File size: 6,568 Bytes
95706a2
d6aeb80
95706a2
 
 
 
 
 
 
 
6ba9650
 
95706a2
653d03d
95706a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b6c3d0
95706a2
0f698f4
95706a2
 
 
843b172
95706a2
6ba9650
 
2b6c3d0
6ba9650
2b6c3d0
 
95706a2
 
 
6ba9650
 
954f79c
e816036
 
95706a2
 
 
 
843b172
2b6c3d0
95706a2
 
843b172
2b6c3d0
95706a2
 
 
 
843b172
2b6c3d0
95706a2
 
843b172
5215adb
95706a2
 
 
 
843b172
5215adb
95706a2
 
843b172
5215adb
95706a2
 
 
 
843b172
5215adb
95706a2
 
 
6ba9650
2b6c3d0
 
 
 
 
 
 
6ba9650
 
 
843b172
6ba9650
 
 
 
 
2b6c3d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: openrail
viewer: false
tags:
- deepfakes
- gen-ai
- text-to-video
pretty_name: DeepAction Dataset v1.0
size_categories:
- 1K<n<10K
task_categories:
- video-classification
---

<style>
        * {
        font-family: Helvetica, sans-serif;
          }
        code {
            font-family: IBM Plex Mono,ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace !important;
        }
        a {
        color: #FFA500;
        }
        .container {
            display: flex;
            justify-content: space-between; /* Ensures even space between items */
            align-items: stretch; /* Ensures boxes have the same height */
            width: 100%;
            margin: 20px auto;
            gap: 20px; /* Consistent gap between boxes */
        }
        .warning-box {
            background-color: rgba(255, 200, 100, 0.5); /* Lighter orange with more translucency */
            border-radius: 10px;
            padding: 20px;
            flex: 1;
            box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
            font-family: Arial, sans-serif;
            color: #333;
            display: flex;
            flex-direction: column;
            justify-content: flex-start; /* Align items to the top */
        }
        .warning-sign {
            font-weight: bold;
            font-size: 1em;
            margin-bottom: 10px;
        }
        .warning-text {
            font-size: 1em;
        }
        .button {
            display: inline-block;
            padding: 10px 20px;
            margin: 5px;
            background-color: #FFA500;
            color: white;
            text-decoration: none;
            border-radius: 5px;
        }
        .button span {
            margin-right: 10px;
        }
        .button:hover {
            background-color: #E69500;
        }
        .warning {
            background-color: rgba(255, 165, 0, 0.2);
            border-left: 5px solid #FFA500;
            border-radius: 5px;
            padding: 10px;
            margin: 10px 0;
            color: #000 !important;
        }
        .warning .title {
            color: #FFA500;
            font-weight: bold;
            display: flex;
            align-items: center;
        }
        .warning .title span {
            margin-right: 10px;
        }

.warning-banner {
    display: flex;
    align-items: center;
    justify-content: start; /* Adjusted to align content to the start */
    background-color: #FFCC80; /* Adjusted to a darker shade of orange for better contrast */
    color: #333;
    padding: 10px 30px;
    border-radius: 8px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Lighter shadow for subtlety */
    margin: 20px auto;
    width: 95%; /* Adjust width as needed */
    font-family: Helvetica, sans-serif;
}

.warning-icon {
    font-size: 1.5em;
    margin-right: 15px;
    color: #E65100; /* Darker orange for the icon */
}

.warning-message {
    font-size: 1em;
    font-weight: bold;
    flex: 1; /* Ensures message uses available space */
}

.warning-link {
    color: #0056b3; /* Standard link color for visibility */
    text-decoration: none; /* Removes underline */
}

.warning-link:hover {
    text-decoration: underline; /* Adds underline on hover for better interaction */
}
    </style>


<img src="https://data.matsworld.io/ucbresearch/deepaction.gif" style="width: 100%">

The DeepAction dataset contains over 3,000 videos generated by six text-to-video AI models, as well as real matched videos. These videos show people performing ordinary actions such as walking, running, and cooking. The AI models used to generate these videos include, in alphabetic order, AnimateDiff, CogVideoX5B, Pexels, RunwayML, StableDiffusion, Veo (pre-release version), and VideoPoet. Refer to our <a href=''>our pre-print</a> for details.

<br>

## Getting Started

To get started, log into Hugging Face in your CLI environment, and run:

```python
from datasets import load_dataset
dataset = load_dataset("faridlab/deepaction_v1", trust_remote_code=True)
```

<br>

## Data

The data is structured into seven folders, with six folders corresponding to text-to-video AI models and one folder for real videos. Each of these folders has 100 subfolders corresponding to human action classes. All videos in a given subfolder were generated using the same prompt (see the list of prompts <a href='https://huggingface.co/datasets/faridlab/deepaction_v1/blob/main/captions.csv'>here</a>).

Included below are example videos generated using the prompt "a person taking a selfie". Note that, since each text-to-video AI model generates videos with different ratios and resolutions, these videos were normalized 512x512.

<table class="video-table">
    <tr>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/Pexels.mp4" controls></video>
            <p style="text-align: center;">Real</p>
        </td>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/BDAnimateDiffLightning.mp4" controls ></video>
            <p style="text-align: center;">AnimateDiff</p>
        </td>
    </tr>
    <tr>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/CogVideoX5B.mp4" controls></video>
            <p style="text-align: center;">CogVideoX5B</p>
        </td>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/RunwayML.mp4" controls ></video>
            <p style="text-align: center;">RunwayML</p>
        </td>
    </tr>
  <tr>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/StableDiffusion.mp4" controls></video>
            <p style="text-align: center;">StableDiffusion</p>
        </td>
        <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/Veo.mp4" controls ></video> 
            <p style="text-align: center;">Veo (pre-release version)</p>
        </td>
    </tr>
    <tr>
      <td style="width: 50%;">
            <video src="https://data.matsworld.io/ucbresearch/deepaction/VideoPoet.mp4" controls></video>
            <p style="text-align: center;">VideoPoet</p>
        </td>
    </tr>
</table>

<br>

# Licensing

TBD, will be provided by pcounsel

<br>

## Misc

Please use the following citation when referring to this dataset:

```bib
TBD
```

This work was done during the first author's (Matyas Bohacek) internship at Google.