File size: 5,328 Bytes
0a0f653 f2287c3 0a0f653 f2287c3 0a0f653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to AMTTL CWS Dataset"""
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{xing2018adaptive,
title={Adaptive multi-task transfer learning for Chinese word segmentation in medical text},
author={Xing, Junjie and Zhu, Kenny and Zhang, Shaodian},
booktitle={Proceedings of the 27th International Conference on Computational Linguistics},
pages={3619--3630},
year={2018}
}
"""
_DESCRIPTION = """\
Chinese word segmentation (CWS) trained from open source corpus faces dramatic performance drop
when dealing with domain text, especially for a domain with lots of special terms and diverse
writing styles, such as the biomedical domain. However, building domain-specific CWS requires
extremely high annotation cost. In this paper, we propose an approach by exploiting domain-invariant
knowledge from high resource to low resource domains. Extensive experiments show that our mode
achieves consistently higher accuracy than the single-task CWS and other transfer learning
baselines, especially when there is a large disparity between source and target domains.
This dataset is the accompanied medical Chinese word segmentation (CWS) dataset.
The tags are in BIES scheme.
For more details see https://www.aclweb.org/anthology/C18-1307/
"""
_URL = "https://raw.githubusercontent.com/adapt-sjtu/AMTTL/master/medical_data/"
_TRAINING_FILE = "forum_train.txt"
_DEV_FILE = "forum_dev.txt"
_TEST_FILE = "forum_test.txt"
class AmttlConfig(datasets.BuilderConfig):
"""BuilderConfig for AMTTL"""
def __init__(self, **kwargs):
"""BuilderConfig for AMTTL.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(AmttlConfig, self).__init__(**kwargs)
class Amttl(datasets.GeneratorBasedBuilder):
"""AMTTL Chinese Word Segmentation dataset."""
BUILDER_CONFIGS = [
AmttlConfig(
name="amttl",
version=datasets.Version("1.0.0"),
description="AMTTL medical Chinese word segmentation dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
"B",
"I",
"E",
"S",
]
)
),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/C18-1307/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
tags = []
for line in f:
line_stripped = line.strip()
if line_stripped == "":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"tags": tags,
}
guid += 1
tokens = []
tags = []
else:
splits = line_stripped.split("\t")
if len(splits) == 1:
splits.append("O")
tokens.append(splits[0])
tags.append(splits[1])
# last example
yield guid, {
"id": str(guid),
"tokens": tokens,
"tags": tags,
}
|