File size: 15,228 Bytes
7155eaf
 
 
 
 
 
b710cca
7155eaf
 
 
 
 
 
 
b710cca
7155eaf
 
 
 
 
 
 
 
 
56cb16a
 
 
12bf0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d33592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b268892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cb16a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c82617d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ac09f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cb16a
12bf0eb
 
 
 
 
 
 
 
 
 
 
 
0d33592
 
 
 
 
 
 
 
 
 
 
 
b268892
 
 
 
 
 
 
 
 
 
 
 
56cb16a
 
 
 
 
 
 
 
 
 
 
 
c82617d
 
 
 
 
 
 
 
 
 
 
 
8ac09f1
 
 
 
 
 
 
 
 
 
 
 
7155eaf
 
 
 
 
 
 
 
 
d22a730
7155eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22a730
7155eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d22a730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7155eaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
---
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- de
- nl
- fr
- it
- es
- pt
- pl
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
paperswithcode_id: multilingual-librispeech
pretty_name: MultiLingual LibriSpeech
dataset_info:
- config_name: dutch
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 199959986.0
    num_examples: 3095
  - name: test
    num_bytes: 199298575.0
    num_examples: 3075
  - name: train
    num_bytes: 23931679031.0
    num_examples: 374287
  - name: 9_hours
    num_bytes: 139884664.668
    num_examples: 2153
  - name: 1_hours
    num_bytes: 15462181.0
    num_examples: 234
  download_size: 24376256629
  dataset_size: 24486284437.668
- config_name: french
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 157923970.696
    num_examples: 2416
  - name: test
    num_bytes: 158352158.582
    num_examples: 2426
  - name: train
    num_bytes: 16984935842.04
    num_examples: 258213
  - name: 9_hours
    num_bytes: 142796680.609
    num_examples: 2167
  - name: 1_hours
    num_bytes: 15675831.0
    num_examples: 241
  download_size: 17381581776
  dataset_size: 17459684482.927002
- config_name: italian
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 81607596.048
    num_examples: 1248
  - name: test
    num_bytes: 83216752.046
    num_examples: 1262
  - name: train
    num_bytes: 3896742625.0
    num_examples: 59623
  - name: 9_hours
    num_bytes: 141671904.428
    num_examples: 2173
  - name: 1_hours
    num_bytes: 15560398.0
    num_examples: 240
  download_size: 4200633596
  dataset_size: 4218799275.522
- config_name: polish
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 32746725.0
    num_examples: 512
  - name: test
    num_bytes: 33735044.0
    num_examples: 520
  - name: train
    num_bytes: 1638889846.0
    num_examples: 25043
  - name: 9_hours
    num_bytes: 142005461.0
    num_examples: 2173
  - name: 1_hours
    num_bytes: 15681216.0
    num_examples: 238
  download_size: 1855342312
  dataset_size: 1863058292.0
- config_name: portuguese
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 57533473.0
    num_examples: 826
  - name: test
    num_bytes: 59141979.0
    num_examples: 871
  - name: train
    num_bytes: 2518553713.946
    num_examples: 37533
  - name: 9_hours
    num_bytes: 141641902.42
    num_examples: 2116
  - name: 1_hours
    num_bytes: 15697139.0
    num_examples: 236
  download_size: 2780836500
  dataset_size: 2792568207.366
- config_name: spanish
  features:
  - name: audio
    dtype: audio
  - name: original_path
    dtype: string
  - name: begin_time
    dtype: float64
  - name: end_time
    dtype: float64
  - name: transcript
    dtype: string
  - name: audio_duration
    dtype: float64
  - name: speaker_id
    dtype: string
  - name: chapter_id
    dtype: string
  - name: file
    dtype: string
  - name: id
    dtype: string
  splits:
  - name: dev
    num_bytes: 157804903.144
    num_examples: 2408
  - name: test
    num_bytes: 158526899.32
    num_examples: 2385
  - name: train
    num_bytes: 14562584188.0
    num_examples: 220701
  - name: 9_hours
    num_bytes: 142473624.48
    num_examples: 2110
  - name: 1_hours
    num_bytes: 15702048.0
    num_examples: 233
  download_size: 14971394533
  dataset_size: 15037091662.944
configs:
- config_name: dutch
  data_files:
  - split: dev
    path: dutch/dev-*
  - split: test
    path: dutch/test-*
  - split: train
    path: dutch/train-*
  - split: 9_hours
    path: dutch/9_hours-*
  - split: 1_hours
    path: dutch/1_hours-*
- config_name: french
  data_files:
  - split: dev
    path: french/dev-*
  - split: test
    path: french/test-*
  - split: train
    path: french/train-*
  - split: 9_hours
    path: french/9_hours-*
  - split: 1_hours
    path: french/1_hours-*
- config_name: italian
  data_files:
  - split: dev
    path: italian/dev-*
  - split: test
    path: italian/test-*
  - split: train
    path: italian/train-*
  - split: 9_hours
    path: italian/9_hours-*
  - split: 1_hours
    path: italian/1_hours-*
- config_name: polish
  data_files:
  - split: dev
    path: polish/dev-*
  - split: test
    path: polish/test-*
  - split: train
    path: polish/train-*
  - split: 9_hours
    path: polish/9_hours-*
  - split: 1_hours
    path: polish/1_hours-*
- config_name: portuguese
  data_files:
  - split: dev
    path: portuguese/dev-*
  - split: test
    path: portuguese/test-*
  - split: train
    path: portuguese/train-*
  - split: 9_hours
    path: portuguese/9_hours-*
  - split: 1_hours
    path: portuguese/1_hours-*
- config_name: spanish
  data_files:
  - split: dev
    path: spanish/dev-*
  - split: test
    path: spanish/test-*
  - split: train
    path: spanish/train-*
  - split: 9_hours
    path: spanish/9_hours-*
  - split: 1_hours
    path: spanish/1_hours-*
---

# Dataset Card for MultiLingual LibriSpeech

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
  - [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [MultiLingual LibriSpeech ASR corpus](http://www.openslr.org/94)
- **Repository:** [Needs More Information]
- **Paper:** [MLS: A Large-Scale Multilingual Dataset for Speech Research](https://arxiv.org/abs/2012.03411)
- **Leaderboard:** [🤗 Autoevaluate Leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards?dataset=facebook%2Fmultilingual_librispeech&only_verified=0&task=automatic-speech-recognition&config=-unspecified-&split=-unspecified-&metric=wer)

### Dataset Summary

This is a streamable version of the Multilingual LibriSpeech (MLS) dataset. 
The data archives were restructured from the original ones from [OpenSLR](http://www.openslr.org/94) to make it easier to stream.

MLS dataset is a large multilingual corpus suitable for speech research. The dataset is derived from read audiobooks from LibriVox and consists of 
8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish.

### Supported Tasks and Leaderboards

- `automatic-speech-recognition`, `speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active leaderboard which can be found at https://paperswithcode.com/dataset/multilingual-librispeech and ranks models based on their WER.

### Languages

The dataset is derived from read audiobooks from LibriVox and consists of 8 languages - English, German, Dutch, Spanish, French, Italian, Portuguese, Polish

### How to use

The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function. 

For example, to download the German config, simply specify the corresponding language config name (i.e., "german" for German):
```python
from datasets import load_dataset

mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
```

Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset

mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)

print(next(iter(mls)))
```

*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).

Local:

```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler

mls = load_dataset("facebook/multilingual_librispeech", "german", split="train")
batch_sampler = BatchSampler(RandomSampler(mls), batch_size=32, drop_last=False)
dataloader = DataLoader(mls, batch_sampler=batch_sampler)
```

Streaming:

```python
from datasets import load_dataset
from torch.utils.data import DataLoader

mls = load_dataset("facebook/multilingual_librispeech", "german", split="train", streaming=True)
dataloader = DataLoader(mls, batch_size=32)
```

To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).

### Example scripts

Train your own CTC or Seq2Seq Automatic Speech Recognition models on MultiLingual Librispeech with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).

## Dataset Structure

### Data Instances

A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.

```
{'file': '10900_6473_000030.flac',
 'audio': {'path': '10900_6473_000030.flac',
  'array': array([-1.52587891e-04,  6.10351562e-05,  0.00000000e+00, ...,
          4.27246094e-04,  5.49316406e-04,  4.57763672e-04]),
  'sampling_rate': 16000},
 'text': 'więc czego chcecie odemnie spytałem wysłuchawszy tego zadziwiającego opowiadania broń nas stary człowieku broń zakrzyknęli równocześnie obaj posłowie\n',
 'speaker_id': 10900,
 'chapter_id': 6473,
 'id': '10900_6473_000030'}
```


### Data Fields

- file: A filename .flac format.

- audio: A dictionary containing the audio filename, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- text: the transcription of the audio file.

- id: unique id of the data sample.

- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.

- chapter_id: id of the audiobook chapter which includes the transcription.

### Data Splits

|                             | Train | Train.9h | Train.1h  | Dev | Test |
| -----                       | ------ | ----- | ---- | ---- | ---- | 
| german | 469942 | 2194 | 241 | 3469 | 3394 |
| dutch | 374287 | 2153 | 234 | 3095 | 3075 |
| french | 258213 | 2167 | 241 | 2416 | 2426 |
| spanish | 220701 | 2110 | 233 | 2408 | 2385 |
| italian | 59623 | 2173 | 240 | 1248 | 1262 |
| portuguese | 37533 | 2116 | 236 | 826 | 871 |
| polish | 25043 | 2173 | 238 | 512 | 520 |



## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

[Needs More Information]

### Licensing Information

Public Domain, Creative Commons Attribution 4.0 International Public License ([CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/legalcode))

### Citation Information

```
@article{Pratap2020MLSAL,
  title={MLS: A Large-Scale Multilingual Dataset for Speech Research},
  author={Vineel Pratap and Qiantong Xu and Anuroop Sriram and Gabriel Synnaeve and Ronan Collobert},
  journal={ArXiv},
  year={2020},
  volume={abs/2012.03411}
}
```

### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) 
and [@polinaeterna](https://github.com/polinaeterna) for adding this dataset.