Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 4,823 Bytes
16f84e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c7cfa6
16f84e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59185c
16f84e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b59185c
8c7cfa6
16f84e6
8c7cfa6
 
16f84e6
 
 
 
8c7cfa6
 
16f84e6
 
 
 
 
8c7cfa6
 
16f84e6
 
 
 
 
8c7cfa6
 
16f84e6
 
 
 
8c7cfa6
16f84e6
8c7cfa6
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""XL-Sum abstractive summarization dataset."""


import json
import os

import datasets


_CITATION = """\
@inproceedings{hasan-etal-2021-xl,
    title = "{XL}-Sum: Large-Scale Multilingual Abstractive Summarization for 44 Languages",
    author = "Hasan, Tahmid  and
      Bhattacharjee, Abhik  and
      Islam, Md. Saiful  and
      Mubasshir, Kazi  and
      Li, Yuan-Fang  and
      Kang, Yong-Bin  and
      Rahman, M. Sohel  and
      Shahriyar, Rifat",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.413",
    pages = "4693--4703",
}
"""


_DESCRIPTION = """\
We present XLSum, a comprehensive and diverse dataset comprising 1.35 million professionally 
annotated article-summary pairs from BBC, extracted using a set of carefully designed heuristics.
The dataset covers 45 languages ranging from low to high-resource, for many of which no
public dataset is currently available. XL-Sum is highly abstractive, concise, 
and of high quality, as indicated by human and intrinsic evaluation. 
"""

_HOMEPAGE = "https://github.com/csebuetnlp/xl-sum"

_LICENSE = "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)"

_DATA_PATH = "data/{}_XLSum_v{}.tar.bz2"  # relative path to the data

_LANGUAGES = [
    "oromo",
    "french",
    "amharic",
    "arabic",
    "azerbaijani",
    "bengali",
    "burmese",
    "chinese_simplified",
    "chinese_traditional",
    "welsh",
    "english",
    "kirundi",
    "gujarati",
    "hausa",
    "hindi",
    "igbo",
    "indonesian",
    "japanese",
    "korean",
    "kyrgyz",
    "marathi",
    "spanish",
    "scottish_gaelic",
    "nepali",
    "pashto",
    "persian",
    "pidgin",
    "portuguese",
    "punjabi",
    "russian",
    "serbian_cyrillic",
    "serbian_latin",
    "sinhala",
    "somali",
    "swahili",
    "tamil",
    "telugu",
    "thai",
    "tigrinya",
    "turkish",
    "ukrainian",
    "urdu",
    "uzbek",
    "vietnamese",
    "yoruba",
]


class Xlsum(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("2.0.0")
    
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="{}".format(lang),
            version=datasets.Version("2.0.0")
        )
        for lang in _LANGUAGES
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "text": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
            license=_LICENSE,
            version=self.VERSION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        lang = str(self.config.name)
        data_path = _DATA_PATH.format(lang, self.VERSION.version_str[:-2])

        # we download and use dl_manager.iter_archive to be able to load the dataset in streaming mode
        archive = dl_manager.download(data_path)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": lang + "_train.jsonl,
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": lang + "_test.jsonl",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": lang + "_val.jsonl",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, filepath, files):
        """Yields examples as (key, example) tuples."""
        for path, f in files:
            if path == filepath:
                for idx_, row in enumerate(f):
                    data = json.loads(row)
                    yield idx_, {
                        "id": data["id"],
                        "url": data["url"],
                        "title": data["title"],
                        "summary": data["summary"],
                        "text": data["text"],
                    }
                break