system HF staff commited on
Commit
c61eb12
0 Parent(s):

Update files from the datasets library (from 1.13.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.13.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ - expert-generated
5
+ language_creators:
6
+ - found
7
+ languages:
8
+ - sv-SE
9
+ licenses:
10
+ - cc-by-sa-4-0
11
+ multilinguality:
12
+ - monolingual
13
+ size_categories:
14
+ - 100K<n<1M
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - structure-prediction
19
+ task_ids:
20
+ - named-entity-recognition
21
+ pretty_name: SwedMedNER
22
+ ---
23
+
24
+ # Dataset Card for swedish_medical_ner
25
+
26
+ ## Table of Contents
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-fields)
34
+ - [Data Splits](#data-splits)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+ - [Contributions](#contributions)
49
+
50
+ ## Dataset Description
51
+
52
+ - **Repository:** https://github.com/olofmogren/biomedical-ner-data-swedish
53
+ - **Paper:** [Named Entity Recognition in Swedish Health Records with Character-Based Deep Bidirectional LSTMs](https://aclanthology.org/W16-5104.pdf)
54
+ - **Point of Contact:** [Olof Mogren](olof@mogren.one)
55
+
56
+ ### Dataset Summary
57
+
58
+ SwedMedNER is Named Entity Recognition dataset on medical text in Swedish. It consists three subsets which are in turn derived from three different sources respectively: the Swedish Wikipedia (a.k.a. wiki), Läkartidningen (a.k.a. lt), and 1177 Vårdguiden (a.k.a. 1177). While the Swedish Wikipedia and Läkartidningen subsets in total contains over 790000 sequences with 60 characters each, the 1177 Vårdguiden subset is manually annotated and contains 927 sentences, 2740 annotations, out of which 1574 are _disorder and findings_, 546 are _pharmaceutical drug_, and 620 are _body structure_.
59
+
60
+ Texts from both Swedish Wikipedia and Läkartidningen were automatically annotated using a list of medical seed terms. Sentences from 1177 Vårdguiden were manuually annotated.
61
+
62
+
63
+ ### Supported Tasks and Leaderboards
64
+
65
+ Medical NER.
66
+
67
+ ### Languages
68
+
69
+ Swedish (SV).
70
+
71
+ ## Dataset Structure
72
+
73
+ ### Data Instances
74
+
75
+ Annotated example sentences are shown below:
76
+
77
+ ```
78
+ ( Förstoppning ) är ett vanligt problem hos äldre.
79
+ [ Cox-hämmare ] finns även som gel och sprej.
80
+ [ Medicinen ] kan också göra att man blöder lättare eftersom den påverkar { blodets } förmåga att levra sig.
81
+ ```
82
+
83
+ Tags are as follows:
84
+ - Prenthesis, (): Disorder and Finding
85
+ - Brackets, []: Pharmaceutical Drug
86
+ - Curly brackets, {}: Body Structure
87
+
88
+ Data example:
89
+
90
+ ```
91
+ In: data = load_dataset('./datasets/swedish_medical_ner', "wiki")
92
+ In: data['train']:
93
+ Out:
94
+ Dataset({
95
+ features: ['sid', 'sentence', 'entities'],
96
+ num_rows: 48720
97
+ })
98
+
99
+ In: data['train'][0]['sentence']
100
+ Out: '{kropp} beskrivs i till exempel människokroppen, anatomi och f'
101
+ In: data['train'][0]['entities']
102
+ Out: {'start': [0], 'end': [7], 'text': ['kropp'], 'type': [2]}
103
+ ```
104
+
105
+ ### Data Fields
106
+
107
+ - `sentence`
108
+ - `entities`
109
+ - `start`: the start index
110
+ - `end`: the end index
111
+ - `text`: the text of the entity
112
+ - `type`: entity type: Disorder and Finding (0), Pharmaceutical Drug (1) or Body Structure (2)
113
+
114
+ ### Data Splits
115
+
116
+ In the original paper, its authors used the text from Läkartidningen for model training, Swedish Wikipedia for validation, and 1177.se for the final model evaluation.
117
+
118
+ ## Dataset Creation
119
+
120
+ ### Curation Rationale
121
+
122
+ ### Source Data
123
+
124
+ - Swedish Wikipedia;
125
+ - Läkartidningen - contains articles from the Swedish journal for medical professionals;
126
+ - 1177.se - a web site provided by the Swedish public health care authorities, containing information, counselling, and other health-care services.
127
+
128
+ #### Initial Data Collection and Normalization
129
+
130
+ [More Information Needed]
131
+
132
+ #### Who are the source language producers?
133
+
134
+ [More Information Needed]
135
+
136
+ ### Annotations
137
+
138
+ #### Annotation process
139
+
140
+ - A list of seed terms was extracted using SweMeSH and SNOMED CT;
141
+ - The following predefined categories was used for the extraction: disorder & finding (sjukdom & symtom), pharmaceutical drug (läkemedel) and body structure (kroppsdel)
142
+ - For _Swedish Wikipedia_, an initial list of medical domain articles were selected manually. These source articles as well as their linked articles were downloaded and automatically annotated by finding the aforementioned seed terms with a context window of 60 characters;
143
+ - Articles from the _Läkartidningen_ corpus were downloaded and automatically annotated by finding the aforementioned seed terms with a context window of 60 characters;
144
+ - 15 documents from _1177.se_ were downloaded in May 2016 and then manually annotated with the seed terms as support, resulting 2740 annotations.
145
+
146
+ #### Who are the annotators?
147
+
148
+ [More Information Needed]
149
+
150
+ ### Personal and Sensitive Information
151
+
152
+ [More Information Needed]
153
+
154
+ ## Considerations for Using the Data
155
+
156
+ ### Social Impact of Dataset
157
+
158
+ [More Information Needed]
159
+
160
+ ### Discussion of Biases
161
+
162
+ [More Information Needed]
163
+
164
+ ### Other Known Limitations
165
+
166
+ [More Information Needed]
167
+
168
+ ## Additional Information
169
+
170
+ ### Dataset Curators
171
+
172
+ - Simon Almgren, simonwalmgren@gmail.com
173
+ - Sean Pavlov, sean.pavlov@gmail.com
174
+ - Olof Mogren, olof@mogren.one
175
+ Chalmers University of Technology
176
+
177
+ ### Licensing Information
178
+
179
+ This dataset is released under the [Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)](http://creativecommons.org/licenses/by-sa/4.0/).
180
+
181
+ ### Citation Information
182
+
183
+ ```bibtex
184
+ @inproceedings{almgrenpavlovmogren2016bioner,
185
+ title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},
186
+ author={Simon Almgren, Sean Pavlov, Olof Mogren},
187
+ booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},
188
+ pages={1},
189
+ year={2016}
190
+ }
191
+ ```
192
+
193
+ ### Contributions
194
+
195
+ Thanks to [@bwang482](https://github.com/bwang482) for adding this dataset.
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"wiki": {"description": "SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.\nIt is derived from medical articles on the Swedish Wikipedia, L\u00e4kartidningen, and 1177 V\u00e5rdguiden.\n", "citation": "@inproceedings{almgrenpavlovmogren2016bioner,\n title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},\n author={Simon Almgren, Sean Pavlov, Olof Mogren},\n booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},\n pages={1},\n year={2016}\n}\n", "homepage": "https://github.com/olofmogren/biomedical-ner-data-swedish", "license": "Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)\nSee http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.\n", "features": {"sid": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "entities": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"num_classes": 3, "names": ["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swedish_medical_ner", "config_name": "wiki", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7044714, "num_examples": 48720, "dataset_name": "swedish_medical_ner"}}, "download_checksums": {"https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/Wiki_annotated_60.txt": {"num_bytes": 3219144, "checksum": "734636dfd409c27539ca7fa57db35f04f9f6bdd8f0af4e385fb32f0c26a702f1"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/LT_annotated_60.txt": {"num_bytes": 48959042, "checksum": "76a8e0aa4a56039074a15bcd95122cdfdecc4d1c1ddf71d94b58a25d42577dc3"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/1177_annotated_sentences.txt": {"num_bytes": 94526, "checksum": "7c55f61f57cc1504e47b8b69d01ba763a13a3d3ebce4b0ca9851133392fd000a"}}, "download_size": 52272712, "post_processing_size": null, "dataset_size": 7044714, "size_in_bytes": 59317426}, "lt": {"description": "SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.\nIt is derived from medical articles on the Swedish Wikipedia, L\u00e4kartidningen, and 1177 V\u00e5rdguiden.\n", "citation": "@inproceedings{almgrenpavlovmogren2016bioner,\n title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},\n author={Simon Almgren, Sean Pavlov, Olof Mogren},\n booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},\n pages={1},\n year={2016}\n}\n", "homepage": "https://github.com/olofmogren/biomedical-ner-data-swedish", "license": "Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)\nSee http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.\n", "features": {"sid": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "entities": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"num_classes": 3, "names": ["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swedish_medical_ner", "config_name": "lt", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 97955287, "num_examples": 745753, "dataset_name": "swedish_medical_ner"}}, "download_checksums": {"https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/Wiki_annotated_60.txt": {"num_bytes": 3219144, "checksum": "734636dfd409c27539ca7fa57db35f04f9f6bdd8f0af4e385fb32f0c26a702f1"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/LT_annotated_60.txt": {"num_bytes": 48959042, "checksum": "76a8e0aa4a56039074a15bcd95122cdfdecc4d1c1ddf71d94b58a25d42577dc3"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/1177_annotated_sentences.txt": {"num_bytes": 94526, "checksum": "7c55f61f57cc1504e47b8b69d01ba763a13a3d3ebce4b0ca9851133392fd000a"}}, "download_size": 52272712, "post_processing_size": null, "dataset_size": 97955287, "size_in_bytes": 150227999}, "1177": {"description": "SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.\nIt is derived from medical articles on the Swedish Wikipedia, L\u00e4kartidningen, and 1177 V\u00e5rdguiden.\n", "citation": "@inproceedings{almgrenpavlovmogren2016bioner,\n title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},\n author={Simon Almgren, Sean Pavlov, Olof Mogren},\n booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},\n pages={1},\n year={2016}\n}\n", "homepage": "https://github.com/olofmogren/biomedical-ner-data-swedish", "license": "Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)\nSee http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.\n", "features": {"sid": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "entities": {"feature": {"start": {"dtype": "int32", "id": null, "_type": "Value"}, "end": {"dtype": "int32", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "type": {"num_classes": 3, "names": ["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "swedish_medical_ner", "config_name": "1177", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 159007, "num_examples": 927, "dataset_name": "swedish_medical_ner"}}, "download_checksums": {"https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/Wiki_annotated_60.txt": {"num_bytes": 3219144, "checksum": "734636dfd409c27539ca7fa57db35f04f9f6bdd8f0af4e385fb32f0c26a702f1"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/LT_annotated_60.txt": {"num_bytes": 48959042, "checksum": "76a8e0aa4a56039074a15bcd95122cdfdecc4d1c1ddf71d94b58a25d42577dc3"}, "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/1177_annotated_sentences.txt": {"num_bytes": 94526, "checksum": "7c55f61f57cc1504e47b8b69d01ba763a13a3d3ebce4b0ca9851133392fd000a"}}, "download_size": 52272712, "post_processing_size": null, "dataset_size": 159007, "size_in_bytes": 52431719}}
dummy/1177/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc1cd9c37e837eaf564a40c443989198aabe189f34dd1febe5b8e6d23c4f13d
3
+ size 1256
dummy/lt/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc1cd9c37e837eaf564a40c443989198aabe189f34dd1febe5b8e6d23c4f13d
3
+ size 1256
dummy/wiki/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fc1cd9c37e837eaf564a40c443989198aabe189f34dd1febe5b8e6d23c4f13d
3
+ size 1256
swedish_medical_ner.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""
16
+
17
+
18
+ import re
19
+
20
+ import datasets
21
+
22
+
23
+ _CITATION = """\
24
+ @inproceedings{almgrenpavlovmogren2016bioner,
25
+ title={Named Entity Recognition in Swedish Medical Journals with Deep Bidirectional Character-Based LSTMs},
26
+ author={Simon Almgren, Sean Pavlov, Olof Mogren},
27
+ booktitle={Proceedings of the Fifth Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM 2016)},
28
+ pages={1},
29
+ year={2016}
30
+ }
31
+ """
32
+
33
+
34
+ _DESCRIPTION = """\
35
+ SwedMedNER is a dataset for training and evaluating Named Entity Recognition systems on medical texts in Swedish.
36
+ It is derived from medical articles on the Swedish Wikipedia, Läkartidningen, and 1177 Vårdguiden.
37
+ """
38
+
39
+
40
+ _LICENSE = """\
41
+ Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY-SA 4.0)
42
+ See http://creativecommons.org/licenses/by-sa/4.0/ for the summary of the license.
43
+ """
44
+
45
+
46
+ _URL = "https://github.com/olofmogren/biomedical-ner-data-swedish"
47
+
48
+
49
+ _DATA_URL = "https://raw.githubusercontent.com/olofmogren/biomedical-ner-data-swedish/master/"
50
+
51
+
52
+ class SwedishMedicalNerConfig(datasets.BuilderConfig):
53
+ """BuilderConfig for SwedMedNER"""
54
+
55
+ def __init__(self, **kwargs):
56
+ """
57
+ Args:
58
+ **kwargs: keyword arguments forwarded to super.
59
+ """
60
+ super(SwedishMedicalNerConfig, self).__init__(**kwargs)
61
+
62
+
63
+ class SwedishMedicalNer(datasets.GeneratorBasedBuilder):
64
+ """SwedMedNER: A Named Entity Recognition Dataset on medical texts in Swedish"""
65
+
66
+ VERSION = datasets.Version("1.0.0")
67
+
68
+ BUILDER_CONFIGS = [
69
+ datasets.BuilderConfig(name="wiki", version=VERSION, description="The Swedish Wikipedia part of the dataset"),
70
+ datasets.BuilderConfig(name="lt", version=VERSION, description="The Läkartidningen part of the dataset"),
71
+ datasets.BuilderConfig(name="1177", version=VERSION, description="The 1177 Vårdguiden part of the dataset"),
72
+ ]
73
+
74
+ def _info(self):
75
+ if self.config.name == "wiki":
76
+ features = datasets.Features(
77
+ {
78
+ "sid": datasets.Value("string"),
79
+ "sentence": datasets.Value("string"),
80
+ "entities": datasets.Sequence(
81
+ {
82
+ "start": datasets.Value("int32"),
83
+ "end": datasets.Value("int32"),
84
+ "text": datasets.Value("string"),
85
+ "type": datasets.ClassLabel(
86
+ names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
87
+ ),
88
+ }
89
+ ),
90
+ }
91
+ )
92
+ elif self.config.name == "lt":
93
+ features = datasets.Features(
94
+ {
95
+ "sid": datasets.Value("string"),
96
+ "sentence": datasets.Value("string"),
97
+ "entities": datasets.Sequence(
98
+ {
99
+ "start": datasets.Value("int32"),
100
+ "end": datasets.Value("int32"),
101
+ "text": datasets.Value("string"),
102
+ "type": datasets.ClassLabel(
103
+ names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
104
+ ),
105
+ }
106
+ ),
107
+ }
108
+ )
109
+ elif self.config.name == "1177":
110
+ features = datasets.Features(
111
+ {
112
+ "sid": datasets.Value("string"),
113
+ "sentence": datasets.Value("string"),
114
+ "entities": datasets.Sequence(
115
+ {
116
+ "start": datasets.Value("int32"),
117
+ "end": datasets.Value("int32"),
118
+ "text": datasets.Value("string"),
119
+ "type": datasets.ClassLabel(
120
+ names=["Disorder and Finding", "Pharmaceutical Drug", "Body Structure"]
121
+ ),
122
+ }
123
+ ),
124
+ }
125
+ )
126
+ return datasets.DatasetInfo(
127
+ description=_DESCRIPTION,
128
+ features=features,
129
+ supervised_keys=None,
130
+ homepage=_URL,
131
+ license=_LICENSE,
132
+ citation=_CITATION,
133
+ )
134
+
135
+ def _split_generators(self, dl_manager):
136
+ """Returns SplitGenerators."""
137
+ urls_to_download = {
138
+ "wiki": _DATA_URL + "Wiki_annotated_60.txt",
139
+ "lt": _DATA_URL + "LT_annotated_60.txt",
140
+ "1177": _DATA_URL + "1177_annotated_sentences.txt",
141
+ }
142
+ downloaded_files = dl_manager.download_and_extract(urls_to_download)
143
+
144
+ if self.config.name == "wiki":
145
+ return [
146
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["wiki"]})
147
+ ]
148
+ elif self.config.name == "lt":
149
+ return [
150
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["lt"]})
151
+ ]
152
+ elif self.config.name == "1177":
153
+ return [
154
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["1177"]})
155
+ ]
156
+
157
+ def _generate_examples(self, filepath):
158
+ """Yields examples as (key, example) tuples."""
159
+
160
+ def find_type(s, e):
161
+ if (s == "(") and (e == ")"):
162
+ return "Disorder and Finding"
163
+ elif (s == "[") and (e == "]"):
164
+ return "Pharmaceutical Drug"
165
+ elif (s == "{") and (e == "}"):
166
+ return "Body Structure"
167
+
168
+ pattern = r"\[([^\[\]()]+)\]|\(([^\[\]()]+)\)|\{([^\[\]()]+)\}"
169
+ with open(filepath, encoding="utf-8") as f:
170
+ for id_, row in enumerate(f):
171
+ sentence = row.replace("\n", "")
172
+
173
+ if self.config.name == "1177":
174
+ targets = [
175
+ {
176
+ "start": m.start(0),
177
+ "end": m.end(0),
178
+ "text": sentence[m.start(0) + 2 : m.end(0) - 2],
179
+ "type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
180
+ }
181
+ for m in re.finditer(pattern, sentence)
182
+ ]
183
+ yield id_, {
184
+ "sid": self.config.name + "_" + str(id_),
185
+ "sentence": sentence,
186
+ "entities": targets if targets else [],
187
+ }
188
+ else:
189
+ targets = [
190
+ {
191
+ "start": m.start(0),
192
+ "end": m.end(0),
193
+ "text": sentence[m.start(0) + 1 : m.end(0) - 1],
194
+ "type": find_type(sentence[m.start(0)], sentence[m.end(0) - 1]),
195
+ }
196
+ for m in re.finditer(pattern, sentence)
197
+ ]
198
+ yield id_, {
199
+ "sid": self.config.name + "_" + str(id_),
200
+ "sentence": sentence,
201
+ "entities": targets if targets else [],
202
+ }