Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
42315fa
·
1 Parent(s): a14e893

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -43
README.md CHANGED
@@ -25,7 +25,78 @@ pretty_name: TweetTopicSingle
25
 
26
 
27
  ### Dataset Summary
28
- Topic classification dataset on Twitter with multiple labels per tweet. See [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) for single label version of Tweet Topic.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## Dataset Structure
31
 
@@ -68,48 +139,6 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
68
  }
69
  ```
70
 
71
- ### Data Splits
72
-
73
-
74
- | split | number of texts | description |
75
- |:----------------------------|-----:|:-----|
76
- | `test` | 1679 | alias of `temporal_2021_test` |
77
- | `train` | 4585 | alias of `temporal_2020_train` |
78
- | `validation` | 573 | alias of `temporal_2020_validation` |
79
- | `temporal_2020_test` | 573 | test set in 2020 period of temporal split |
80
- | `temporal_2021_test` | 1679 | test set in 2021 period of temporal split |
81
- | `temporal_2020_train` | 4585 | training set in 2020 period of temporal split |
82
- | `temporal_2021_train` | 1505 | training set in 2021 period of temporal split |
83
- | `temporal_2020_validation` | 573 | validation set in 2020 period of temporal split |
84
- | `temporal_2021_validation` | 188 | validation set in 2021 period of temporal split |
85
- | `random_train` | 4564 | training set of random split (mix of 2020 and 2021) |
86
- | `random_validation` | 573 | validation set of random split (mix of 2020 and 2021) |
87
- | `coling2022_random_test` | 5536 | test set of random split used in COLING 2022 Tweet Topic paper |
88
- | `coling2022_random_train` | 5731 | training set of random split used in COLING 2022 Tweet Topic paper |
89
- | `coling2022_temporal_test` | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper |
90
- | `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper|
91
-
92
- | split | number of texts | description |
93
- |:------------------------|-----:|------:|
94
- | test_2020 | 573 | test dataset from September 2019 to August 2020 |
95
- | test_2021 | 1679 | test dataset from September 2020 to August 2021 |
96
- | train_2020 | 4585 | training dataset from September 2019 to August 2020 |
97
- | train_2021 | 1505 | training dataset from September 2020 to August 2021 |
98
- | train_all | 6090 | combined training dataset of `train_2020` and `train_2021` |
99
- | validation_2020 | 573 | validation dataset from September 2019 to August 2020 |
100
- | validation_2021 | 188 | validation dataset from September 2020 to August 2021 |
101
- | train_random | 4564 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
102
- | validation_random | 573 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
103
- | test_coling2022_random | 5536 | random split used in the COLING paper |
104
- | train_coling2022_random | 5731 | random split used in the COLING paper |
105
- | test_coling2022 | 5536 | temporal split used in the COLING paper |
106
- | train_coling2022 | 5731 | temporal split used in the COLING paper |
107
-
108
- For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`).
109
- For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`).
110
-
111
- **IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (the coling2022 split does not have validation set).
112
-
113
 
114
  ### Citation Information
115
 
 
25
 
26
 
27
  ### Dataset Summary
28
+ This is the official repository of TweetTopic ("Twitter Topic Classification
29
+ , COLING main conference 2022"), a topic classification dataset on Twitter with 19 labels.
30
+ Each instance of TweetTopic comes with a timestamp which distributes from September 2019 to August 2021.
31
+ See [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) for single label version of TweetTopic.
32
+
33
+ ### Preprocessing
34
+ We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
35
+ For verified usernames, we replace its display name (or account name) with symbols `{@}`.
36
+ For example, a tweet
37
+
38
+ ```
39
+ Get the all-analog Classic Vinyl Edition
40
+ of "Takin' Off" Album from @herbiehancock
41
+ via @bluenoterecords link below:
42
+ http://bluenote.lnk.to/AlbumOfTheWeek
43
+ ```
44
+
45
+ is transformed into the following text.
46
+ ```
47
+ Get the all-analog Classic Vinyl Edition
48
+ of "Takin' Off" Album from {@herbiehancock@}
49
+ via {@bluenoterecords@} link below: {{URL}}
50
+ ```
51
+
52
+ A simple function to format tweet follows below.
53
+
54
+ ```python
55
+ import re
56
+ from urlextract import URLExtract
57
+ extractor = URLExtract()
58
+
59
+ def format_tweet(tweet):
60
+ # mask web urls
61
+ urls = extractor.find_urls(tweet)
62
+ for url in urls:
63
+ tweet = tweet.replace(url, "{{URL}}")
64
+ # format twitter account
65
+ tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
66
+ return tweet
67
+
68
+ target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
69
+ target_format = format_tweet(target)
70
+ print(target_format)
71
+ 'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
72
+ ```
73
+
74
+ ### Data Splits
75
+
76
+ | split | number of texts | description |
77
+ |:------------------------|-----:|------:|
78
+ | test_2020 | 573 | test dataset from September 2019 to August 2020 |
79
+ | test_2021 | 1679 | test dataset from September 2020 to August 2021 |
80
+ | train_2020 | 4585 | training dataset from September 2019 to August 2020 |
81
+ | train_2021 | 1505 | training dataset from September 2020 to August 2021 |
82
+ | train_all | 6090 | combined training dataset of `train_2020` and `train_2021` |
83
+ | validation_2020 | 573 | validation dataset from September 2019 to August 2020 |
84
+ | validation_2021 | 188 | validation dataset from September 2020 to August 2021 |
85
+ | train_random | 4564 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
86
+ | validation_random | 573 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
87
+ | test_coling2022_random | 5536 | random split used in the COLING 2022 paper |
88
+ | train_coling2022_random | 5731 | random split used in the COLING 2022 paper |
89
+ | test_coling2022 | 5536 | temporal split used in the COLING 2022 paper |
90
+ | train_coling2022 | 5731 | temporal split used in the COLING 2022 paper |
91
+
92
+ For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
93
+ In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.
94
+
95
+ **IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).
96
+
97
+ ### Models
98
+
99
+
100
 
101
  ## Dataset Structure
102
 
 
139
  }
140
  ```
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  ### Citation Information
144