Datasets:

Languages:
English
ArXiv:
License:
File size: 6,114 Bytes
fe9471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0854e1c
fe9471d
 
 
5503344
fe9471d
 
b5c6e76
fe9471d
 
 
3881690
 
42315fa
 
40b4a92
42315fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40b4a92
fe9471d
 
 
 
 
 
 
 
 
 
b9d8e4d
fe9471d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f5cfd6
 
 
 
 
 
 
 
 
 
 
 
 
 
fe9471d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TweetTopicSingle
---

# Dataset Card for "cardiffnlp/tweet_topic_multi"

## Dataset Description

- **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824)
- **Dataset:** Tweet Topic Dataset
- **Domain:** Twitter
- **Number of Class:** 19


### Dataset Summary
This is the official repository of TweetTopic (["Twitter Topic Classification
, COLING main conference 2022"](https://arxiv.org/abs/2209.09824)), a topic classification dataset on Twitter with 19 labels.
Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
See [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) for single label version of TweetTopic.
The tweet collection used in TweetTopic is same as what used in [TweetNER7](https://huggingface.co/datasets/tner/tweetner7).

### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name (or account name) with symbols `{@}`.
For example, a tweet

```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below: 
http://bluenote.lnk.to/AlbumOfTheWeek
```

is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below: {{URL}}
```

A simple function to format tweet follows below.

```python
import re
from urlextract import URLExtract
extractor = URLExtract()

def format_tweet(tweet):
    # mask web urls
    urls = extractor.find_urls(tweet)
    for url in urls:
        tweet = tweet.replace(url, "{{URL}}")
    # format twitter account
    tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
    return tweet

target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
target_format = format_tweet(target)
print(target_format)
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
```

### Data Splits

| split                   | number of texts | description |
|:------------------------|-----:|------:|
| test_2020               |  573 | test dataset from September 2019 to August 2020 |
| test_2021               | 1679 | test dataset from September 2020 to August 2021 |
| train_2020              | 4585 | training dataset from September 2019 to August 2020 |
| train_2021              | 1505 | training dataset from September 2020 to August 2021 |
| train_all               | 6090 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020         |  573 | validation dataset from September 2019 to August 2020 |
| validation_2021         |  188 | validation dataset from September 2020 to August 2021 | 
| train_random            | 4564 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random       |  573 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| test_coling2022_random  | 5536 | random split used in the COLING 2022 paper |
| train_coling2022_random | 5731 | random split used in the COLING 2022 paper |
| test_coling2022         | 5536 | temporal split used in the COLING 2022 paper |
| train_coling2022        | 5731 | temporal split used in the COLING 2022 paper |

For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.

**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).

### Models

Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi/blob/main/lm_finetuning.py).

## Dataset Structure

### Data Instances
An example of `train` looks as follows.

```python
{
    "date": "2021-03-07",
    "text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
    "id": "1368464923370676231",
    "label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
    "label_name": ["film_tv_&_video"]
}
```

### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_multi/raw/main/dataset/label.multi.json).
```python
{
    "arts_&_culture": 0,
    "business_&_entrepreneurs": 1,
    "celebrity_&_pop_culture": 2,
    "diaries_&_daily_life": 3,
    "family": 4,
    "fashion_&_style": 5,
    "film_tv_&_video": 6,
    "fitness_&_health": 7,
    "food_&_dining": 8,
    "gaming": 9,
    "learning_&_educational": 10,
    "music": 11,
    "news_&_social_concern": 12,
    "other_hobbies": 13,
    "relationships": 14,
    "science_&_technology": 15,
    "sports": 16,
    "travel_&_adventure": 17,
    "youth_&_student_life": 18
 }
```


### Citation Information

```
@inproceedings{dimosthenis-etal-2022-twitter,
    title = "{T}witter {T}opic {C}lassification",
    author = "Antypas, Dimosthenis  and
    Ushio, Asahi  and
    Camacho-Collados, Jose  and
    Neves, Leonardo  and
    Silva, Vitor  and
    Barbieri, Francesco",
    booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
    month = oct,
    year = "2022",
    address = "Gyeongju, Republic of Korea",
    publisher = "International Committee on Computational Linguistics"
}
```