Datasets:
Modalities:
Text
Formats:
parquet
Sub-tasks:
semantic-similarity-classification
Size:
1M - 10M
Tags:
paraphrase-generation
License:
File size: 8,365 Bytes
03abb9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
---
annotations_creators:
- machine-generated
language_creators:
- crowdsourced
languages:
all_languages:
- af
- ar
- az
- be
- ber
- bg
- bn
- br
- ca
- cbk
- cmn
- cs
- da
- de
- el
- en
- eo
- es
- et
- eu
- fi
- fr
- gl
- gos
- he
- hi
- hr
- hu
- hy
- ia
- id
- ie
- io
- is
- it
- ja
- jbo
- kab
- ko
- kw
- la
- lfn
- lt
- mk
- mr
- nb
- nds
- nl
- orv
- ota
- pes
- pl
- pt
- rn
- ro
- ru
- sl
- sr
- sv
- tk
- tl
- tlh
- toki
- tr
- tt
- ug
- uk
- ur
- vi
- vo
- war
- wuu
- yue
af:
- af
ar:
- ar
az:
- az
be:
- be
ber:
- ber
bg:
- bg
bn:
- bn
br:
- br
ca:
- ca
cbk:
- cbk
cmn:
- cmn
cs:
- cs
da:
- da
de:
- de
el:
- el
en:
- en
eo:
- eo
es:
- es
et:
- et
eu:
- eu
fi:
- fi
fr:
- fr
gl:
- gl
gos:
- gos
he:
- he
hi:
- hi
hr:
- hr
hu:
- hu
hy:
- hy
ia:
- ia
id:
- id
ie:
- ie
io:
- io
is:
- is
it:
- it
ja:
- ja
jbo:
- jbo
kab:
- kab
ko:
- ko
kw:
- kw
la:
- la
lfn:
- lfn
lt:
- lt
mk:
- mk
mr:
- mr
nb:
- nb
nds:
- nds
nl:
- nl
orv:
- orv
ota:
- ota
pes:
- pes
pl:
- pl
pt:
- pt
rn:
- rn
ro:
- ro
ru:
- ru
sl:
- sl
sr:
- sr
sv:
- sv
tk:
- tk
tl:
- tl
tlh:
- tlh
toki:
- toki
tr:
- tr
tt:
- tt
ug:
- ug
uk:
- uk
ur:
- ur
vi:
- vi
vo:
- vo
war:
- war
wuu:
- wuu
yue:
- yue
licenses:
- cc-by-2-0
multilinguality:
- multilingual
size_categories:
- n>1M
source_datasets:
- extended|other-tatoeba
task_categories:
- conditional-text-generation
- text-classification
task_ids:
- conditional-text-generation-other-given-a-sentence-generate-a-paraphrase-either-in-same-language-or-another-language
- machine-translation
- semantic-similarity-classification
---
# Dataset Card for TaPaCo Corpus
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://zenodo.org/record/3707949#.X9Dh0cYza3I)
- **Paper:** [TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages](https://www.aclweb.org/anthology/2020.lrec-1.848.pdf)
- **Point of Contact:** [Yves Scherrer](https://blogs.helsinki.fi/yvesscherrer/)
### Dataset Summary
A freely available paraphrase corpus for 73 languages extracted from the Tatoeba database.
Tatoeba is a crowdsourcing project mainly geared towards language learners. Its aim is to provide example sentences
and translations for particular linguistic constructions and words. The paraphrase corpus is created by populating a
graph with Tatoeba sentences and equivalence links between sentences “meaning the same thing”. This graph is then
traversed to extract sets of paraphrases. Several language-independent filters and pruning steps are applied to
remove uninteresting sentences. A manual evaluation performed on three languages shows that between half and three
quarters of inferred paraphrases are correct and that most remaining ones are either correct but trivial,
or near-paraphrases that neutralize a morphological distinction. The corpus contains a total of 1.9 million
sentences, with 200 – 250 000 sentences per language. It covers a range of languages for which, to our knowledge,
no other paraphrase dataset exists.
### Supported Tasks and Leaderboards
Paraphrase detection and generation have become popular tasks in NLP
and are increasingly integrated into a wide variety of common downstream tasks such as machine translation
, information retrieval, question answering, and semantic parsing. Most of the existing datasets
cover only a single language – in most cases English – or a small number of languages. Furthermore, some paraphrase
datasets focus on lexical and phrasal rather than sentential paraphrases, while others are created (semi
-)automatically using machine translation.
The number of sentences per language ranges from 200 to 250 000, which makes the dataset
more suitable for fine-tuning and evaluation purposes than
for training. It is well-suited for multi-reference evaluation
of paraphrase generation models, as there is generally not a
single correct way of paraphrasing a given input sentence.
### Languages
The dataset contains paraphrases in Afrikaans, Arabic, Azerbaijani, Belarusian, Berber languages, Bulgarian, Bengali
, Breton, Catalan; Valencian, Chavacano, Mandarin, Czech, Danish, German, Greek, Modern (1453-), English, Esperanto
, Spanish; Castilian, Estonian, Basque, Finnish, French, Galician, Gronings, Hebrew, Hindi, Croatian, Hungarian
, Armenian, Interlingua (International Auxiliary Language Association), Indonesian, Interlingue; Occidental, Ido
, Icelandic, Italian, Japanese, Lojban, Kabyle, Korean, Cornish, Latin, Lingua Franca Nova\t, Lithuanian, Macedonian
, Marathi, Bokmål, Norwegian; Norwegian Bokmål, Low German; Low Saxon; German, Low; Saxon, Low, Dutch; Flemish, ]Old
Russian, Turkish, Ottoman (1500-1928), Iranian Persian, Polish, Portuguese, Rundi, Romanian; Moldavian; Moldovan,
Russian, Slovenian, Serbian, Swedish, Turkmen, Tagalog, Klingon; tlhIngan-Hol, Toki Pona, Turkish, Tatar,
Uighur; Uyghur, Ukrainian, Urdu, Vietnamese, Volapük, Waray, Wu Chinese and Yue Chinese
## Dataset Structure
### Data Instances
Each data instance corresponds to a paraphrase, e.g.:
```
{
'paraphrase_set_id': '1483',
'sentence_id': '5778896',
'paraphrase': 'Ɣremt adlis-a.',
'lists': ['7546'],
'tags': [''],
'language': 'ber'
}
```
### Data Fields
Each dialogue instance has the following fields:
- `paraphrase_set_id`: a running number that groups together all sentences that are considered paraphrases of each
other
- `sentence_id`: OPUS sentence id
- `paraphrase`: Sentential paraphrase in a given language for a given paraphrase_set_id
- `lists`: Contributors can add sentences to list in order to specify the original source of the data
- `tags`: Indicates morphological or phonological properties of the sentence when available
- `language`: Language identifier, one of the 73 languages that belong to this dataset.
### Data Splits
The dataset is having a single `train` split, contains a total of 1.9 million sentences, with 200 – 250 000
sentences per language
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Creative Commons Attribution 2.0 Generic
### Citation Information
```
@dataset{scherrer_yves_2020_3707949,
author = {Scherrer, Yves},
title = {{TaPaCo: A Corpus of Sentential Paraphrases for 73 Languages}},
month = mar,
year = 2020,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.3707949},
url = {https://doi.org/10.5281/zenodo.3707949}
}
```
|