Datasets:
Tasks:
Text Generation
Sub-tasks:
language-modeling
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Remove download_custom
#4
by
mariosasko
- opened
- README.md +5 -5
- data/test_files.txt +100 -0
- data/train_files.txt +0 -0
- data/validation_files.txt +50 -0
- pg19.py +31 -71
README.md
CHANGED
@@ -31,16 +31,16 @@ dataset_info:
|
|
31 |
dtype: string
|
32 |
splits:
|
33 |
- name: train
|
34 |
-
num_bytes:
|
35 |
num_examples: 28602
|
36 |
- name: validation
|
37 |
-
num_bytes:
|
38 |
num_examples: 50
|
39 |
- name: test
|
40 |
-
num_bytes:
|
41 |
num_examples: 100
|
42 |
-
download_size:
|
43 |
-
dataset_size:
|
44 |
---
|
45 |
|
46 |
# Dataset Card for "pg19"
|
|
|
31 |
dtype: string
|
32 |
splits:
|
33 |
- name: train
|
34 |
+
num_bytes: 11453688452
|
35 |
num_examples: 28602
|
36 |
- name: validation
|
37 |
+
num_bytes: 17402295
|
38 |
num_examples: 50
|
39 |
- name: test
|
40 |
+
num_bytes: 40482852
|
41 |
num_examples: 100
|
42 |
+
download_size: 11740397875
|
43 |
+
dataset_size: 11511573599
|
44 |
---
|
45 |
|
46 |
# Dataset Card for "pg19"
|
data/test_files.txt
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
test/10146.txt
|
2 |
+
test/10321.txt
|
3 |
+
test/10356.txt
|
4 |
+
test/10762.txt
|
5 |
+
test/12204.txt
|
6 |
+
test/15562.txt
|
7 |
+
test/22424.txt
|
8 |
+
test/24553.txt
|
9 |
+
test/2544.txt
|
10 |
+
test/25646.txt
|
11 |
+
test/25773.txt
|
12 |
+
test/25830.txt
|
13 |
+
test/26183.txt
|
14 |
+
test/26239.txt
|
15 |
+
test/26493.txt
|
16 |
+
test/26618.txt
|
17 |
+
test/27454.txt
|
18 |
+
test/28444.txt
|
19 |
+
test/28988.txt
|
20 |
+
test/29594.txt
|
21 |
+
test/29973.txt
|
22 |
+
test/30312.txt
|
23 |
+
test/30752.txt
|
24 |
+
test/30754.txt
|
25 |
+
test/30909.txt
|
26 |
+
test/30981.txt
|
27 |
+
test/31065.txt
|
28 |
+
test/3129.txt
|
29 |
+
test/31974.txt
|
30 |
+
test/3247.txt
|
31 |
+
test/32761.txt
|
32 |
+
test/3340.txt
|
33 |
+
test/33426.txt
|
34 |
+
test/33756.txt
|
35 |
+
test/34467.txt
|
36 |
+
test/35205.txt
|
37 |
+
test/35246.txt
|
38 |
+
test/3608.txt
|
39 |
+
test/36256.txt
|
40 |
+
test/37006.txt
|
41 |
+
test/37328.txt
|
42 |
+
test/37403.txt
|
43 |
+
test/37443.txt
|
44 |
+
test/3754.txt
|
45 |
+
test/37702.txt
|
46 |
+
test/38106.txt
|
47 |
+
test/3890.txt
|
48 |
+
test/38929.txt
|
49 |
+
test/38955.txt
|
50 |
+
test/4047.txt
|
51 |
+
test/40579.txt
|
52 |
+
test/40700.txt
|
53 |
+
test/4128.txt
|
54 |
+
test/41603.txt
|
55 |
+
test/41607.txt
|
56 |
+
test/42081.txt
|
57 |
+
test/42655.txt
|
58 |
+
test/43536.txt
|
59 |
+
test/43845.txt
|
60 |
+
test/44099.txt
|
61 |
+
test/44557.txt
|
62 |
+
test/45313.txt
|
63 |
+
test/45881.txt
|
64 |
+
test/45888.txt
|
65 |
+
test/46915.txt
|
66 |
+
test/47068.txt
|
67 |
+
test/47558.txt
|
68 |
+
test/47581.txt
|
69 |
+
test/47676.txt
|
70 |
+
test/48693.txt
|
71 |
+
test/49078.txt
|
72 |
+
test/49529.txt
|
73 |
+
test/49596.txt
|
74 |
+
test/50287.txt
|
75 |
+
test/51410.txt
|
76 |
+
test/53345.txt
|
77 |
+
test/5396.txt
|
78 |
+
test/54537.txt
|
79 |
+
test/54624.txt
|
80 |
+
test/55339.txt
|
81 |
+
test/55871.txt
|
82 |
+
test/56410.txt
|
83 |
+
test/5734.txt
|
84 |
+
test/5770.txt
|
85 |
+
test/57791.txt
|
86 |
+
test/58473.txt
|
87 |
+
test/58553.txt
|
88 |
+
test/58598.txt
|
89 |
+
test/5956.txt
|
90 |
+
test/5962.txt
|
91 |
+
test/6412.txt
|
92 |
+
test/6941.txt
|
93 |
+
test/7412.txt
|
94 |
+
test/7987.txt
|
95 |
+
test/8197.txt
|
96 |
+
test/8559.txt
|
97 |
+
test/860.txt
|
98 |
+
test/8788.txt
|
99 |
+
test/9315.txt
|
100 |
+
test/9931.txt
|
data/train_files.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
data/validation_files.txt
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
validation/1022.txt
|
2 |
+
validation/11155.txt
|
3 |
+
validation/13089.txt
|
4 |
+
validation/16959.txt
|
5 |
+
validation/1925.txt
|
6 |
+
validation/2383.txt
|
7 |
+
validation/23956.txt
|
8 |
+
validation/24360.txt
|
9 |
+
validation/25066.txt
|
10 |
+
validation/27688.txt
|
11 |
+
validation/28213.txt
|
12 |
+
validation/28776.txt
|
13 |
+
validation/29981.txt
|
14 |
+
validation/32629.txt
|
15 |
+
validation/34016.txt
|
16 |
+
validation/34056.txt
|
17 |
+
validation/34100.txt
|
18 |
+
validation/356.txt
|
19 |
+
validation/35816.txt
|
20 |
+
validation/36402.txt
|
21 |
+
validation/37833.txt
|
22 |
+
validation/38214.txt
|
23 |
+
validation/38403.txt
|
24 |
+
validation/4024.txt
|
25 |
+
validation/41074.txt
|
26 |
+
validation/42067.txt
|
27 |
+
validation/42142.txt
|
28 |
+
validation/42306.txt
|
29 |
+
validation/43423.txt
|
30 |
+
validation/44896.txt
|
31 |
+
validation/44912.txt
|
32 |
+
validation/4533.txt
|
33 |
+
validation/48089.txt
|
34 |
+
validation/48461.txt
|
35 |
+
validation/48677.txt
|
36 |
+
validation/49091.txt
|
37 |
+
validation/50355.txt
|
38 |
+
validation/51859.txt
|
39 |
+
validation/5195.txt
|
40 |
+
validation/5321.txt
|
41 |
+
validation/53682.txt
|
42 |
+
validation/54098.txt
|
43 |
+
validation/555.txt
|
44 |
+
validation/55658.txt
|
45 |
+
validation/56719.txt
|
46 |
+
validation/57843.txt
|
47 |
+
validation/58093.txt
|
48 |
+
validation/6404.txt
|
49 |
+
validation/7510.txt
|
50 |
+
validation/8545.txt
|
pg19.py
CHANGED
@@ -2,11 +2,7 @@
|
|
2 |
|
3 |
|
4 |
import csv
|
5 |
-
import json
|
6 |
import os
|
7 |
-
from operator import itemgetter
|
8 |
-
|
9 |
-
import requests
|
10 |
|
11 |
import datasets
|
12 |
|
@@ -38,9 +34,9 @@ To compare models we propose to continue measuring the word-level perplexity, by
|
|
38 |
One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA or NarrativeQA. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing.
|
39 |
"""
|
40 |
|
41 |
-
_ASSET_ROOT_URL = "https://storage.googleapis.com/deepmind-gutenberg/"
|
42 |
-
_STORAGE_API_ROOT_URL = "https://storage.googleapis.com/storage/v1/b/deepmind-gutenberg/o/"
|
43 |
|
|
|
|
|
44 |
_METADATA_URL = _ASSET_ROOT_URL + "metadata.csv"
|
45 |
|
46 |
|
@@ -80,97 +76,61 @@ class Pg19(datasets.GeneratorBasedBuilder):
|
|
80 |
|
81 |
def _split_generators(self, dl_manager):
|
82 |
"""Returns SplitGenerators."""
|
83 |
-
# TODO(pg19): Downloads the data and defines the splits
|
84 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
85 |
-
# download and extract URLs
|
86 |
-
|
87 |
-
def fetch_all_pages(url, prefix):
|
88 |
-
pageToken = None
|
89 |
-
payload = {"prefix": prefix}
|
90 |
-
|
91 |
-
while True:
|
92 |
-
resp = requests.get(url, params={"pageToken": pageToken, **payload})
|
93 |
-
json = resp.json()
|
94 |
-
yield json
|
95 |
-
|
96 |
-
pageToken = json.pop("nextPageToken", None)
|
97 |
-
if pageToken is None:
|
98 |
-
break
|
99 |
-
|
100 |
-
def get_filename(path):
|
101 |
-
return os.path.splitext(os.path.basename(path))[0]
|
102 |
-
|
103 |
-
def download_listdir(url, local_filepath):
|
104 |
-
root_url, prefix = url.rsplit("/", 1)
|
105 |
-
pages = fetch_all_pages(root_url, prefix + "/")
|
106 |
-
items = flat_map(itemgetter("items"), pages)
|
107 |
-
names = sorted(map(itemgetter("name"), items))
|
108 |
-
|
109 |
-
with open(local_filepath, "w") as f:
|
110 |
-
f.write(json.dumps(names))
|
111 |
-
return local_filepath
|
112 |
-
|
113 |
-
def filepath_to_json(path):
|
114 |
-
with open(path, "r", encoding="utf-8") as f:
|
115 |
-
return json.load(f)
|
116 |
-
|
117 |
splits = ["train", "validation", "test"]
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
downloaded_files = dl_manager.download(urls_to_download)
|
130 |
-
|
131 |
-
ids_in_split = list(map(lambda urls: list(map(get_filename, urls)), file_urls))
|
132 |
-
split_ids_index = dict(zip(split_paths, ids_in_split))
|
133 |
|
|
|
|
|
134 |
return [
|
135 |
datasets.SplitGenerator(
|
136 |
name=datasets.Split.TRAIN,
|
137 |
gen_kwargs={
|
138 |
-
"ids":
|
139 |
-
"
|
140 |
-
"
|
141 |
},
|
142 |
),
|
143 |
datasets.SplitGenerator(
|
144 |
name=datasets.Split.VALIDATION,
|
145 |
gen_kwargs={
|
146 |
-
"ids":
|
147 |
-
"
|
148 |
-
"
|
149 |
},
|
150 |
),
|
151 |
datasets.SplitGenerator(
|
152 |
name=datasets.Split.TEST,
|
153 |
gen_kwargs={
|
154 |
-
"ids":
|
155 |
-
"
|
156 |
-
"
|
157 |
},
|
158 |
),
|
159 |
]
|
160 |
|
161 |
-
def _generate_examples(self, ids,
|
162 |
"""Yields examples."""
|
163 |
# TODO(pg19): Yields (key, example) tuples from the dataset
|
164 |
|
165 |
-
with open(
|
166 |
-
|
167 |
-
|
168 |
|
169 |
for _id in ids:
|
170 |
-
data =
|
171 |
-
|
172 |
|
173 |
-
with open(
|
174 |
text = f.read()
|
175 |
|
176 |
_id = data["_id"]
|
|
|
2 |
|
3 |
|
4 |
import csv
|
|
|
5 |
import os
|
|
|
|
|
|
|
6 |
|
7 |
import datasets
|
8 |
|
|
|
34 |
One could use this dataset for benchmarking long-range language models, or use it to pre-train for other natural language processing tasks which require long-range reasoning, such as LAMBADA or NarrativeQA. We would not recommend using this dataset to train a general-purpose language model, e.g. for applications to a production-system dialogue agent, due to the dated linguistic style of old texts and the inherent biases present in historical writing.
|
35 |
"""
|
36 |
|
|
|
|
|
37 |
|
38 |
+
_SPLIT_FILES_PATH = "data/{split}_files.txt"
|
39 |
+
_ASSET_ROOT_URL = "https://storage.googleapis.com/deepmind-gutenberg/"
|
40 |
_METADATA_URL = _ASSET_ROOT_URL + "metadata.csv"
|
41 |
|
42 |
|
|
|
76 |
|
77 |
def _split_generators(self, dl_manager):
|
78 |
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
splits = ["train", "validation", "test"]
|
80 |
+
files = dl_manager.download({split: _SPLIT_FILES_PATH.format(split=split) for split in splits})
|
81 |
+
|
82 |
+
for split, names_file in list(files.items()):
|
83 |
+
with open(names_file, encoding="utf-8") as f:
|
84 |
+
split_files = f.read().splitlines()
|
85 |
+
split_files = sorted(split_files)
|
86 |
+
split_files = {
|
87 |
+
os.path.splitext(os.path.basename(file))[0]: _ASSET_ROOT_URL + file
|
88 |
+
for file in split_files
|
89 |
+
}
|
90 |
+
files[split] = split_files
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
metadata = dl_manager.download(_METADATA_URL)
|
93 |
+
downloaded_files = dl_manager.download(files)
|
94 |
return [
|
95 |
datasets.SplitGenerator(
|
96 |
name=datasets.Split.TRAIN,
|
97 |
gen_kwargs={
|
98 |
+
"ids": list(downloaded_files["train"]),
|
99 |
+
"metadata": metadata,
|
100 |
+
"files": downloaded_files["train"],
|
101 |
},
|
102 |
),
|
103 |
datasets.SplitGenerator(
|
104 |
name=datasets.Split.VALIDATION,
|
105 |
gen_kwargs={
|
106 |
+
"ids": list(downloaded_files["validation"]),
|
107 |
+
"metadata": metadata,
|
108 |
+
"files": downloaded_files["validation"],
|
109 |
},
|
110 |
),
|
111 |
datasets.SplitGenerator(
|
112 |
name=datasets.Split.TEST,
|
113 |
gen_kwargs={
|
114 |
+
"ids": list(downloaded_files["test"]),
|
115 |
+
"metadata": metadata,
|
116 |
+
"files": downloaded_files["test"],
|
117 |
},
|
118 |
),
|
119 |
]
|
120 |
|
121 |
+
def _generate_examples(self, ids, metadata, files):
|
122 |
"""Yields examples."""
|
123 |
# TODO(pg19): Yields (key, example) tuples from the dataset
|
124 |
|
125 |
+
with open(metadata, encoding="utf-8") as f:
|
126 |
+
reader = csv.DictReader(f, fieldnames=["_id", "short_book_title", "publication_date", "url"])
|
127 |
+
id2metadata = {row["_id"]: row for row in reader}
|
128 |
|
129 |
for _id in ids:
|
130 |
+
data = id2metadata[_id]
|
131 |
+
file = files[_id]
|
132 |
|
133 |
+
with open(file, encoding="utf-8") as f:
|
134 |
text = f.read()
|
135 |
|
136 |
_id = data["_id"]
|