Datasets:
File size: 5,319 Bytes
28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae 28cc287 9f6d2ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
from collections import defaultdict
import os
import glob
import csv
from pathlib import Path
from tqdm.auto import tqdm
import datasets
_LANGUAGES = sorted(
[
"en", "de", "fr", "es", "pl", "it", "ro", "hu", "cs", "nl", "fi", "hr",
"sk", "sl", "et", "lt", "pt", "bg", "el", "lv", "mt", "sv", "da"
]
)
_LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES]
_YEARS = list(range(2009, 2020 + 1))
# unnecessary
_CONFIG_TO_LANGS = {
"400k": _LANGUAGES,
"100k": _LANGUAGES,
"10k": _LANGUAGES,
}
_CONFIG_TO_YEARS = {
"400k": _YEARS + [f"{y}_2" for y in _YEARS],
"100k": _YEARS,
"10k": [2019, 2020],
# "asr": _YEARS
}
for lang in _LANGUAGES:
_CONFIG_TO_YEARS[lang] = _YEARS
_BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/"
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar"
_META_URL = _BASE_URL + "annotations/unlabelled_v2.tsv.gz"
class VoxpopuliConfig(datasets.BuilderConfig):
"""BuilderConfig for VoxPopuli."""
def __init__(self, name, **kwargs):
"""
Args:
name: `string`, name of dataset config
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(name=name, **kwargs)
self.languages = [name] if name in _LANGUAGES else _LANGUAGES
class Voxpopuli(datasets.GeneratorBasedBuilder):
"""The Voxpopuli dataset."""
VERSION = datasets.Version("1.0.0") # TODO ??
BUILDER_CONFIGS = [
VoxpopuliConfig(
name=name,
# version=VERSION,
description="", # TODO
)
for name in _LANGUAGES + ["10k", "100k", "400k"]
]
# DEFAULT_CONFIG_NAME = "400k"
# DEFAULT_WRITER_BATCH_SIZE = 1
def _info(self):
features = datasets.Features(
{
"path": datasets.Value("string"),
"language": datasets.ClassLabel(names=_LANGUAGES),
"year": datasets.Value("int16"),
"audio": datasets.Audio(sampling_rate=16_000),
"segment_id": datasets.Value("int16"),
}
)
return datasets.DatasetInfo(
# description=_DESCRIPTION,
features=features,
# homepage=_HOMEPAGE,
# license=_LICENSE,
# citation=_CITATION,
)
def _read_metadata(self, metadata_path):
# TODO: check for predicate??
# @ https://github.com/facebookresearch/voxpopuli/blob/main/voxpopuli/get_unlabelled_data.py#L34
metadata = defaultdict(list)
with open(metadata_path, encoding="utf-8") as csv_file:
csv_reader = csv.reader(csv_file, delimiter="\t")
for i, row in tqdm(enumerate(csv_reader)):
if i == 0:
continue
audio_id, segment_id, start, end = row
event_id, lang = audio_id.rsplit("_", 1)[-2:]
if lang in self.languages:
# if lang in ["hr", "et"]:
metadata[audio_id].append((float(start), float(end)))
return metadata
def _split_generators(self, dl_manager):
metadata_path = dl_manager.download_and_extract(_META_URL)
years = _CONFIG_TO_YEARS[self.config.name]
# urls = [_DATA_URL.format(lang=language, year=year) for language in ["hr", "et"] for year in [2020]] # , "et"]
urls = [_DATA_URL.format(lang=language, year=year) for language in self.languages for year in years]
dl_manager.download_config.num_proc = len(urls)
data_dirs = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dirs": data_dirs,
"metadata_path": metadata_path,
}
),
]
def _generate_examples(self, data_dirs, metadata_path):
try:
import torch
import torchaudio
except ImportError as e:
raise ValueError(
"Loading voxpopuli requires `torchaudio` to be installed."
"You can install torchaudio with `pip install torchaudio`." + e
)
metadata = self._read_metadata(metadata_path)
for data_dir in data_dirs:
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True)[:5]:
path_components = file.split(os.sep)
language, year, audio_filename = path_components[-3:]
audio_id, _ = os.path.splitext(audio_filename)
timestamps = metadata[audio_id]
waveform, sr = torchaudio.load(file)
duration = waveform.size(1)
for segment_id, (start, stop) in enumerate(timestamps):
segment = waveform[:, int(start * sr): min(int(stop * sr), duration)]
yield f"{audio_filename}_{segment_id}", {
"path": file,
"language": language,
"year": year,
"audio": {
"array": segment[0], # segment is a 2-dim array
"sampling_rate": 16_000
},
"segment_id": segment_id,
}
|