Convert dataset to Parquet

#5
by davzoku - opened
README.md CHANGED
@@ -33,13 +33,20 @@ dataset_info:
33
  '3': Sci/Tech
34
  splits:
35
  - name: train
36
- num_bytes: 29817351
37
  num_examples: 120000
38
  - name: test
39
- num_bytes: 1879478
40
  num_examples: 7600
41
- download_size: 31327765
42
- dataset_size: 31696829
 
 
 
 
 
 
 
43
  train-eval-index:
44
  - config: default
45
  task: text-classification
 
33
  '3': Sci/Tech
34
  splits:
35
  - name: train
36
+ num_bytes: 29817303
37
  num_examples: 120000
38
  - name: test
39
+ num_bytes: 1879474
40
  num_examples: 7600
41
+ download_size: 19820267
42
+ dataset_size: 31696777
43
+ configs:
44
+ - config_name: default
45
+ data_files:
46
+ - split: train
47
+ path: data/train-*
48
+ - split: test
49
+ path: data/test-*
50
  train-eval-index:
51
  - config: default
52
  task: text-classification
ag_news.py DELETED
@@ -1,94 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """AG News topic classification dataset."""
18
-
19
-
20
- import csv
21
-
22
- import datasets
23
- from datasets.tasks import TextClassification
24
-
25
-
26
- _DESCRIPTION = """\
27
- AG is a collection of more than 1 million news articles. News articles have been
28
- gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of
29
- activity. ComeToMyHead is an academic news search engine which has been running
30
- since July, 2004. The dataset is provided by the academic comunity for research
31
- purposes in data mining (clustering, classification, etc), information retrieval
32
- (ranking, search, etc), xml, data compression, data streaming, and any other
33
- non-commercial activity. For more information, please refer to the link
34
- http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
35
-
36
- The AG's news topic classification dataset is constructed by Xiang Zhang
37
- (xiang.zhang@nyu.edu) from the dataset above. It is used as a text
38
- classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann
39
- LeCun. Character-level Convolutional Networks for Text Classification. Advances
40
- in Neural Information Processing Systems 28 (NIPS 2015).
41
- """
42
-
43
- _CITATION = """\
44
- @inproceedings{Zhang2015CharacterlevelCN,
45
- title={Character-level Convolutional Networks for Text Classification},
46
- author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
47
- booktitle={NIPS},
48
- year={2015}
49
- }
50
- """
51
-
52
- _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv"
53
- _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv"
54
-
55
-
56
- class AGNews(datasets.GeneratorBasedBuilder):
57
- """AG News topic classification dataset."""
58
-
59
- def _info(self):
60
- return datasets.DatasetInfo(
61
- description=_DESCRIPTION,
62
- features=datasets.Features(
63
- {
64
- "text": datasets.Value("string"),
65
- "label": datasets.features.ClassLabel(names=["World", "Sports", "Business", "Sci/Tech"]),
66
- }
67
- ),
68
- homepage="http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html",
69
- citation=_CITATION,
70
- task_templates=[TextClassification(text_column="text", label_column="label")],
71
- )
72
-
73
- def _split_generators(self, dl_manager):
74
- train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
75
- test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
76
- return [
77
- datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
78
- datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
79
- ]
80
-
81
- def _generate_examples(self, filepath):
82
- """Generate AG News examples."""
83
- with open(filepath, encoding="utf-8") as csv_file:
84
- csv_reader = csv.reader(
85
- csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
86
- )
87
- for id_, row in enumerate(csv_reader):
88
- label, title, description = row
89
- # Original labels are [1, 2, 3, 4] ->
90
- # ['World', 'Sports', 'Business', 'Sci/Tech']
91
- # Re-map to [0, 1, 2, 3].
92
- label = int(label) - 1
93
- text = " ".join((title, description))
94
- yield id_, {"text": text, "label": label}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71de87ec66bc5737752a2502204dfa6d7fe9856ade3ea444dc6317789a4f13fb
3
+ size 1234829
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc508d6d9868594e3da960a8cfeb63ab5a4746598b93428c224397080c1f52ee
3
+ size 18585438
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "AG is a collection of more than 1 million news articles. News articles have been\ngathered from more than 2000 news sources by ComeToMyHead in more than 1 year of\nactivity. ComeToMyHead is an academic news search engine which has been running\nsince July, 2004. The dataset is provided by the academic comunity for research\npurposes in data mining (clustering, classification, etc), information retrieval\n(ranking, search, etc), xml, data compression, data streaming, and any other\nnon-commercial activity. For more information, please refer to the link\nhttp://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .\n\nThe AG's news topic classification dataset is constructed by Xiang Zhang\n(xiang.zhang@nyu.edu) from the dataset above. It is used as a text\nclassification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann\nLeCun. Character-level Convolutional Networks for Text Classification. Advances\nin Neural Information Processing Systems 28 (NIPS 2015).\n", "citation": "@inproceedings{Zhang2015CharacterlevelCN,\n title={Character-level Convolutional Networks for Text Classification},\n author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},\n booktitle={NIPS},\n year={2015}\n}\n", "homepage": "http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 4, "names": ["World", "Sports", "Business", "Sci/Tech"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "text-classification", "text_column": "text", "label_column": "label", "labels": ["Business", "Sci/Tech", "Sports", "World"]}], "builder_name": "ag_news", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 29817351, "num_examples": 120000, "dataset_name": "ag_news"}, "test": {"name": "test", "num_bytes": 1879478, "num_examples": 7600, "dataset_name": "ag_news"}}, "download_checksums": {"https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/train.csv": {"num_bytes": 29470338, "checksum": "76a0a2d2f92b286371fe4d4044640910a04a803fdd2538e0f3f29a5c6f6b672e"}, "https://raw.githubusercontent.com/mhjabreel/CharCnn_Keras/master/data/ag_news_csv/test.csv": {"num_bytes": 1857427, "checksum": "521465c2428ed7f02f8d6db6ffdd4b5447c1c701962353eb2c40d548c3c85699"}}, "download_size": 31327765, "post_processing_size": null, "dataset_size": 31696829, "size_in_bytes": 63024594}}