Datasets:

Languages:
English
ArXiv:
License:
asahi417 commited on
Commit
b9d8e4d
·
1 Parent(s): ec6b2dd
Files changed (1) hide show
  1. README.md +20 -2
README.md CHANGED
@@ -26,7 +26,6 @@ pretty_name: TweetTopicSingle
26
 
27
  ### Dataset Summary
28
  Topic classification dataset on Twitter with multiple labels per tweet.
29
- - Label Types: `arts_&_culture`, `business_&_entrepreneurs`, `celebrity_&_pop_culture`, `diaries_&_daily_life`, `family`, `fashion_&_style`, `film_tv_&_video`, `fitness_&_health`, `food_&_dining`, `gaming`, `learning_&_educational`, `music`, `news_&_social_concern`, `other_hobbies`, `relationships`, `science_&_technology`, `sports`, `travel_&_adventure`, `youth_&_student_life`
30
 
31
  ## Dataset Structure
32
 
@@ -37,7 +36,7 @@ An example of `train` looks as follows.
37
  {
38
  "date": "2021-03-07",
39
  "text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
40
- "id": 1368464923370676231,
41
  "label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
42
  "label_name": ["film_tv_&_video"]
43
  }
@@ -72,6 +71,25 @@ The label2id dictionary can be found at [here](https://huggingface.co/datasets/t
72
  ### Data Splits
73
 
74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ### Citation Information
77
 
 
26
 
27
  ### Dataset Summary
28
  Topic classification dataset on Twitter with multiple labels per tweet.
 
29
 
30
  ## Dataset Structure
31
 
 
36
  {
37
  "date": "2021-03-07",
38
  "text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000",
39
+ "id": "1368464923370676231",
40
  "label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
41
  "label_name": ["film_tv_&_video"]
42
  }
 
71
  ### Data Splits
72
 
73
 
74
+ | split | number of texts |
75
+ |:--------------------------|-----:|
76
+ | test | 1679 |
77
+ | train | 1505 |
78
+ | validation | 188 |
79
+ | temporal_2020_test | 573 |
80
+ | temporal_2021_test | 1679 |
81
+ | temporal_2020_train | 4585 |
82
+ | temporal_2021_train | 1505 |
83
+ | temporal_2020_validation | 573 |
84
+ | temporal_2021_validation | 188 |
85
+ | random_train | 4564 |
86
+ | random_validation | 573 |
87
+ | coling2022_random_test | 5536 |
88
+ | coling2022_random_train | 5731 |
89
+ | coling2022_temporal_test | 5536 |
90
+ | coling2022_temporal_train | 5731 |
91
+
92
+
93
 
94
  ### Citation Information
95