Datasets:

Modalities:
Text
Languages:
Polish
Libraries:
Datasets
License:
wiktorw commited on
Commit
650fa1c
·
1 Parent(s): 09b9530

First version of dataset scripts. Datafiles and tagset list.

Browse files
Files changed (6) hide show
  1. README.md +24 -0
  2. cen.py +81 -0
  3. data/n82_tagset.txt +82 -0
  4. data/test.iob +0 -0
  5. data/train.iob +0 -0
  6. data/valid.iob +0 -0
README.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - found
6
+ language:
7
+ - pl
8
+ license:
9
+ - cc-by-3.0
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: 'KPWr 1.27'
13
+ size_categories:
14
+ - 18K
15
+ - 10K<n<100K
16
+ source_datasets:
17
+ - original
18
+ task_categories:
19
+ - token-classification
20
+ task_ids:
21
+ - named-entity-recognition
22
+ ---
23
+
24
+ # CEN
cen.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """CEN dataset."""
3
+
4
+ import csv
5
+ import datasets
6
+
7
+ _DESCRIPTION = "CEN dataset."
8
+
9
+ _URLS = {
10
+ "train": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/train.iob",
11
+ "valid": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/valid.iob",
12
+ "test": "https://huggingface.co/datasets/clarin-knext/cen/resolve/main/data/test.iob",
13
+ }
14
+
15
+ _HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/6"
16
+
17
+ with open('data/n82_tagset.txt', 'r') as fin:
18
+ _N82_TAGS = fin.read().split('\n')
19
+
20
+ _NER_IOB_TAGS = ['O']
21
+
22
+ for tag in _N82_TAGS:
23
+ _NER_IOB_TAGS.extend([f'B-{tag}', f'I-{tag}'])
24
+
25
+
26
+ class CenDataset(datasets.GeneratorBasedBuilder):
27
+
28
+ def _info(self) -> datasets.DatasetInfo:
29
+ return datasets.DatasetInfo(
30
+ description=_DESCRIPTION,
31
+ features=datasets.Features(
32
+ {
33
+ "tokens": datasets.Sequence(datasets.Value('string')),
34
+ "lemmas": datasets.Sequence(datasets.Value('string')),
35
+ "mstags": datasets.Sequence(datasets.Value('string')),
36
+ "ner": datasets.Sequence(datasets.features.ClassLabel(names=_NER_IOB_TAGS))
37
+ }
38
+ ),
39
+ homepage=_HOMEPAGE
40
+ )
41
+
42
+ def _split_generators(self, dl_manager: datasets.DownloadManager):
43
+ downloaded_files = dl_manager.download_and_extract(_URLS)
44
+ return [
45
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={'filepath': downloaded_files['train']}),
46
+ datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={'filepath': downloaded_files['valid']}),
47
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={'filepath': downloaded_files['test']})
48
+ ]
49
+
50
+ def _generate_examples(self, filepath: str):
51
+ with open(filepath, 'r', encoding='utf-8') as fin:
52
+ reader = csv.reader(fin, delimiter='\t', quoting=csv.QUOTE_NONE)
53
+
54
+ tokens = []
55
+ lemmas = []
56
+ mstags = []
57
+ ner = []
58
+ gid = 0
59
+
60
+ for line in reader:
61
+ if not line:
62
+ yield gid, {
63
+ "tokens": tokens,
64
+ "lemmas": lemmas,
65
+ "mstags": mstags,
66
+ "ner": ner
67
+ }
68
+ gid += 1
69
+ tokens = []
70
+ lemmas = []
71
+ mstags = []
72
+ ner = []
73
+
74
+ elif len(line) == 1: # ignore --DOCSTART lines
75
+ continue
76
+
77
+ else:
78
+ tokens.append(line[0])
79
+ lemmas.append(line[1])
80
+ mstags.append(line[2])
81
+ ner.append(line[3])
data/n82_tagset.txt ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ nam_adj
2
+ nam_adj_city
3
+ nam_adj_country
4
+ nam_adj_person
5
+ nam_eve
6
+ nam_eve_human
7
+ nam_eve_human_cultural
8
+ nam_eve_human_holiday
9
+ nam_eve_human_sport
10
+ nam_fac_bridge
11
+ nam_fac_goe
12
+ nam_fac_goe_stop
13
+ nam_fac_park
14
+ nam_fac_road
15
+ nam_fac_square
16
+ nam_fac_system
17
+ nam_liv_animal
18
+ nam_liv_character
19
+ nam_liv_god
20
+ nam_liv_habitant
21
+ nam_liv_person
22
+ nam_loc
23
+ nam_loc_astronomical
24
+ nam_loc_country_region
25
+ nam_loc_gpe_admin1
26
+ nam_loc_gpe_admin2
27
+ nam_loc_gpe_admin3
28
+ nam_loc_gpe_city
29
+ nam_loc_gpe_conurbation
30
+ nam_loc_gpe_country
31
+ nam_loc_gpe_district
32
+ nam_loc_gpe_subdivision
33
+ nam_loc_historical_region
34
+ nam_loc_hydronym
35
+ nam_loc_hydronym_lake
36
+ nam_loc_hydronym_ocean
37
+ nam_loc_hydronym_river
38
+ nam_loc_hydronym_sea
39
+ nam_loc_land
40
+ nam_loc_land_continent
41
+ nam_loc_land_island
42
+ nam_loc_land_mountain
43
+ nam_loc_land_peak
44
+ nam_loc_land_region
45
+ nam_num_house
46
+ nam_num_phone
47
+ nam_org_company
48
+ nam_org_group
49
+ nam_org_group_band
50
+ nam_org_group_team
51
+ nam_org_institution
52
+ nam_org_nation
53
+ nam_org_organization
54
+ nam_org_organization_sub
55
+ nam_org_political_party
56
+ nam_oth
57
+ nam_oth_currency
58
+ nam_oth_data_format
59
+ nam_oth_license
60
+ nam_oth_position
61
+ nam_oth_tech
62
+ nam_oth_www
63
+ nam_pro
64
+ nam_pro_award
65
+ nam_pro_brand
66
+ nam_pro_media
67
+ nam_pro_media_periodic
68
+ nam_pro_media_radio
69
+ nam_pro_media_tv
70
+ nam_pro_media_web
71
+ nam_pro_model_car
72
+ nam_pro_software
73
+ nam_pro_software_game
74
+ nam_pro_title
75
+ nam_pro_title_album
76
+ nam_pro_title_article
77
+ nam_pro_title_book
78
+ nam_pro_title_document
79
+ nam_pro_title_song
80
+ nam_pro_title_treaty
81
+ nam_pro_title_tv
82
+ nam_pro_vehicle
data/test.iob ADDED
The diff for this file is too large to render. See raw diff
 
data/train.iob ADDED
The diff for this file is too large to render. See raw diff
 
data/valid.iob ADDED
The diff for this file is too large to render. See raw diff