Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Swedish
Size:
100K - 1M
License:
File size: 8,067 Bytes
c61eb12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""
import re
import datasets
_CITATION = """\
@inproceedings{almgrenpavlovmogren2016bioner,
title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},
author={Simon Almgren, Sean Pavlov, Olof Mogren},
booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},
pages={1},
year={2016}
}
"""
_DESCRIPTION = """\
SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
"""
_LICENSE = """\
Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)
See http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.
"""
_URL = "https://github.com/olofmogren/biomedical-ner-data-swedish"
_DATA_URL = "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/"
class SwedishMedicalNerConfig(datasets.BuilderConfig):
"""BuilderConfig for SwedMedNER"""
def __init__(self, **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(SwedishMedicalNerConfig, self).__init__(**kwargs)
class SwedishMedicalNer(datasets.GeneratorBasedBuilder):
"""SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="wiki", version=VERSION, description="The Swedish Wikipedia part of the dataset"),
datasets.BuilderConfig(name="lt", version=VERSION, description="The Läkartidningen part of the dataset"),
datasets.BuilderConfig(name="1177", version=VERSION, description="The 1177 Vårdguiden part of the dataset"),
]
def _info(self):
if self.config.name == "wiki":
features = datasets.Features(
{
"sid": datasets.Value("string"),
"sentence": datasets.Value("string"),
"entities": datasets.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"text": datasets.Value("string"),
"type": datasets.ClassLabel(
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
),
}
),
}
)
elif self.config.name == "lt":
features = datasets.Features(
{
"sid": datasets.Value("string"),
"sentence": datasets.Value("string"),
"entities": datasets.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"text": datasets.Value("string"),
"type": datasets.ClassLabel(
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
),
}
),
}
)
elif self.config.name == "1177":
features = datasets.Features(
{
"sid": datasets.Value("string"),
"sentence": datasets.Value("string"),
"entities": datasets.Sequence(
{
"start": datasets.Value("int32"),
"end": datasets.Value("int32"),
"text": datasets.Value("string"),
"type": datasets.ClassLabel(
names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_URL,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"wiki": _DATA_URL + "Wiki_annotated_60.txt",
"lt": _DATA_URL + "LT_annotated_60.txt",
"1177": _DATA_URL + "1177_annotated_sentences.txt",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
if self.config.name == "wiki":
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["wiki"]})
]
elif self.config.name == "lt":
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["lt"]})
]
elif self.config.name == "1177":
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["1177"]})
]
def _generate_examples(self, filepath):
"""Yields examples as (key, example) tuples."""
def find_type(s, e):
if (s == "(") and (e == ")"):
return "Disorder and Finding"
elif (s == "[") and (e == "]"):
return "Pharmaceutical Drug"
elif (s == "{") and (e == "}"):
return "Body Structure"
pattern = r"\[([^\[\]()]+)\]|\(([^\[\]()]+)\)|\{([^\[\]()]+)\}"
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
sentence = row.replace("\n", "")
if self.config.name == "1177":
targets = [
{
"start": m.start(0),
"end": m.end(0),
"text": sentence[m.start(0) + 2 : m.end(0) - 2],
"type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
}
for m in re.finditer(pattern, sentence)
]
yield id_, {
"sid": self.config.name + "_" + str(id_),
"sentence": sentence,
"entities": targets if targets else [],
}
else:
targets = [
{
"start": m.start(0),
"end": m.end(0),
"text": sentence[m.start(0) + 1 : m.end(0) - 1],
"type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
}
for m in re.finditer(pattern, sentence)
]
yield id_, {
"sid": self.config.name + "_" + str(id_),
"sentence": sentence,
"entities": targets if targets else [],
}
|