matybohacek
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -120,17 +120,9 @@ task_categories:
|
|
120 |
</style>
|
121 |
|
122 |
|
123 |
-
<img src="
|
124 |
|
125 |
-
The DeepAction dataset contains over 3,000 videos generated by seven text-to-video AI models, as well as real matched videos. These videos show people performing ordinary actions such as walking, running, and cooking. The AI models used to generate these videos include, in alphabetic order, AnimateDiff, CogVideoX5B, Lumiere, Pexels, RunwayML, StableDiffusion, Veo (pre-release version), and VideoPoet.
|
126 |
-
|
127 |
-
<br>
|
128 |
-
|
129 |
-
<br>
|
130 |
-
|
131 |
-
# Licensing
|
132 |
-
|
133 |
-
TBD, will be provided by pcounsel
|
134 |
|
135 |
<br>
|
136 |
|
@@ -138,91 +130,74 @@ TBD, will be provided by pcounsel
|
|
138 |
|
139 |
To get started, log into Hugging Face in your CLI environment, and run:
|
140 |
|
|
|
141 |
from datasets import load_dataset
|
142 |
-
dataset = load_dataset("
|
143 |
-
|
144 |
-
<br>
|
145 |
|
146 |
<br>
|
147 |
|
148 |
## Data
|
149 |
|
150 |
-
The data is structured into eight folders, corresponding to different text-to-video AI models. Each folder has 100 subfolders containing AI-generated videos. These subfolders correspond to action classes; all videos in a given subfolder were generated using the same prompt (see the list of prompts here).
|
151 |
|
152 |
<table class="video-table">
|
153 |
<tr>
|
154 |
<td style="width: 50%;">
|
155 |
<video src="https://data.matsworld.io/ucbresearch/example-real-scripted.mp4" controls></video>
|
156 |
-
<p style="text-align: center;"
|
157 |
</td>
|
158 |
<td style="width: 50%;">
|
159 |
<video src="https://data.matsworld.io/ucbresearch/example-real-unscripted.mp4" controls ></video>
|
160 |
-
<p style="text-align: center;"
|
161 |
</td>
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td style="width: 50%;">
|
165 |
<video src="https://data.matsworld.io/ucbresearch/example-real-hand-movement.mp4" controls></video>
|
166 |
-
<p style="text-align: center;"
|
167 |
</td>
|
168 |
<td style="width: 50%;">
|
169 |
<video src="https://data.matsworld.io/ucbresearch/example-real-head-movement.mp4" controls ></video>
|
170 |
-
<p style="text-align: center;"
|
171 |
</td>
|
172 |
</tr>
|
173 |
-
|
174 |
-
|
175 |
<tr>
|
176 |
<td style="width: 50%;">
|
177 |
<video src="https://data.matsworld.io/ucbresearch/example-fake-wav2lip.mp4" controls></video>
|
178 |
-
<p style="text-align: center;"
|
179 |
</td>
|
180 |
<td style="width: 50%;">
|
181 |
<video src="http://data.matsworld.io/ucbresearch/example-fake-wav2lip-ai-voice.mp4" controls ></video>
|
182 |
-
<p style="text-align: center;"
|
183 |
</td>
|
184 |
</tr>
|
185 |
<tr>
|
186 |
<td style="width: 50%;">
|
187 |
<video src="https://data.matsworld.io/ucbresearch/example-fake-retalking.mp4" controls></video>
|
188 |
-
<p style="text-align: center;"
|
189 |
</td>
|
190 |
<td style="width: 50%;">
|
191 |
<video src="http://data.matsworld.io/ucbresearch/example-fake-retalking-ai-voice.mp4" controls ></video>
|
192 |
-
<p style="text-align: center;"
|
193 |
-
</td>
|
194 |
-
</tr>
|
195 |
-
<tr>
|
196 |
-
<td style="width: 50%;">
|
197 |
-
<video src="https://data.matsworld.io/ucbresearch/example-fake-facefusion.mp4" controls></video>
|
198 |
-
<p style="text-align: center;"><b>Fake: </b> Face Fusion</p>
|
199 |
-
</td>
|
200 |
-
<td style="width: 50%;">
|
201 |
-
<video src="https://data.matsworld.io/ucbresearch/example-fake-facefusion-gan.mp4" controls ></video>
|
202 |
-
<p style="text-align: center;"><b>Fake: </b> Face Fusion + GAN</p>
|
203 |
-
</td>
|
204 |
-
</tr>
|
205 |
-
<tr>
|
206 |
-
<td style="width: 50%;">
|
207 |
-
<video src="https://data.matsworld.io/ucbresearch/example-fake-facefusion-live.mp4" style="width: 100%;" controls></video>
|
208 |
-
<p style="text-align: center;"><b>Fake: </b> Face Fusion Live</p>
|
209 |
-
</td>
|
210 |
-
<td style="width: 50%;">
|
211 |
-
<p></p>
|
212 |
</td>
|
213 |
</tr>
|
214 |
</table>
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
## Misc
|
218 |
|
219 |
-
Please use the following citation
|
220 |
|
221 |
```bib
|
222 |
TBD
|
223 |
```
|
224 |
|
225 |
-
Matyas Bohacek
|
226 |
-
Hany Farid, University of California, Berkeley
|
227 |
-
|
228 |
-
This work was done during the first author's (MB) internship at Google.
|
|
|
120 |
</style>
|
121 |
|
122 |
|
123 |
+
<img src="https://data.matsworld.io/ucbresearch/deepaction.gif" style="width: 100%">
|
124 |
|
125 |
+
The DeepAction dataset contains over 3,000 videos generated by seven text-to-video AI models, as well as real matched videos. These videos show people performing ordinary actions such as walking, running, and cooking. The AI models used to generate these videos include, in alphabetic order, AnimateDiff, CogVideoX5B, Lumiere, Pexels, RunwayML, StableDiffusion, Veo (pre-release version), and VideoPoet. Refer to our <a href=''>our pre-print</a> for details.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
<br>
|
128 |
|
|
|
130 |
|
131 |
To get started, log into Hugging Face in your CLI environment, and run:
|
132 |
|
133 |
+
```python
|
134 |
from datasets import load_dataset
|
135 |
+
dataset = load_dataset("faridlab/deepaction_v1", trust_remote_code=True)
|
136 |
+
```
|
|
|
137 |
|
138 |
<br>
|
139 |
|
140 |
## Data
|
141 |
|
142 |
+
The data is structured into eight folders, corresponding to different text-to-video AI models. Each folder has 100 subfolders containing AI-generated videos. These subfolders correspond to action classes; all videos in a given subfolder were generated using the same prompt (see the list of prompts <a href=''>here</a>).
|
143 |
|
144 |
<table class="video-table">
|
145 |
<tr>
|
146 |
<td style="width: 50%;">
|
147 |
<video src="https://data.matsworld.io/ucbresearch/example-real-scripted.mp4" controls></video>
|
148 |
+
<p style="text-align: center;">Real</p>
|
149 |
</td>
|
150 |
<td style="width: 50%;">
|
151 |
<video src="https://data.matsworld.io/ucbresearch/example-real-unscripted.mp4" controls ></video>
|
152 |
+
<p style="text-align: center;">AnimateDiff</p>
|
153 |
</td>
|
154 |
</tr>
|
155 |
<tr>
|
156 |
<td style="width: 50%;">
|
157 |
<video src="https://data.matsworld.io/ucbresearch/example-real-hand-movement.mp4" controls></video>
|
158 |
+
<p style="text-align: center;">CogVideoX5B</p>
|
159 |
</td>
|
160 |
<td style="width: 50%;">
|
161 |
<video src="https://data.matsworld.io/ucbresearch/example-real-head-movement.mp4" controls ></video>
|
162 |
+
<p style="text-align: center;">Lumiere</p>
|
163 |
</td>
|
164 |
</tr>
|
|
|
|
|
165 |
<tr>
|
166 |
<td style="width: 50%;">
|
167 |
<video src="https://data.matsworld.io/ucbresearch/example-fake-wav2lip.mp4" controls></video>
|
168 |
+
<p style="text-align: center;">RunwayML</p>
|
169 |
</td>
|
170 |
<td style="width: 50%;">
|
171 |
<video src="http://data.matsworld.io/ucbresearch/example-fake-wav2lip-ai-voice.mp4" controls ></video>
|
172 |
+
<p style="text-align: center;">StableDiffusion</p>
|
173 |
</td>
|
174 |
</tr>
|
175 |
<tr>
|
176 |
<td style="width: 50%;">
|
177 |
<video src="https://data.matsworld.io/ucbresearch/example-fake-retalking.mp4" controls></video>
|
178 |
+
<p style="text-align: center;">Veo (pre-release version)</p>
|
179 |
</td>
|
180 |
<td style="width: 50%;">
|
181 |
<video src="http://data.matsworld.io/ucbresearch/example-fake-retalking-ai-voice.mp4" controls ></video>
|
182 |
+
<p style="text-align: center;">VideoPoet</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
</td>
|
184 |
</tr>
|
185 |
</table>
|
186 |
|
187 |
+
<br>
|
188 |
+
|
189 |
+
# Licensing
|
190 |
+
|
191 |
+
TBD, will be provided by pcounsel
|
192 |
+
|
193 |
+
<br>
|
194 |
|
195 |
## Misc
|
196 |
|
197 |
+
Please use the following citation when using this dataset:
|
198 |
|
199 |
```bib
|
200 |
TBD
|
201 |
```
|
202 |
|
203 |
+
This work was done during the first author's (Matyas Bohacek) internship at Google.
|
|
|
|
|
|