Datasets:

Modalities:
Text
Languages:
Polish
Libraries:
Datasets
License:
File size: 4,742 Bytes
650fa1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223ed50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650fa1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# coding=utf-8
"""CEN dataset."""

import csv
import datasets

_DESCRIPTION = "CEN dataset."

_URLS = {
    "train": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/train.iob",
    "valid": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/valid.iob",
    "test": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/test.iob",
}

_HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/6"

_N82_TAGS = [
    'nam_adj',
    'nam_adj_city',
    'nam_adj_country',
    'nam_adj_person',
    'nam_eve',
    'nam_eve_human',
    'nam_eve_human_cultural',
    'nam_eve_human_holiday',
    'nam_eve_human_sport',
    'nam_fac_bridge',
    'nam_fac_goe',
    'nam_fac_goe_stop',
    'nam_fac_park',
    'nam_fac_road',
    'nam_fac_square',
    'nam_fac_system',
    'nam_liv_animal',
    'nam_liv_character',
    'nam_liv_god',
    'nam_liv_habitant',
    'nam_liv_person',
    'nam_loc',
    'nam_loc_astronomical',
    'nam_loc_country_region',
    'nam_loc_gpe_admin1',
    'nam_loc_gpe_admin2',
    'nam_loc_gpe_admin3',
    'nam_loc_gpe_city',
    'nam_loc_gpe_conurbation',
    'nam_loc_gpe_country',
    'nam_loc_gpe_district',
    'nam_loc_gpe_subdivision',
    'nam_loc_historical_region',
    'nam_loc_hydronym',
    'nam_loc_hydronym_lake',
    'nam_loc_hydronym_ocean',
    'nam_loc_hydronym_river',
    'nam_loc_hydronym_sea',
    'nam_loc_land',
    'nam_loc_land_continent',
    'nam_loc_land_island',
    'nam_loc_land_mountain',
    'nam_loc_land_peak',
    'nam_loc_land_region',
    'nam_num_house',
    'nam_num_phone',
    'nam_org_company',
    'nam_org_group',
    'nam_org_group_band',
    'nam_org_group_team',
    'nam_org_institution',
    'nam_org_nation',
    'nam_org_organization',
    'nam_org_organization_sub',
    'nam_org_political_party',
    'nam_oth',
    'nam_oth_currency',
    'nam_oth_data_format',
    'nam_oth_license',
    'nam_oth_position',
    'nam_oth_tech',
    'nam_oth_www',
    'nam_pro',
    'nam_pro_award',
    'nam_pro_brand',
    'nam_pro_media',
    'nam_pro_media_periodic',
    'nam_pro_media_radio',
    'nam_pro_media_tv',
    'nam_pro_media_web',
    'nam_pro_model_car',
    'nam_pro_software',
    'nam_pro_software_game',
    'nam_pro_title',
    'nam_pro_title_album',
    'nam_pro_title_article',
    'nam_pro_title_book',
    'nam_pro_title_document',
    'nam_pro_title_song',
    'nam_pro_title_treaty',
    'nam_pro_title_tv',
    'nam_pro_vehicle'
]

_NER_IOB_TAGS = ['O']

for tag in _N82_TAGS:
    _NER_IOB_TAGS.extend([f'B-{tag}', f'I-{tag}'])


class CenDataset(datasets.GeneratorBasedBuilder):

    def _info(self) -> datasets.DatasetInfo:
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "tokens": datasets.Sequence(datasets.Value('string')),
                    "lemmas": datasets.Sequence(datasets.Value('string')),
                    "mstags": datasets.Sequence(datasets.Value('string')),
                    "ner": datasets.Sequence(datasets.features.ClassLabel(names=_NER_IOB_TAGS))
                }
            ),
            homepage=_HOMEPAGE
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        downloaded_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['valid']}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']})
        ]

    def _generate_examples(self, filepath: str):
        with open(filepath, 'r', encoding='utf-8') as fin:
            reader = csv.reader(fin, delimiter='\t', quoting=csv.QUOTE_NONE)

            tokens = []
            lemmas = []
            mstags = []
            ner = []
            gid = 0

            for line in reader:
                if not line:
                    yield gid, {
                        "tokens": tokens,
                        "lemmas": lemmas,
                        "mstags": mstags,
                        "ner": ner
                    }
                    gid += 1
                    tokens = []
                    lemmas = []
                    mstags = []
                    ner = []
                
                elif len(line) == 1:  # ignore --DOCSTART lines
                    continue

                else:
                    tokens.append(line[0])
                    lemmas.append(line[1])
                    mstags.append(line[2])
                    ner.append(line[3])