Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
Chinese
Size:
10K - 100K
ArXiv:
License:
Convert dataset to Parquet
#2
by
albertvillanova
HF staff
- opened
- README.md +35 -18
- c3.py +0 -149
- dataset_infos.json +0 -1
- dialog/test-00000-of-00001.parquet +3 -0
- dialog/train-00000-of-00001.parquet +3 -0
- dialog/validation-00000-of-00001.parquet +3 -0
- mixed/test-00000-of-00001.parquet +3 -0
- mixed/train-00000-of-00001.parquet +3 -0
- mixed/validation-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -20,7 +20,7 @@ task_ids:
|
|
20 |
paperswithcode_id: c3
|
21 |
pretty_name: C3
|
22 |
dataset_info:
|
23 |
-
- config_name:
|
24 |
features:
|
25 |
- name: documents
|
26 |
sequence: string
|
@@ -36,17 +36,17 @@ dataset_info:
|
|
36 |
sequence: string
|
37 |
splits:
|
38 |
- name: train
|
39 |
-
num_bytes:
|
40 |
-
num_examples:
|
41 |
- name: test
|
42 |
-
num_bytes:
|
43 |
-
num_examples:
|
44 |
- name: validation
|
45 |
-
num_bytes:
|
46 |
-
num_examples:
|
47 |
-
download_size:
|
48 |
-
dataset_size:
|
49 |
-
- config_name:
|
50 |
features:
|
51 |
- name: documents
|
52 |
sequence: string
|
@@ -62,16 +62,33 @@ dataset_info:
|
|
62 |
sequence: string
|
63 |
splits:
|
64 |
- name: train
|
65 |
-
num_bytes:
|
66 |
-
num_examples:
|
67 |
- name: test
|
68 |
-
num_bytes:
|
69 |
-
num_examples:
|
70 |
- name: validation
|
71 |
-
num_bytes:
|
72 |
-
num_examples:
|
73 |
-
download_size:
|
74 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
---
|
76 |
# Dataset Card for C3
|
77 |
|
|
|
20 |
paperswithcode_id: c3
|
21 |
pretty_name: C3
|
22 |
dataset_info:
|
23 |
+
- config_name: dialog
|
24 |
features:
|
25 |
- name: documents
|
26 |
sequence: string
|
|
|
36 |
sequence: string
|
37 |
splits:
|
38 |
- name: train
|
39 |
+
num_bytes: 2039779
|
40 |
+
num_examples: 4885
|
41 |
- name: test
|
42 |
+
num_bytes: 646955
|
43 |
+
num_examples: 1627
|
44 |
- name: validation
|
45 |
+
num_bytes: 611106
|
46 |
+
num_examples: 1628
|
47 |
+
download_size: 2073256
|
48 |
+
dataset_size: 3297840
|
49 |
+
- config_name: mixed
|
50 |
features:
|
51 |
- name: documents
|
52 |
sequence: string
|
|
|
62 |
sequence: string
|
63 |
splits:
|
64 |
- name: train
|
65 |
+
num_bytes: 2710473
|
66 |
+
num_examples: 3138
|
67 |
- name: test
|
68 |
+
num_bytes: 891579
|
69 |
+
num_examples: 1045
|
70 |
- name: validation
|
71 |
+
num_bytes: 910759
|
72 |
+
num_examples: 1046
|
73 |
+
download_size: 3183780
|
74 |
+
dataset_size: 4512811
|
75 |
+
configs:
|
76 |
+
- config_name: dialog
|
77 |
+
data_files:
|
78 |
+
- split: train
|
79 |
+
path: dialog/train-*
|
80 |
+
- split: test
|
81 |
+
path: dialog/test-*
|
82 |
+
- split: validation
|
83 |
+
path: dialog/validation-*
|
84 |
+
- config_name: mixed
|
85 |
+
data_files:
|
86 |
+
- split: train
|
87 |
+
path: mixed/train-*
|
88 |
+
- split: test
|
89 |
+
path: mixed/test-*
|
90 |
+
- split: validation
|
91 |
+
path: mixed/validation-*
|
92 |
---
|
93 |
# Dataset Card for C3
|
94 |
|
c3.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""C3 Parallel Corpora"""
|
16 |
-
|
17 |
-
|
18 |
-
import json
|
19 |
-
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
_CITATION = """\
|
24 |
-
@article{sun2019investigating,
|
25 |
-
title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},
|
26 |
-
author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},
|
27 |
-
journal={Transactions of the Association for Computational Linguistics},
|
28 |
-
year={2020},
|
29 |
-
url={https://arxiv.org/abs/1904.09679v3}
|
30 |
-
}
|
31 |
-
"""
|
32 |
-
|
33 |
-
_DESCRIPTION = """\
|
34 |
-
Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.
|
35 |
-
We present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.
|
36 |
-
"""
|
37 |
-
|
38 |
-
_URL = "https://raw.githubusercontent.com/nlpdata/c3/master/data/"
|
39 |
-
|
40 |
-
|
41 |
-
class C3Config(datasets.BuilderConfig):
|
42 |
-
"""BuilderConfig for NewDataset"""
|
43 |
-
|
44 |
-
def __init__(self, type_, **kwargs):
|
45 |
-
"""
|
46 |
-
|
47 |
-
Args:
|
48 |
-
pair: the language pair to consider
|
49 |
-
zip_file: The location of zip file containing original data
|
50 |
-
**kwargs: keyword arguments forwarded to super.
|
51 |
-
"""
|
52 |
-
self.type_ = type_
|
53 |
-
super().__init__(**kwargs)
|
54 |
-
|
55 |
-
|
56 |
-
class C3(datasets.GeneratorBasedBuilder):
|
57 |
-
"""C3 is the first free-form multiple-Choice Chinese machine reading Comprehension dataset, containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second language examinations."""
|
58 |
-
|
59 |
-
VERSION = datasets.Version("1.0.0")
|
60 |
-
|
61 |
-
# This is an example of a dataset with multiple configurations.
|
62 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
63 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
64 |
-
BUILDER_CONFIG_CLASS = C3Config
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
C3Config(
|
67 |
-
name="mixed",
|
68 |
-
description="Mixed genre questions",
|
69 |
-
version=datasets.Version("1.0.0"),
|
70 |
-
type_="mixed",
|
71 |
-
),
|
72 |
-
C3Config(
|
73 |
-
name="dialog",
|
74 |
-
description="Dialog questions",
|
75 |
-
version=datasets.Version("1.0.0"),
|
76 |
-
type_="dialog",
|
77 |
-
),
|
78 |
-
]
|
79 |
-
|
80 |
-
def _info(self):
|
81 |
-
return datasets.DatasetInfo(
|
82 |
-
# This is the description that will appear on the datasets page.
|
83 |
-
description=_DESCRIPTION,
|
84 |
-
# datasets.features.FeatureConnectors
|
85 |
-
features=datasets.Features(
|
86 |
-
{
|
87 |
-
"documents": datasets.Sequence(datasets.Value("string")),
|
88 |
-
"document_id": datasets.Value("string"),
|
89 |
-
"questions": datasets.Sequence(
|
90 |
-
{
|
91 |
-
"question": datasets.Value("string"),
|
92 |
-
"answer": datasets.Value("string"),
|
93 |
-
"choice": datasets.Sequence(datasets.Value("string")),
|
94 |
-
}
|
95 |
-
),
|
96 |
-
}
|
97 |
-
),
|
98 |
-
# If there's a common (input, target) tuple from the features,
|
99 |
-
# specify them here. They'll be used if as_supervised=True in
|
100 |
-
# builder.as_dataset.
|
101 |
-
supervised_keys=None,
|
102 |
-
# Homepage of the dataset for documentation
|
103 |
-
homepage="https://github.com/nlpdata/c3",
|
104 |
-
citation=_CITATION,
|
105 |
-
)
|
106 |
-
|
107 |
-
def _split_generators(self, dl_manager):
|
108 |
-
# m or d
|
109 |
-
T = self.config.type_[0]
|
110 |
-
files = [_URL + f"c3-{T}-{split}.json" for split in ["train", "test", "dev"]]
|
111 |
-
dl_dir = dl_manager.download_and_extract(files)
|
112 |
-
|
113 |
-
return [
|
114 |
-
datasets.SplitGenerator(
|
115 |
-
name=datasets.Split.TRAIN,
|
116 |
-
# These kwargs will be passed to _generate_examples
|
117 |
-
gen_kwargs={
|
118 |
-
"filename": dl_dir[0],
|
119 |
-
"split": "train",
|
120 |
-
},
|
121 |
-
),
|
122 |
-
datasets.SplitGenerator(
|
123 |
-
name=datasets.Split.TEST,
|
124 |
-
# These kwargs will be passed to _generate_examples
|
125 |
-
gen_kwargs={
|
126 |
-
"filename": dl_dir[1],
|
127 |
-
"split": "test",
|
128 |
-
},
|
129 |
-
),
|
130 |
-
datasets.SplitGenerator(
|
131 |
-
name=datasets.Split.VALIDATION,
|
132 |
-
# These kwargs will be passed to _generate_examples
|
133 |
-
gen_kwargs={
|
134 |
-
"filename": dl_dir[2],
|
135 |
-
"split": "dev",
|
136 |
-
},
|
137 |
-
),
|
138 |
-
]
|
139 |
-
|
140 |
-
def _generate_examples(self, filename, split):
|
141 |
-
"""Yields examples."""
|
142 |
-
with open(filename, "r", encoding="utf-8") as sf:
|
143 |
-
data = json.load(sf)
|
144 |
-
for id_, (documents, questions, document_id) in enumerate(data):
|
145 |
-
yield id_, {
|
146 |
-
"documents": documents,
|
147 |
-
"questions": questions,
|
148 |
-
"document_id": document_id,
|
149 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"mixed": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "mixed", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2710513, "num_examples": 3138, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 891619, "num_examples": 1045, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 910799, "num_examples": 1046, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-train.json": {"num_bytes": 3292571, "checksum": "4c84a534f1eec2c72e5f60f0c044cc39e2e42a88df01134e677e03217472d6af"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-test.json": {"num_bytes": 1085489, "checksum": "7d8074be56cf574536a3284bc2d6b04d137694d5e5f5b1368143c0cf3e336822"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-m-dev.json": {"num_bytes": 1103725, "checksum": "357d0d8d2a29bc845cbe50e048c263629f5e527b70f24c3e0838c387c8d3cb54"}}, "download_size": 5481785, "post_processing_size": null, "dataset_size": 4512931, "size_in_bytes": 9994716}, "dialog": {"description": "Machine reading comprehension tasks require a machine reader to answer questions relevant to the given document. In this paper, we present the first free-form multiple-Choice Chinese machine reading Comprehension dataset (C^3), containing 13,369 documents (dialogues or more formally written mixed-genre texts) and their associated 19,577 multiple-choice free-form questions collected from Chinese-as-a-second-language examinations.\nWe present a comprehensive analysis of the prior knowledge (i.e., linguistic, domain-specific, and general world knowledge) needed for these real-world problems. We implement rule-based and popular neural methods and find that there is still a significant performance gap between the best performing model (68.5%) and human readers (96.0%), especially on problems that require prior knowledge. We further study the effects of distractor plausibility and data augmentation based on translated relevant datasets for English on model performance. We expect C^3 to present great challenges to existing systems as answering 86.8% of questions requires both knowledge within and beyond the accompanying document, and we hope that C^3 can serve as a platform to study how to leverage various kinds of prior knowledge to better understand a given written or orally oriented text.\n", "citation": "@article{sun2019investigating,\n title={Investigating Prior Knowledge for Challenging Chinese Machine Reading Comprehension},\n author={Sun, Kai and Yu, Dian and Yu, Dong and Cardie, Claire},\n journal={Transactions of the Association for Computational Linguistics},\n year={2020},\n url={https://arxiv.org/abs/1904.09679v3}\n}\n", "homepage": "https://github.com/nlpdata/c3", "license": "", "features": {"documents": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "document_id": {"dtype": "string", "id": null, "_type": "Value"}, "questions": {"feature": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "choice": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "c3", "config_name": "dialog", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2039819, "num_examples": 4885, "dataset_name": "c3"}, "test": {"name": "test", "num_bytes": 646995, "num_examples": 1627, "dataset_name": "c3"}, "validation": {"name": "validation", "num_bytes": 611146, "num_examples": 1628, "dataset_name": "c3"}}, "download_checksums": {"https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-train.json": {"num_bytes": 2683529, "checksum": "baf81f327dee84c6f451c9a4dd662e6193c67473b8791ffb72cce75cdb528f20"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-test.json": {"num_bytes": 855404, "checksum": "e9920491b31f9d00ecf31e51727b495dd6b0d05f4a96f273a343e81b6775a8f0"}, "https://raw.githubusercontent.com/nlpdata/c3/master/data/c3-d-dev.json": {"num_bytes": 813459, "checksum": "8c7054930a40aeb288ad7c51c42fa93d54aef678ccab29c75d46a7432f4f6278"}}, "download_size": 4352392, "post_processing_size": null, "dataset_size": 3297960, "size_in_bytes": 7650352}}
|
|
|
|
dialog/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f967a070707e502bdb8a42d3b49ceb7c2a5aa5c029dc217f5be45320f3858c00
|
3 |
+
size 410376
|
dialog/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abd0860012b5b5ff6246cc4e22326be00c1995b652b72eabfec2824e87735743
|
3 |
+
size 1280573
|
dialog/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a387db4e1337c5855a8d2b05566a7a6334fe58a83eb3db0349e344c65609046
|
3 |
+
size 382307
|
mixed/test-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba4b6fc08d5f3505a6c6606e3a8792807b8808bce8b6262ec472d6dcb720f5ef
|
3 |
+
size 636791
|
mixed/train-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72892b1447e1fa1068447ec5a253cea56e196550db6a7b52a916c350319bc6b5
|
3 |
+
size 1901402
|
mixed/validation-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2061eb2e311e0fbad3de5a3c38fc4d948f391d4671907ee14fe1c65a3764828d
|
3 |
+
size 645587
|