File size: 8,067 Bytes
c61eb12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""


import re

import datasets


_CITATION = """\
@inproceedings{almgrenpavlovmogren2016bioner,
  title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},
  author={Simon Almgren, Sean Pavlov, Olof Mogren},
  booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},
  pages={1},
  year={2016}
}
"""


_DESCRIPTION = """\
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
"""


_LICENSE = """\
Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)
See http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.
"""


_URL = "https://github.com/olofmogren/biomedical-ner-data-swedish"


_DATA_URL = "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/"


class SwedishMedicalNerConfig(datasets.BuilderConfig):
    """BuilderConfig for SwedMedNER"""

    def __init__(self, **kwargs):
        """
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SwedishMedicalNerConfig, self).__init__(**kwargs)


class SwedishMedicalNer(datasets.GeneratorBasedBuilder):
    """SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="wiki", version=VERSION, description="The Swedish Wikipedia part of the dataset"),
        datasets.BuilderConfig(name="lt", version=VERSION, description="The Läkartidningen part of the dataset"),
        datasets.BuilderConfig(name="1177", version=VERSION, description="The 1177 Vårdguiden part of the dataset"),
    ]

    def _info(self):
        if self.config.name == "wiki":
            features = datasets.Features(
                {
                    "sid": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "entities": datasets.Sequence(
                        {
                            "start": datasets.Value("int32"),
                            "end": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                            "type": datasets.ClassLabel(
                                names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
                            ),
                        }
                    ),
                }
            )
        elif self.config.name == "lt":
            features = datasets.Features(
                {
                    "sid": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "entities": datasets.Sequence(
                        {
                            "start": datasets.Value("int32"),
                            "end": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                            "type": datasets.ClassLabel(
                                names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
                            ),
                        }
                    ),
                }
            )
        elif self.config.name == "1177":
            features = datasets.Features(
                {
                    "sid": datasets.Value("string"),
                    "sentence": datasets.Value("string"),
                    "entities": datasets.Sequence(
                        {
                            "start": datasets.Value("int32"),
                            "end": datasets.Value("int32"),
                            "text": datasets.Value("string"),
                            "type": datasets.ClassLabel(
                                names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
                            ),
                        }
                    ),
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_URL,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "wiki": _DATA_URL + "Wiki_annotated_60.txt",
            "lt": _DATA_URL + "LT_annotated_60.txt",
            "1177": _DATA_URL + "1177_annotated_sentences.txt",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        if self.config.name == "wiki":
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["wiki"]})
            ]
        elif self.config.name == "lt":
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["lt"]})
            ]
        elif self.config.name == "1177":
            return [
                datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["1177"]})
            ]

    def _generate_examples(self, filepath):
        """Yields examples as (key, example) tuples."""

        def find_type(s, e):
            if (s == "(") and (e == ")"):
                return "Disorder and Finding"
            elif (s == "[") and (e == "]"):
                return "Pharmaceutical Drug"
            elif (s == "{") and (e == "}"):
                return "Body Structure"

        pattern = r"\[([^\[\]()]+)\]|\(([^\[\]()]+)\)|\{([^\[\]()]+)\}"
        with open(filepath, encoding="utf-8") as f:
            for id_, row in enumerate(f):
                sentence = row.replace("\n", "")

                if self.config.name == "1177":
                    targets = [
                        {
                            "start": m.start(0),
                            "end": m.end(0),
                            "text": sentence[m.start(0) + 2 : m.end(0) - 2],
                            "type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
                        }
                        for m in re.finditer(pattern, sentence)
                    ]
                    yield id_, {
                        "sid": self.config.name + "_" + str(id_),
                        "sentence": sentence,
                        "entities": targets if targets else [],
                    }
                else:
                    targets = [
                        {
                            "start": m.start(0),
                            "end": m.end(0),
                            "text": sentence[m.start(0) + 1 : m.end(0) - 1],
                            "type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
                        }
                        for m in re.finditer(pattern, sentence)
                    ]
                    yield id_, {
                        "sid": self.config.name + "_" + str(id_),
                        "sentence": sentence,
                        "entities": targets if targets else [],
                    }