File size: 8,365 Bytes
03abb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
languages:
 all_languages:
 - af
 - ar
 - az
 - be
 - ber
 - bg
 - bn
 - br
 - ca
 - cbk
 - cmn
 - cs
 - da
 - de
 - el
 - en
 - eo
 - es
 - et
 - eu
 - fi
 - fr
 - gl
 - gos
 - he
 - hi
 - hr
 - hu
 - hy
 - ia
 - id
 - ie
 - io
 - is
 - it
 - ja
 - jbo
 - kab
 - ko
 - kw
 - la
 - lfn
 - lt
 - mk
 - mr
 - nb
 - nds
 - nl
 - orv
 - ota
 - pes
 - pl
 - pt
 - rn
 - ro
 - ru
 - sl
 - sr
 - sv
 - tk
 - tl
 - tlh
 - toki
 - tr
 - tt
 - ug
 - uk
 - ur
 - vi
 - vo
 - war
 - wuu
 - yue
 af:
 - af
 ar:
 - ar
 az:
 - az
 be:
 - be
 ber:
 - ber
 bg:
 - bg
 bn:
 - bn
 br:
 - br
 ca:
 - ca
 cbk:
 - cbk
 cmn:
 - cmn
 cs:
 - cs
 da:
 - da
 de:
 - de
 el:
 - el
 en:
 - en
 eo:
 - eo
 es:
 - es
 et:
 - et
 eu:
 - eu
 fi:
 - fi
 fr:
 - fr
 gl:
 - gl
 gos:
 - gos
 he:
 - he
 hi:
 - hi
 hr:
 - hr
 hu:
 - hu
 hy:
 - hy
 ia:
 - ia
 id:
 - id
 ie:
 - ie
 io:
 - io
 is:
 - is
 it:
 - it
 ja:
 - ja
 jbo:
 - jbo
 kab:
 - kab
 ko:
 - ko
 kw:
 - kw
 la:
 - la
 lfn:
 - lfn
 lt:
 - lt
 mk:
 - mk
 mr:
 - mr
 nb:
 - nb
 nds:
 - nds
 nl:
 - nl
 orv:
 - orv
 ota:
 - ota
 pes:
 - pes
 pl:
 - pl
 pt:
 - pt
 rn:
 - rn
 ro:
 - ro
 ru:
 - ru
 sl:
 - sl
 sr:
 - sr
 sv:
 - sv
 tk:
 - tk
 tl:
 - tl
 tlh:
 - tlh
 toki:
 - toki
 tr:
 - tr
 tt:
 - tt
 ug:
 - ug
 uk:
 - uk
 ur:
 - ur
 vi:
 - vi
 vo:
 - vo
 war:
 - war
 wuu:
 - wuu
 yue:
 - yue
licenses:
- cc-by-2-0
multilinguality:
- multilingual
size_categories:
- n>1M
source_datasets:
- extended|other-tatoeba
task_categories:
- conditional-text-generation
- text-classification
task_ids:
- conditional-text-generation-other-given-a-sentence-generate-a-paraphrase-either-in-same-language-or-another-language
- machine-translation
- semantic-similarity-classification
---

# Dataset Card for TaPaCo Corpus

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)

## Dataset Description

- **Homepage:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://zenodo.org/record/3707949#.X9Dh0cYza3I)
- **Paper:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://www.aclweb.org/anthology/2020.lrec-1.848.pdf)
- **Point of Contact:** [Yves Scherrer](https://blogs.helsinki.fi/yvesscherrer/)

### Dataset Summary
A freely available paraphrase corpus for 73 languages extracted from the Tatoeba database. 
Tatoeba is a crowdsourcing project mainly geared towards language learners. Its aim is to provide example sentences 
and translations for particular linguistic constructions and words. The paraphrase corpus is created by populating a 
graph with Tatoeba sentences and equivalence links between sentences “meaning the same thing”. This graph is then 
traversed to extract sets of paraphrases. Several language-independent filters and pruning steps are applied to 
remove uninteresting sentences. A manual evaluation performed on three languages shows that between half and three 
quarters of inferred paraphrases are correct and that most remaining ones are either correct but trivial, 
or near-paraphrases that neutralize a morphological distinction. The corpus contains a total of 1.9 million 
sentences, with 200 – 250 000 sentences per language. It covers a range of languages for which, to our knowledge,
no other paraphrase dataset exists.

### Supported Tasks and Leaderboards
Paraphrase detection and generation have become popular tasks in NLP
and are increasingly integrated into a wide variety of common downstream tasks such as machine translation
, information retrieval, question answering, and semantic parsing. Most of the existing datasets
 cover only a single language – in most cases English – or a small number of languages. Furthermore, some paraphrase
  datasets focus on lexical and phrasal rather than sentential paraphrases, while others are created (semi
  -)automatically using machine translation.

The number of sentences per language ranges from 200 to 250 000, which makes the dataset
more suitable for fine-tuning and evaluation purposes than
for training. It is well-suited for multi-reference evaluation
of paraphrase generation models, as there is generally not a
single correct way of paraphrasing a given input sentence.

### Languages

The dataset contains paraphrases in Afrikaans, Arabic, Azerbaijani, Belarusian, Berber languages, Bulgarian, Bengali
, Breton, Catalan; Valencian, Chavacano, Mandarin, Czech, Danish, German, Greek, Modern (1453-), English, Esperanto
, Spanish; Castilian, Estonian, Basque, Finnish, French, Galician, Gronings, Hebrew, Hindi, Croatian, Hungarian
, Armenian, Interlingua (International Auxiliary Language Association), Indonesian, Interlingue; Occidental, Ido
, Icelandic, Italian, Japanese, Lojban, Kabyle, Korean, Cornish, Latin, Lingua Franca Nova\t, Lithuanian, Macedonian
, Marathi, Bokmål, Norwegian; Norwegian Bokmål, Low German; Low Saxon; German, Low; Saxon, Low, Dutch; Flemish, ]Old
 Russian, Turkish, Ottoman (1500-1928), Iranian Persian, Polish, Portuguese, Rundi, Romanian; Moldavian; Moldovan, 
 Russian, Slovenian, Serbian, Swedish, Turkmen, Tagalog, Klingon; tlhIngan-Hol, Toki Pona, Turkish, Tatar, 
 Uighur; Uyghur, Ukrainian, Urdu, Vietnamese, Volapük, Waray, Wu Chinese and Yue Chinese

## Dataset Structure

### Data Instances
Each data instance corresponds to a paraphrase, e.g.:
```
{ 
    'paraphrase_set_id': '1483',  
    'sentence_id': '5778896',
    'paraphrase': 'Ɣremt adlis-a.', 
    'lists': ['7546'], 
    'tags': [''],
    'language': 'ber'
}
```

### Data Fields
Each dialogue instance has the following fields:
- `paraphrase_set_id`:  a running number that groups together all sentences that are considered paraphrases of each
 other
- `sentence_id`: OPUS sentence id
- `paraphrase`: Sentential paraphrase in a given language for a given paraphrase_set_id
- `lists`: Contributors can add sentences to list in order to specify the original source of the data
- `tags`: Indicates morphological or phonological properties of the sentence when available
- `language`: Language identifier, one of the 73 languages that belong to this dataset.

### Data Splits

The dataset is having a single `train` split, contains a total of 1.9 million sentences, with 200 – 250 000
 sentences per language

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Creative Commons Attribution 2.0 Generic

### Citation Information

```
@dataset{scherrer_yves_2020_3707949,
  author       = {Scherrer, Yves},
  title        = {{TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages}},
  month        = mar,
  year         = 2020,
  publisher    = {Zenodo},
  version      = {1.0},
  doi          = {10.5281/zenodo.3707949},
  url          = {https://doi.org/10.5281/zenodo.3707949}
}
```