File size: 2,075 Bytes
6a105a7 124701c c0464cb 6a105a7 124701c 6a105a7 c0464cb 6a105a7 124701c c0464cb 6a105a7 1352c88 6a105a7 1352c88 c0464cb 1352c88 c0464cb 1352c88 c0464cb 1352c88 c0464cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
"""
Cannabis Licenses | License Mao
Copyright (c) 2022-2023 Cannlytics
Authors:
Keegan Skeate <https://github.com/keeganskeate>
Candace O'Sullivan-Sutherland <https://github.com/candy-o>
Created: 9/22/2022
Updated: 9/19/2023
License: <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
Description:
Map the adult-use cannabis retailers permitted in the United States:
β Alaska
β Arizona
β California
β Colorado
β Connecticut
β Delaware
β Illinois
β Maine
β Massachusetts
β Michigan
β Missouri
β Montana
β Nevada
β New Jersey
X New York (Under development)
β New Mexico
β Oregon
β Rhode Island
β Vermont
X Virginia (Expected 2024)
β Washington
"""
# External imports.
import folium
import pandas as pd
def create_retailer_map(
df,
color='crimson',
filename=None,
lat='premise_latitude',
long='premise_longitude',
):
"""Create a map of licensed retailers."""
m = folium.Map(
location=[39.8283, -98.5795],
zoom_start=3,
control_scale=True,
)
for _, row in df.iterrows():
folium.Circle(
radius=5,
location=[row[lat], row[long]],
color=color,
).add_to(m)
if filename:
m.save(filename)
return m
# === Test ===
if __name__ == '__main__':
# Read all licenses.
data = pd.read_csv('../data/all/licenses-all-latest.csv')
data = data.loc[
(~data['premise_latitude'].isnull()) &
(~data['premise_longitude'].isnull())
]
# Create a map of all licenses.
map_file = '../analysis/figures/cannabis-licenses-map.html'
m = create_retailer_map(data, filename=map_file)
print('Saved map to', map_file)
# FIXME: Create a PNG image of the map.
# import io
# from PIL import Image
# img_data = m._to_png(30)
# img = Image.open(io.BytesIO(img_data))
# img.save('../analysis/figures/cannabis-licenses-map.png')
|