delimiter="\t")
for id_, row in enumerate(data):
yield id_, {
"sentence1": row["sentence1"],
"sentence2": row["sentence2"],
"language": row["language"],
"gold_label": row["gold_label"],
}
if self.config.name.startswith("PAWS-X"):
yield from PawsxParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
if self.config.name.startswith("XQuAD"):
with open(filepath, encoding="utf-8") as f:
xquad = json.load(f)
for article in xquad["data"]:
for paragraph in article["paragraphs"]:
context = paragraph["context"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answer_starts = [answer["answer_start"] for answer in qa["answers"]]
answers = [answer["text"].strip() for answer in qa["answers"]]
# Features currently used are "context", "question", and "answers".
# Others are extracted here for the ease of future expansions.
yield id_, {
"context": context,
"question": question,
"id": id_,
"answers": {
"answer_start": answer_starts,
"text": answers,
},
}
if self.config.name.startswith("bucc18"):
lang = self.config.name.split(".")[1]
data_dir = f"bucc2018/{lang}-en"
for path, file in filepath:
if path.startswith(data_dir):
csv_content = [line.decode("utf-8") for line in file]
if path.endswith("en"):
target_sentences = dict(list(csv.reader(csv_content, delimiter="\t", quotechar=None)))
elif path.endswith("gold"):
source_target_ids = list(csv.reader(csv_content, delimiter="\t", quotechar=None))
else:
source_sentences = dict(list(csv.reader(csv_content, delimiter="\t", quotechar=None)))
for id_, (source_id, target_id) in enumerate(source_target_ids):
yield id_, {
"source_sentence": source_sentences[source_id],
"target_sentence": target_sentences[target_id],
"source_lang": source_id,
"target_lang": target_id,
}
if self.config.name.startswith("tatoeba"):
source_file = filepath[0]
target_file = filepath[1]
source_sentences = []
target_sentences = []
with open(source_file, encoding="utf-8") as f1:
for row in f1:
source_sentences.append(row)
with open(target_file, encoding="utf-8") as f2:
for row in f2:
target_sentences.append(row)
for i in range(len(source_sentences)):
yield i, {
"source_sentence": source_sentences[i],
"target_sentence": target_sentences[i],
"source_lang": source_file.split(".")[-1],
"target_lang": "eng",
}
if self.config.name.startswith("udpos"):
yield from UdposParser.generate_examples(config=self.config, filepath=filepath, **kwargs)
if self.config.name.startswith("PAN-X"):
yield from PanxParser.generate_examples(filepath=filepath, **kwargs)
class PanxParser:
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"O",
"B-PER",
"I-PER",
"B-ORG",
"I-ORG",
"B-LOC",
"I-LOC",
]
)
),
"langs": datasets.Sequence(datasets.Value("string")),
}
)
@staticmethod
def split_generators(dl_manager=None, config=None):
data_dir = dl_manager.download_and_extract(config.data_url)
lang = config.name.split(".")[1]
archive = os.path.join(data_dir, lang + ".tar.gz")
split_filenames = {
datasets.Split.TRAIN: "train",
datasets.Split.VALIDATION: "dev",
datasets.Split.TEST: "test",
}
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={
"filepath": dl_manager.iter_archive(archive),
"filename": split_filenames[split],
},
)
for split in split_filenames
]
@staticmethod
def generate_examples(filepath=None, filename=None):
idx = 1
for path, file in filepath:
if path.endswith(filename):
tokens = []
ner_tags = []
langs = []
for line in file:
line = line.decode("utf-8")
if line == "" or line == "\n":
if tokens:
yield idx, {
"tokens": tokens,
"ner_tags": ner_tags,
"langs": langs,
}
idx += 1
tokens = []
ner_tags = []
langs = []
else:
# pan-x data is tab separated
splits = line.split("\t")
# strip out en: prefix
langs.append(splits[0][:2])
tokens.append(splits[0][3:])
if len(splits) > 1:
ner_tags.append(splits[-1].replace("\n", ""))
else:
# examples have no label in test set
ner_tags.append("O")
if tokens:
yield idx, {
"tokens": tokens,
"ner_tags": ner_tags,
"langs": langs,
}
class PawsxParser:
features = datasets.Features(
{
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.Value("string"),
}
)
@staticmethod
def split_generators(dl_manager=None, config=None):
lang = config.name.split(".")[1]
archive = dl_manager.download(config.data_url)
split_filenames = {
datasets.Split.TRAIN: "translated_train.tsv" if lang != "en" else "train.tsv",
datasets.Split.VALIDATION: "dev_2k.tsv",
datasets.Split.TEST: "test_2k.tsv",
}
return [
datasets.SplitGenerator(
name=split,
gen_kwargs={"filepath": dl_manager.iter_archive(archive), "filename": split_filenames[split]},
)
for split in split_filenames
]
@staticmethod
def generate_examples(config=None, filepath=None, filename=None):
lang = config.name.split(".")[1]
for path, file in filepath:
if f"/{lang}/" in path and path.endswith(filename):
lines = (line.decode("utf-8") for line in file)
data = csv.reader(lines, delimiter="\t")
next(data) # skip header
for id_, row in enumerate(data):
if len(row) == 4:
yield id_, {
"sentence1": row[1],
"sentence2": row[2],
"label": row[3],
}
class UdposParser:
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
)
),
}
)
@staticmethod
def split_generators(dl_manager=None, config=None):
archive = dl_manager.download(config.data_url)
split_names = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev", datasets.Split.TEST: "test"}
split_generators = {
split: datasets.SplitGenerator(
name=split,
gen_kwargs={
"filepath": dl_manager.iter_archive(archive),
"split": split_names[split],
},
)
for split in split_names
}
lang = config.name.split(".")[1]
if lang in ["Tagalog", "Thai", "Yoruba"]:
return [split_generators["test"]]
elif lang == "Kazakh":
return [split_generators["train"], split_generators["test"]]
else:
return [split_generators["train"], split_generators["validation"], split_generators["test"]]
@staticmethod
def generate_examples(config=None, filepath=None, split=None):
lang = config.name.split(".")[1]
idx = 0
for path, file in filepath:
if f"_{lang}" in path and split in path and path.endswith(".conllu"):
# For lang other than [see below], we exclude Arabic-NYUAD which does not contains any words, only _
if lang in ["Kazakh", "Tagalog", "Thai", "Yoruba"] or "NYUAD" not in path:
lines = (line.decode("utf-8") for line in file)
data = csv.reader(lines, delimiter="\t", quoting=csv.QUOTE_NONE)
tokens = []
pos_tags = []
for id_row, row in enumerate(data):
if len(row) >= 10 and row[1] != "_" and row[3] != "_":
tokens.append(row[1])
pos_tags.append(row[3])
if len(row) == 0 and len(tokens) > 0:
yield idx, {
"tokens": tokens,
"pos_tags": pos_tags,
}
idx += 1
tokens = []
pos_tags = []
|