File size: 7,741 Bytes
abbd52c
 
5437b0f
 
7911586
5437b0f
 
 
 
 
 
062bd39
5437b0f
52c44e4
47b3773
abbd52c
7ea4927
612e9fa
7ea4927
 
5437b0f
3d3439c
 
 
7ea4927
7911586
5437b0f
 
9afa763
5437b0f
 
3d3439c
5437b0f
 
3d3439c
5437b0f
b1754ee
f94b474
 
7ea4927
77286d4
b1754ee
 
7ea4927
f94b474
77286d4
 
7ea4927
 
 
147be26
7ea4927
7911586
 
7ea4927
147be26
77286d4
 
7ea4927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5437b0f
7ea4927
36996c5
 
 
 
 
 
 
 
 
 
 
7ea4927
 
 
36996c5
 
 
 
 
7ea4927
 
 
36996c5
 
 
 
 
 
 
 
 
 
 
 
 
ea7de1e
7ea4927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5437b0f
7911586
5437b0f
 
3d3439c
0b9c882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d3439c
5437b0f
 
7ea4927
 
 
 
 
 
5437b0f
 
 
3d3439c
5437b0f
 
 
3d3439c
5437b0f
 
7ea4927
5437b0f
 
 
9afa763
5437b0f
 
3d3439c
5437b0f
 
e2a1335
5437b0f
 
 
3d3439c
5437b0f
 
3d3439c
5437b0f
 
3d3439c
5437b0f
 
 
3d3439c
5437b0f
b202422
e2a1335
b202422
5437b0f
3d3439c
 
 
67638f8
3d3439c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5437b0f
 
7ea4927
3d3439c
7ea4927
 
 
 
 
 
 
3d3439c
 
5437b0f
 
3d3439c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
---
license: mit
task_categories:
- audio-classification
- image-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Music Genre Dataset
size_categories:
- 10K<n<100K
viewer: false
---

# Dataset Card for Music Genre
The raw dataset comprises approximately 1,700 musical pieces in .mp3 format, sourced from the NetEase music. The lengths of these pieces range from 270 to 300 seconds. All are sampled at the rate of 22,050 Hz. As the website providing the audio music includes style labels for the downloaded music, there are no specific annotators involved. Validation is achieved concurrently with the downloading process. They are categorized into a total of 16 genres.

## Dataset Description
- **Homepage:** <https://ccmusic-database.github.io>
- **Repository:** <https://huggingface.co/datasets/ccmusic-database/music_genre>
- **Paper:** <https://doi.org/10.5281/zenodo.5676893>
- **Leaderboard:** <https://www.modelscope.cn/datasets/ccmusic/music_genre>
- **Point of Contact:** <https://huggingface.co/ccmusic-database/music_genre>

### Dataset Summary
This database contains about 1700 musical pieces (.mp3 format) with lengths of 270-300s that are divided into 17 genres in total.

### Supported Tasks and Leaderboards
Audio classification

### Languages
Multilingual

## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:datasets/ccmusic-database/music_genre
cd music_genre
```

## Usage
### Eval Subset
```python
from datasets import load_dataset

dataset = load_dataset("ccmusic-database/music_genre", name="eval")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
```

### Raw Subset
```python
from datasets import load_dataset

dataset = load_dataset("ccmusic-database/music_genre", name="default")
for item in ds["train"]:
    print(item)

for item in ds["validation"]:
    print(item)

for item in ds["test"]:
    print(item)
``` 

## Dataset Structure
### Eval Subset
<style>
  #genres td {
    vertical-align: middle !important;
    text-align: center;
  }
  #genres th {
    text-align: center;
  }
</style>
<table id="genres">
    <tr>
        <td>mel(.jpg, 11.4s, 48000Hz)</td>
        <td>cqt(.jpg, 11.4s, 48000Hz)</td>
        <td>chroma(.jpg, 11.4s, 48000Hz)</td>
        <td>fst_level_label(2-class)</td>
        <td>sec_level_label(9-class)</td>
        <td>thr_level_label(16-class)</td>
    </tr>
    <tr>
        <td><img src="./data/PqdpQP__ls-xo6lz93Q4y.jpeg"></td>
        <td><img src="./data/EZfYLng40hh_FUudB9vvx.jpeg"></td>
        <td><img src="./data/zviZ-rEKAvBCVFvKFml4R.jpeg"></td>
        <td>1_Classic / 2_Non_classic</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
    </tr>
    <tr>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
    </tr>
</table>

### Raw Subset
<table>
    <tr>
        <th>audio(.wav, 22050Hz)</th>
        <th>mel(spectrogram, .jpg, 22050Hz)</th>
        <th>fst_level_label(2-class)</th>
        <th>sec_level_label(9-class)</th>
        <th>thr_level_label(16-class)</th>
    </tr>
    <tr>
        <td><audio controls src="./data/8bb58041d6b9d35db688bcedfde0fe39.mp3"></audio></td>
        <td><img src="./data/8bb58041d6b9d35db688bcedfde0fe39.jpg"></td>
        <td>1_Classic / 2_Non_classic</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 7_Pop / 8_Dance_and_house / 9_Indie / 10_Soul_or_r_and_b / 11_Rock</td>
        <td>3_Symphony / 4_Opera / 5_Solo / 6_Chamber / 12_Pop_vocal_ballad / 13_Adult_contemporary / 14_Teen_pop / 15_Contemporary_dance_pop / 16_Dance_pop / 17_Classic_indie_pop / 18_Chamber_cabaret_and_art_pop / 10_Soul_or_r_and_b / 19_Adult_alternative_rock / 20_Uplifting_anthemic_rock / 21_Soft_rock / 22_Acoustic_pop</td>
    </tr>
    <tr>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
        <td>...</td>
    </tr>
</table>

### Data Instances
.zip(.jpg)

### Data Fields
```
1_Classic
    3_Symphony
    4_Opera
    5_Solo
    6_Chamber

2_Non_classic
    7_Pop
        12_Pop_vocal_ballad
        13_Adult_contemporary
        14_Teen_pop

    8_Dance_and_house
        15_Contemporary_dance_pop
        16_Dance_pop

    9_Indie
        17_Classic_indie_pop
        18_Chamber_cabaret_and_art_pop

    10_Soul_or_r_and_b

    11_Rock
        19_Adult_alternative_rock
        20_Uplifting_anthemic_rock
        21_Soft_rock
        22_Acoustic_pop
```

### Data Splits
|      Split      | Eval  |  Raw  |
| :-------------: | :---: | :---: |
|      total      | 36375 | 1713  |
|   train(80%)    | 29100 | 1370  |
| validation(10%) | 3637  |  171  |
|    test(10%)    | 3638  |  172  |

## Dataset Creation
### Curation Rationale
Promoting the development of AI in the music industry

### Source Data
#### Initial Data Collection and Normalization
Zhaorui Liu, Monan Zhou

#### Who are the source language producers?
Composers of the songs in the dataset

### Annotations
#### Annotation process
Students collected about 1700 musical pieces (.mp3 format) with lengths of 270-300s divided into 17 genres in total.

#### Who are the annotators?
Students from CCMUSIC

### Personal and Sensitive Information
Due to copyright issues with the original music, only spectrograms are provided in the dataset.

## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry

### Discussion of Biases
Most are English songs

### Other Known Limitations
Samples are not balanced enough

## Additional Information
### Dataset Curators
Zijin Li

### Evaluation
<https://huggingface.co/ccmusic-database/music_genre/tree/main>

### Licensing Information
```
MIT License

Copyright (c) CCMUSIC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
```

### Citation Information
```bibtex
@dataset{zhaorui_liu_2021_5676893,
  author       = {Monan Zhou, Shenyang Xu, Zhaorui Liu, Zhaowen Wang, Feng Yu, Wei Li and Baoqiang Han},
  title        = {CCMusic: an Open and Diverse Database for Chinese and General Music Information Retrieval Research},
  month        = {mar},
  year         = {2024},
  publisher    = {HuggingFace},
  version      = {1.2},
  url          = {https://huggingface.co/ccmusic-database}
}
```

### Contributions
Provide a dataset for music genre classification