keeganskeate commited on
Commit
6a105a7
1 Parent(s): a01fb05

- Curating cannabis licenses📜 | Completed CA + OR ✅ (14c4eafb52dcf9c57c7f00051cfd9c52641749c0)

.gitattributes CHANGED
@@ -49,3 +49,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
52
+ *.xlsx filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ignore environment variables.
2
+ *.env
3
+
4
+ # Ignore temporary files.
5
+ *tmp
6
+
7
+ # Ignore PDFs.
8
+ *pdfs
9
+
10
+ # Ignore external datasets.
11
+ *.datasets
LICENSE ADDED
@@ -0,0 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Attribution 4.0 International
2
+
3
+ =======================================================================
4
+
5
+ Creative Commons Corporation ("Creative Commons") is not a law firm and
6
+ does not provide legal services or legal advice. Distribution of
7
+ Creative Commons public licenses does not create a lawyer-client or
8
+ other relationship. Creative Commons makes its licenses and related
9
+ information available on an "as-is" basis. Creative Commons gives no
10
+ warranties regarding its licenses, any material licensed under their
11
+ terms and conditions, or any related information. Creative Commons
12
+ disclaims all liability for damages resulting from their use to the
13
+ fullest extent possible.
14
+
15
+ Using Creative Commons Public Licenses
16
+
17
+ Creative Commons public licenses provide a standard set of terms and
18
+ conditions that creators and other rights holders may use to share
19
+ original works of authorship and other material subject to copyright
20
+ and certain other rights specified in the public license below. The
21
+ following considerations are for informational purposes only, are not
22
+ exhaustive, and do not form part of our licenses.
23
+
24
+ Considerations for licensors: Our public licenses are
25
+ intended for use by those authorized to give the public
26
+ permission to use material in ways otherwise restricted by
27
+ copyright and certain other rights. Our licenses are
28
+ irrevocable. Licensors should read and understand the terms
29
+ and conditions of the license they choose before applying it.
30
+ Licensors should also secure all rights necessary before
31
+ applying our licenses so that the public can reuse the
32
+ material as expected. Licensors should clearly mark any
33
+ material not subject to the license. This includes other CC-
34
+ licensed material, or material used under an exception or
35
+ limitation to copyright. More considerations for licensors:
36
+ wiki.creativecommons.org/Considerations_for_licensors
37
+
38
+ Considerations for the public: By using one of our public
39
+ licenses, a licensor grants the public permission to use the
40
+ licensed material under specified terms and conditions. If
41
+ the licensor's permission is not necessary for any reason--for
42
+ example, because of any applicable exception or limitation to
43
+ copyright--then that use is not regulated by the license. Our
44
+ licenses grant only permissions under copyright and certain
45
+ other rights that a licensor has authority to grant. Use of
46
+ the licensed material may still be restricted for other
47
+ reasons, including because others have copyright or other
48
+ rights in the material. A licensor may make special requests,
49
+ such as asking that all changes be marked or described.
50
+ Although not required by our licenses, you are encouraged to
51
+ respect those requests where reasonable. More considerations
52
+ for the public:
53
+ wiki.creativecommons.org/Considerations_for_licensees
54
+
55
+ =======================================================================
56
+
57
+ Creative Commons Attribution 4.0 International Public License
58
+
59
+ By exercising the Licensed Rights (defined below), You accept and agree
60
+ to be bound by the terms and conditions of this Creative Commons
61
+ Attribution 4.0 International Public License ("Public License"). To the
62
+ extent this Public License may be interpreted as a contract, You are
63
+ granted the Licensed Rights in consideration of Your acceptance of
64
+ these terms and conditions, and the Licensor grants You such rights in
65
+ consideration of benefits the Licensor receives from making the
66
+ Licensed Material available under these terms and conditions.
67
+
68
+
69
+ Section 1 -- Definitions.
70
+
71
+ a. Adapted Material means material subject to Copyright and Similar
72
+ Rights that is derived from or based upon the Licensed Material
73
+ and in which the Licensed Material is translated, altered,
74
+ arranged, transformed, or otherwise modified in a manner requiring
75
+ permission under the Copyright and Similar Rights held by the
76
+ Licensor. For purposes of this Public License, where the Licensed
77
+ Material is a musical work, performance, or sound recording,
78
+ Adapted Material is always produced where the Licensed Material is
79
+ synched in timed relation with a moving image.
80
+
81
+ b. Adapter's License means the license You apply to Your Copyright
82
+ and Similar Rights in Your contributions to Adapted Material in
83
+ accordance with the terms and conditions of this Public License.
84
+
85
+ c. Copyright and Similar Rights means copyright and/or similar rights
86
+ closely related to copyright including, without limitation,
87
+ performance, broadcast, sound recording, and Sui Generis Database
88
+ Rights, without regard to how the rights are labeled or
89
+ categorized. For purposes of this Public License, the rights
90
+ specified in Section 2(b)(1)-(2) are not Copyright and Similar
91
+ Rights.
92
+
93
+ d. Effective Technological Measures means those measures that, in the
94
+ absence of proper authority, may not be circumvented under laws
95
+ fulfilling obligations under Article 11 of the WIPO Copyright
96
+ Treaty adopted on December 20, 1996, and/or similar international
97
+ agreements.
98
+
99
+ e. Exceptions and Limitations means fair use, fair dealing, and/or
100
+ any other exception or limitation to Copyright and Similar Rights
101
+ that applies to Your use of the Licensed Material.
102
+
103
+ f. Licensed Material means the artistic or literary work, database,
104
+ or other material to which the Licensor applied this Public
105
+ License.
106
+
107
+ g. Licensed Rights means the rights granted to You subject to the
108
+ terms and conditions of this Public License, which are limited to
109
+ all Copyright and Similar Rights that apply to Your use of the
110
+ Licensed Material and that the Licensor has authority to license.
111
+
112
+ h. Licensor means the individual(s) or entity(ies) granting rights
113
+ under this Public License.
114
+
115
+ i. Share means to provide material to the public by any means or
116
+ process that requires permission under the Licensed Rights, such
117
+ as reproduction, public display, public performance, distribution,
118
+ dissemination, communication, or importation, and to make material
119
+ available to the public including in ways that members of the
120
+ public may access the material from a place and at a time
121
+ individually chosen by them.
122
+
123
+ j. Sui Generis Database Rights means rights other than copyright
124
+ resulting from Directive 96/9/EC of the European Parliament and of
125
+ the Council of 11 March 1996 on the legal protection of databases,
126
+ as amended and/or succeeded, as well as other essentially
127
+ equivalent rights anywhere in the world.
128
+
129
+ k. You means the individual or entity exercising the Licensed Rights
130
+ under this Public License. Your has a corresponding meaning.
131
+
132
+
133
+ Section 2 -- Scope.
134
+
135
+ a. License grant.
136
+
137
+ 1. Subject to the terms and conditions of this Public License,
138
+ the Licensor hereby grants You a worldwide, royalty-free,
139
+ non-sublicensable, non-exclusive, irrevocable license to
140
+ exercise the Licensed Rights in the Licensed Material to:
141
+
142
+ a. reproduce and Share the Licensed Material, in whole or
143
+ in part; and
144
+
145
+ b. produce, reproduce, and Share Adapted Material.
146
+
147
+ 2. Exceptions and Limitations. For the avoidance of doubt, where
148
+ Exceptions and Limitations apply to Your use, this Public
149
+ License does not apply, and You do not need to comply with
150
+ its terms and conditions.
151
+
152
+ 3. Term. The term of this Public License is specified in Section
153
+ 6(a).
154
+
155
+ 4. Media and formats; technical modifications allowed. The
156
+ Licensor authorizes You to exercise the Licensed Rights in
157
+ all media and formats whether now known or hereafter created,
158
+ and to make technical modifications necessary to do so. The
159
+ Licensor waives and/or agrees not to assert any right or
160
+ authority to forbid You from making technical modifications
161
+ necessary to exercise the Licensed Rights, including
162
+ technical modifications necessary to circumvent Effective
163
+ Technological Measures. For purposes of this Public License,
164
+ simply making modifications authorized by this Section 2(a)
165
+ (4) never produces Adapted Material.
166
+
167
+ 5. Downstream recipients.
168
+
169
+ a. Offer from the Licensor -- Licensed Material. Every
170
+ recipient of the Licensed Material automatically
171
+ receives an offer from the Licensor to exercise the
172
+ Licensed Rights under the terms and conditions of this
173
+ Public License.
174
+
175
+ b. No downstream restrictions. You may not offer or impose
176
+ any additional or different terms or conditions on, or
177
+ apply any Effective Technological Measures to, the
178
+ Licensed Material if doing so restricts exercise of the
179
+ Licensed Rights by any recipient of the Licensed
180
+ Material.
181
+
182
+ 6. No endorsement. Nothing in this Public License constitutes or
183
+ may be construed as permission to assert or imply that You
184
+ are, or that Your use of the Licensed Material is, connected
185
+ with, or sponsored, endorsed, or granted official status by,
186
+ the Licensor or others designated to receive attribution as
187
+ provided in Section 3(a)(1)(A)(i).
188
+
189
+ b. Other rights.
190
+
191
+ 1. Moral rights, such as the right of integrity, are not
192
+ licensed under this Public License, nor are publicity,
193
+ privacy, and/or other similar personality rights; however, to
194
+ the extent possible, the Licensor waives and/or agrees not to
195
+ assert any such rights held by the Licensor to the limited
196
+ extent necessary to allow You to exercise the Licensed
197
+ Rights, but not otherwise.
198
+
199
+ 2. Patent and trademark rights are not licensed under this
200
+ Public License.
201
+
202
+ 3. To the extent possible, the Licensor waives any right to
203
+ collect royalties from You for the exercise of the Licensed
204
+ Rights, whether directly or through a collecting society
205
+ under any voluntary or waivable statutory or compulsory
206
+ licensing scheme. In all other cases the Licensor expressly
207
+ reserves any right to collect such royalties.
208
+
209
+
210
+ Section 3 -- License Conditions.
211
+
212
+ Your exercise of the Licensed Rights is expressly made subject to the
213
+ following conditions.
214
+
215
+ a. Attribution.
216
+
217
+ 1. If You Share the Licensed Material (including in modified
218
+ form), You must:
219
+
220
+ a. retain the following if it is supplied by the Licensor
221
+ with the Licensed Material:
222
+
223
+ i. identification of the creator(s) of the Licensed
224
+ Material and any others designated to receive
225
+ attribution, in any reasonable manner requested by
226
+ the Licensor (including by pseudonym if
227
+ designated);
228
+
229
+ ii. a copyright notice;
230
+
231
+ iii. a notice that refers to this Public License;
232
+
233
+ iv. a notice that refers to the disclaimer of
234
+ warranties;
235
+
236
+ v. a URI or hyperlink to the Licensed Material to the
237
+ extent reasonably practicable;
238
+
239
+ b. indicate if You modified the Licensed Material and
240
+ retain an indication of any previous modifications; and
241
+
242
+ c. indicate the Licensed Material is licensed under this
243
+ Public License, and include the text of, or the URI or
244
+ hyperlink to, this Public License.
245
+
246
+ 2. You may satisfy the conditions in Section 3(a)(1) in any
247
+ reasonable manner based on the medium, means, and context in
248
+ which You Share the Licensed Material. For example, it may be
249
+ reasonable to satisfy the conditions by providing a URI or
250
+ hyperlink to a resource that includes the required
251
+ information.
252
+
253
+ 3. If requested by the Licensor, You must remove any of the
254
+ information required by Section 3(a)(1)(A) to the extent
255
+ reasonably practicable.
256
+
257
+ 4. If You Share Adapted Material You produce, the Adapter's
258
+ License You apply must not prevent recipients of the Adapted
259
+ Material from complying with this Public License.
260
+
261
+
262
+ Section 4 -- Sui Generis Database Rights.
263
+
264
+ Where the Licensed Rights include Sui Generis Database Rights that
265
+ apply to Your use of the Licensed Material:
266
+
267
+ a. for the avoidance of doubt, Section 2(a)(1) grants You the right
268
+ to extract, reuse, reproduce, and Share all or a substantial
269
+ portion of the contents of the database;
270
+
271
+ b. if You include all or a substantial portion of the database
272
+ contents in a database in which You have Sui Generis Database
273
+ Rights, then the database in which You have Sui Generis Database
274
+ Rights (but not its individual contents) is Adapted Material; and
275
+
276
+ c. You must comply with the conditions in Section 3(a) if You Share
277
+ all or a substantial portion of the contents of the database.
278
+
279
+ For the avoidance of doubt, this Section 4 supplements and does not
280
+ replace Your obligations under this Public License where the Licensed
281
+ Rights include other Copyright and Similar Rights.
282
+
283
+
284
+ Section 5 -- Disclaimer of Warranties and Limitation of Liability.
285
+
286
+ a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
287
+ EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
288
+ AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
289
+ ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
290
+ IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
291
+ WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
292
+ PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
293
+ ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
294
+ KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
295
+ ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
296
+
297
+ b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
298
+ TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
299
+ NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
300
+ INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
301
+ COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
302
+ USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
303
+ ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
304
+ DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
305
+ IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
306
+
307
+ c. The disclaimer of warranties and limitation of liability provided
308
+ above shall be interpreted in a manner that, to the extent
309
+ possible, most closely approximates an absolute disclaimer and
310
+ waiver of all liability.
311
+
312
+
313
+ Section 6 -- Term and Termination.
314
+
315
+ a. This Public License applies for the term of the Copyright and
316
+ Similar Rights licensed here. However, if You fail to comply with
317
+ this Public License, then Your rights under this Public License
318
+ terminate automatically.
319
+
320
+ b. Where Your right to use the Licensed Material has terminated under
321
+ Section 6(a), it reinstates:
322
+
323
+ 1. automatically as of the date the violation is cured, provided
324
+ it is cured within 30 days of Your discovery of the
325
+ violation; or
326
+
327
+ 2. upon express reinstatement by the Licensor.
328
+
329
+ For the avoidance of doubt, this Section 6(b) does not affect any
330
+ right the Licensor may have to seek remedies for Your violations
331
+ of this Public License.
332
+
333
+ c. For the avoidance of doubt, the Licensor may also offer the
334
+ Licensed Material under separate terms or conditions or stop
335
+ distributing the Licensed Material at any time; however, doing so
336
+ will not terminate this Public License.
337
+
338
+ d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
339
+ License.
340
+
341
+
342
+ Section 7 -- Other Terms and Conditions.
343
+
344
+ a. The Licensor shall not be bound by any additional or different
345
+ terms or conditions communicated by You unless expressly agreed.
346
+
347
+ b. Any arrangements, understandings, or agreements regarding the
348
+ Licensed Material not stated herein are separate from and
349
+ independent of the terms and conditions of this Public License.
350
+
351
+
352
+ Section 8 -- Interpretation.
353
+
354
+ a. For the avoidance of doubt, this Public License does not, and
355
+ shall not be interpreted to, reduce, limit, restrict, or impose
356
+ conditions on any use of the Licensed Material that could lawfully
357
+ be made without permission under this Public License.
358
+
359
+ b. To the extent possible, if any provision of this Public License is
360
+ deemed unenforceable, it shall be automatically reformed to the
361
+ minimum extent necessary to make it enforceable. If the provision
362
+ cannot be reformed, it shall be severed from this Public License
363
+ without affecting the enforceability of the remaining terms and
364
+ conditions.
365
+
366
+ c. No term or condition of this Public License will be waived and no
367
+ failure to comply consented to unless expressly agreed to by the
368
+ Licensor.
369
+
370
+ d. Nothing in this Public License constitutes or may be interpreted
371
+ as a limitation upon, or waiver of, any privileges and immunities
372
+ that apply to the Licensor or You, including from the legal
373
+ processes of any jurisdiction or authority.
374
+
375
+
376
+ =======================================================================
377
+
378
+ Creative Commons is not a party to its public
379
+ licenses. Notwithstanding, Creative Commons may elect to apply one of
380
+ its public licenses to material it publishes and in those instances
381
+ will be considered the “Licensor.” The text of the Creative Commons
382
+ public licenses is dedicated to the public domain under the CC0 Public
383
+ Domain Dedication. Except for the limited purpose of indicating that
384
+ material is shared under a Creative Commons public license or as
385
+ otherwise permitted by the Creative Commons policies published at
386
+ creativecommons.org/policies, Creative Commons does not authorize the
387
+ use of the trademark "Creative Commons" or any other trademark or logo
388
+ of Creative Commons without its prior written consent including,
389
+ without limitation, in connection with any unauthorized modifications
390
+ to any of its public licenses or any other arrangements,
391
+ understandings, or agreements concerning use of licensed material. For
392
+ the avoidance of doubt, this paragraph does not form part of the
393
+ public licenses.
394
+
395
+ Creative Commons may be contacted at creativecommons.org.
README.md CHANGED
@@ -1,3 +1,259 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ license:
7
+ - cc-by-4.0
8
+ pretty_name: cannabis_licenses
9
+ size_categories:
10
+ - 10K<n<100K
11
+ source_datasets:
12
+ - original
13
+ tags:
14
+ - cannabis
15
+ - licenses
16
+ - licensees
17
  ---
18
+
19
+ # Cannabis Licenses, Curated by Cannlytics
20
+
21
+ ## Table of Contents
22
+ - [Table of Contents](#table-of-contents)
23
+ - [Dataset Description](#dataset-description)
24
+ - [Dataset Summary](#dataset-summary)
25
+ - [Dataset Structure](#dataset-structure)
26
+ - [Data Instances](#data-instances)
27
+ - [Data Fields](#data-fields)
28
+ - [Data Splits](#data-splits)
29
+ - [Dataset Creation](#dataset-creation)
30
+ - [Curation Rationale](#curation-rationale)
31
+ - [Source Data](#source-data)
32
+ - [Data Collection and Normalization](#data-collection-and-normalization)
33
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
34
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
35
+ - [Social Impact of Dataset](#social-impact-of-dataset)
36
+ - [Discussion of Biases](#discussion-of-biases)
37
+ - [Other Known Limitations](#other-known-limitations)
38
+ - [Additional Information](#additional-information)
39
+ - [Dataset Curators](#dataset-curators)
40
+ - [License](#license)
41
+ - [Citation](#citation)
42
+ - [Contributions](#contributions)
43
+
44
+ ## Dataset Description
45
+
46
+ - **Homepage:** <https://github.com/cannlytics/cannlytics>
47
+ - **Repository:** <https://huggingface.co/datasets/cannlytics/cannabis_licenses>
48
+ - **Point of Contact:** <dev@cannlytics.com>
49
+
50
+ ### Dataset Summary
51
+
52
+ This dataset is a collection of cannabis license data for the licensees that have been permitted in the United States.
53
+
54
+ ## Dataset Structure
55
+
56
+ The dataset is partitioned into subsets for each state.
57
+
58
+
59
+ | State | Licenses |
60
+ |-------|----------|
61
+ | [Alaska](#) | |
62
+ | [Arizona](#) | |
63
+ | [California](#) | ✅ |
64
+ | [Colorado](#) | |
65
+ | [Connecticut](#) | |
66
+ | [District of Columbia](#) | |
67
+ | [Illinois](#) | |
68
+ | [Maine](#) | |
69
+ | [Massachusetts](#) | |
70
+ | [Michigan](#) | |
71
+ | [Montana](#) | |
72
+ | [Nevada](#) | |
73
+ | [New Hampshire](#) | |
74
+ | [New Jersey](#) | |
75
+ | [New Mexico](#) | |
76
+ | [New York](#) | |
77
+ | [Oregon](#) | ✅ |
78
+ | [Rhode Island](#) | |
79
+ | [Vermont](#) | |
80
+ | [Washington](#) | |
81
+
82
+
83
+ ### Data Instances
84
+
85
+ You can load the licenses for each state. For example:
86
+
87
+ ```py
88
+ from datasets import load_dataset
89
+
90
+ # Get the licenses for a specific state.
91
+ dataset = load_dataset('cannlytics/cannabis_licenses', 'ca')
92
+ data = dataset['data']
93
+ assert len(data) > 0
94
+ print('%i licenses.' % len(data))
95
+ ```
96
+
97
+ ### Data Fields
98
+
99
+ Below is a non-exhaustive list of fields, used to standardize the various data that are encountered, that you may expect encounter in the parsed COA data.
100
+
101
+ | Field | Example | Description |
102
+ |-------|-----|-------------|
103
+ | `id` | `"1046"` | |
104
+ | `license_number` | `"C10-0000423-LIC"` | |
105
+ | `license_status` | `"Active"` | |
106
+ | `license_status_date` | `""` | |
107
+ | `license_term` | `"Provisional"` | |
108
+ | `license_type` | `"Commercial - Retailer"` | |
109
+ | `license_designation` | `"Adult-Use and Medicinal"` | |
110
+ | `issue_date` | `"2019-07-15T00:00:00"` | |
111
+ | `expiration_date` | `"2023-07-14T00:00:00"` | |
112
+ | `licensing_authority_id` | `"BCC"` | |
113
+ | `licensing_authority` | `"Bureau of Cannabis Control (BCC)"` | |
114
+ | `business_legal_name` | `"Movocan"` | |
115
+ | `business_dba_name` | `"Movocan"` | |
116
+ | `business_owner_name` | `"redacted"` | |
117
+ | `business_structure` | `"Corporation"` | |
118
+ | `activity` | `""` | |
119
+ | `premise_street_address` | `"1632 Gateway Rd"` | |
120
+ | `premise_city` | `"Calexico"` | |
121
+ | `premise_state` | `"CA"` | |
122
+ | `premise_county` | `"Imperial"` | |
123
+ | `premise_zip_code` | `"92231"` | |
124
+ | `business_email` | `"redacted@gmail.com"` | |
125
+ | `business_phone` | `"(555) 555-5555"` | |
126
+ | `parcel_number` | `""` | |
127
+ | `premise_latitude` | `32.69035693` | |
128
+ | `premise_longitude` | `-115.38987552` | |
129
+ | `data_refreshed_date` | `"2022-09-21T12:16:33.3866667"` | |
130
+
131
+ ### Data Splits
132
+
133
+ The data is split into subsets by state. You can retrieve all licenses by requesting the `all` subset.
134
+
135
+ ```py
136
+ from datasets import load_dataset
137
+
138
+ # Get all cannabis licenses.
139
+ repo = 'cannlytics/cannabis_licenses'
140
+ dataset = load_dataset(repo, 'all')
141
+ data = dataset['data']
142
+ ```
143
+
144
+ ## Dataset Creation
145
+
146
+ ### Curation Rationale
147
+
148
+ Data about organizations operating in the cannabis industry for each state is valuable for research.
149
+
150
+ ### Source Data
151
+
152
+ | State | Data Source URL |
153
+ |-------|-----------------|
154
+ | [Alaska](#) | |
155
+ | [Arizona](https://azcarecheck.azdhs.gov/s/?licenseType=null) | <https://azcarecheck.azdhs.gov/s/?licenseType=null> |
156
+ | [California](https://search.cannabis.ca.gov/) | <https://search.cannabis.ca.gov/> |
157
+ | [Colorado](#) | |
158
+ | [Connecticut](#) | |
159
+ | [District of Columbia](#) | |
160
+ | [Illinois](#) | |
161
+ | [Maine](#) | |
162
+ | [Massachusetts](#) | |
163
+ | [Michigan](#) | |
164
+ | [Montana](https://mtrevenue.gov/cannabis/#CannabisLicenses) | <https://mtrevenue.gov/cannabis/#CannabisLicenses> |
165
+ | [Nevada](https://ccb.nv.gov/list-of-licensees/) | <https://ccb.nv.gov/list-of-licensees/> |
166
+ | [New Hampshire](#) | |
167
+ | [New Jersey](#) | |
168
+ | [New Mexico](https://nmrldlpi.force.com/bcd/s/public-search-license?division=CCD&language=en_US) | <https://nmrldlpi.force.com/bcd/s/public-search-license?division=CCD&language=en_US> |
169
+ | [New York](#) | |
170
+ | [Oregon](https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx) | <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx> |
171
+ | [Rhode Island](#) | |
172
+ | [Vermont](#) | |
173
+ | [Washington](https://lcb.wa.gov/records/frequently-requested-lists) | <https://lcb.wa.gov/records/frequently-requested-lists> |
174
+
175
+ #### Data Collection and Normalization
176
+
177
+ In the `algorithms` directory, you can find the algorithms used for data collection. You can use these algorithms to recreate the dataset. First, you will need to clone the repository:
178
+
179
+ ```
180
+ git clone https://huggingface.co/datasets/cannlytics/cannabis_licenses
181
+ ```
182
+
183
+ You can then install the algorithm Python (3.9+) requirements:
184
+
185
+ ```
186
+ cd cannabis_licenses
187
+ pip install -r requirements.txt
188
+ ```
189
+
190
+ Then you can run all of the data-collection algorithms:
191
+
192
+ ```
193
+ python algorithms/main.py
194
+ ```
195
+
196
+ Or you can run each algorithm individually. For example:
197
+
198
+ ```
199
+ python algorithms/get_licenses_ca.py
200
+ ```
201
+
202
+ ### Personal and Sensitive Information
203
+
204
+ This dataset includes names of individuals, public addresses, and contact information for cannabis licensees. It is important to take care to use these data points in a legal manner.
205
+
206
+ ## Considerations for Using the Data
207
+
208
+ ### Social Impact of Dataset
209
+
210
+ Arguably, there is substantial social impact that could result from the study of permitted adult-use cannabis, therefore, researchers and data consumers alike should take the utmost care in the use of this dataset.
211
+
212
+ ### Discussion of Biases
213
+
214
+ Cannlytics is a for-profit data and analytics company that primarily serves cannabis businesses. The data are not randomly collected and thus sampling bias should be taken into consideration.
215
+
216
+ ### Other Known Limitations
217
+
218
+ The data is for adult-use cannabis licenses. It would be valuable to include medical cannabis licenses too.
219
+
220
+ ## Additional Information
221
+
222
+ ### Dataset Curators
223
+
224
+ Curated by [🔥Cannlytics](https://cannlytics.com)<br>
225
+ <dev@cannlytics.com>
226
+
227
+ ### License
228
+
229
+ ```
230
+ Copyright (c) 2022 Cannlytics and the Cannabis Data Science Team
231
+
232
+ The files associated with this dataset are licensed under a
233
+ Creative Commons Attribution 4.0 International license.
234
+
235
+ You can share, copy and modify this dataset so long as you give
236
+ appropriate credit, provide a link to the CC BY license, and
237
+ indicate if changes were made, but you may not do so in a way
238
+ that suggests the rights holder has endorsed you or your use of
239
+ the dataset. Note that further permission may be required for
240
+ any content within the dataset that is identified as belonging
241
+ to a third party.
242
+ ```
243
+
244
+ ### Citation
245
+
246
+ Please cite the following if you use the code examples in your research:
247
+
248
+ ```bibtex
249
+ @misc{cannlytics2022,
250
+ title={Cannabis Data Science},
251
+ author={Skeate, Keegan},
252
+ journal={https://github.com/cannlytics/cannabis-data-science},
253
+ year={2022}
254
+ }
255
+ ```
256
+
257
+ ### Contributions
258
+
259
+ Thanks to [🔥Cannlytics](https://cannlytics.com), [@candy-o](https://github.com/candy-o), [@keeganskeate](https://github.com/keeganskeate), and the entire [Cannabis Data Science Team](https://meetup.com/cannabis-data-science/members) for their contributions.
algorithms/get_licenses_az.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Cannabis Licenses | Get Arizona Licenses
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Created: 9/27/2022
8
+ Updated: 9/27/2022
9
+ License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
10
+
11
+ Description:
12
+
13
+ Collect Arizona cannabis license data.
14
+
15
+ Data Source:
16
+
17
+ - Arizona Department of Health Services | Division of Licensing
18
+ URL: <https://azcarecheck.azdhs.gov/s/?licenseType=null>
19
+
20
+ """
21
+ # Standard imports.
22
+ from datetime import datetime
23
+ import os
24
+ from time import sleep
25
+
26
+ # External imports.
27
+ from cannlytics.utils import camel_to_snake
28
+ from cannlytics.utils.constants import DEFAULT_HEADERS
29
+ import matplotlib.pyplot as plt
30
+ import pandas as pd
31
+ import requests
32
+ import seaborn as sns
33
+
34
+
35
+ # Specify where your data lives.
36
+ DATA_DIR = '../data/az'
37
+ PDF_DIR = '../data/mt/pdfs'
38
+
39
+ # Create directories if necessary.
40
+ if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
41
+ if not os.path.exists(PDF_DIR): os.makedirs(PDF_DIR)
42
+
43
+
44
+
45
+ # # Define the license data API.
46
+ # base = 'https://as-cdt-pub-vip-cannabis-ww-p-002.azurewebsites.net'
47
+ # endpoint = '/licenses/filteredSearch'
48
+ # query = f'{base}{endpoint}'
49
+ # params = {'pageSize': 50, 'searchQuery': ''}
50
+
51
+ # # Iterate over all of the pages to get all of the data.
52
+ # iterate = True
53
+ # page = 1
54
+ # licenses = []
55
+ # verbose = True
56
+ # while(iterate):
57
+ # params['pageNumber'] = page
58
+ # response = requests.get(query, headers=DEFAULT_HEADERS, params=params)
59
+ # body = response.json()
60
+ # data = body['data']
61
+ # licenses.extend(data)
62
+ # if not body['metadata']['hasNext']:
63
+ # iterate = False
64
+ # if verbose:
65
+ # print('Recorded %i/%i pages.' % (page, body['metadata']['totalPages']))
66
+ # page += 1
67
+ # sleep(0.2)
68
+
69
+ # # Standardize the licensee data.
70
+ # license_data = pd.DataFrame(licenses)
71
+ # columns = list(license_data.columns)
72
+ # columns = [camel_to_snake(x) for x in columns]
73
+ # license_data.columns = columns
74
+
75
+ # # Save the data locally.
76
+ # timestamp = datetime.now().isoformat()[:19].replace(':', '-')
77
+ # license_data.to_excel(f'{DATA_DIR}/licenses-ca-{timestamp}.xlsx')
78
+
79
+ # # Optional: Archive the licensee data in Firebase.
80
+ # from cannlytics.firebase import initialize_firebase, update_documents
81
+ # n = 420
82
+ # database = initialize_firebase()
83
+ # collection = 'public/data/licenses'
84
+ # shards = [df[i:i + n] for i in range(0, df.shape[0], n)]
85
+ # for shard in shards:
86
+ # refs = shard['license_number'].apply(lambda x: f'{collection}/{x}')
87
+ # docs = shard.to_dict('records')
88
+ # update_documents(refs, docs, database=database)
89
+
90
+ # # Create a scatterplot of latitude and longitude with hue as license type.
91
+ # sns.scatterplot(
92
+ # data=license_data.loc[
93
+ # (~license_data['premise_longitude'].isnull()) &
94
+ # (~license_data['premise_latitude'].isnull())
95
+ # ],
96
+ # x='premise_longitude',
97
+ # y='premise_latitude',
98
+ # hue='license_type',
99
+ # )
100
+ # plt.show()
algorithms/get_licenses_ca.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Cannabis Licenses | Get California Licenses
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Created: 9/16/2022
8
+ Updated: 9/27/2022
9
+ License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
10
+
11
+ Description:
12
+
13
+ Collect California cannabis license data.
14
+
15
+ Data Source:
16
+
17
+ - California Department of Cannabis Control Cannabis Unified License Search
18
+ URL: <https://search.cannabis.ca.gov/>
19
+
20
+ """
21
+ # Standard imports.
22
+ from datetime import datetime
23
+ import os
24
+ from time import sleep
25
+ from typing import Optional
26
+
27
+ # External imports.
28
+ from cannlytics.utils import camel_to_snake
29
+ from cannlytics.utils.constants import DEFAULT_HEADERS
30
+ import pandas as pd
31
+ import requests
32
+
33
+
34
+ # Specify where your data lives.
35
+ DATA_DIR = '../data/ca'
36
+
37
+
38
+ def get_licenses_ca(
39
+ data_dir: Optional[str] = None,
40
+ page_size: Optional[int] = 50,
41
+ pause: Optional[float] = 0.2,
42
+ starting_page: Optional[int] = 1,
43
+ ending_page: Optional[int] = None,
44
+ verbose: Optional[bool] = False,
45
+ search: Optional[str] = '',
46
+ ):
47
+ """Get California cannabis license data."""
48
+
49
+ # Define the license data API.
50
+ base = 'https://as-cdt-pub-vip-cannabis-ww-p-002.azurewebsites.net'
51
+ endpoint = '/licenses/filteredSearch'
52
+ query = f'{base}{endpoint}'
53
+ params = {'pageSize': page_size, 'searchQuery': search}
54
+
55
+ # Iterate over all of the pages to get all of the data.
56
+ page = int(starting_page)
57
+ licenses = []
58
+ iterate = True
59
+ while(iterate):
60
+ params['pageNumber'] = page
61
+ response = requests.get(query, headers=DEFAULT_HEADERS, params=params)
62
+ body = response.json()
63
+ data = body['data']
64
+ licenses.extend(data)
65
+ if not body['metadata']['hasNext']:
66
+ iterate = False
67
+ if verbose:
68
+ print('Recorded %i/%i pages.' % (page, body['metadata']['totalPages']))
69
+ if ending_page is not None:
70
+ if page == ending_page:
71
+ iterate = False
72
+ page += 1
73
+ sleep(pause)
74
+
75
+ # Standardize the licensee data.
76
+ license_data = pd.DataFrame(licenses)
77
+ columns = list(license_data.columns)
78
+ columns = [camel_to_snake(x) for x in columns]
79
+ license_data.columns = columns
80
+
81
+ # Save and return the data.
82
+ if data_dir is not None:
83
+ if not os.path.exists(data_dir): os.makedirs(data_dir)
84
+ timestamp = datetime.now().isoformat()[:19].replace(':', '-')
85
+ license_data.to_excel(f'{data_dir}/licenses-ca-{timestamp}.xlsx')
86
+ return license_data
87
+
88
+ if __name__ == '__main__':
89
+
90
+ # Support command line usage.
91
+ import argparse
92
+ try:
93
+ arg_parser = argparse.ArgumentParser()
94
+ arg_parser.add_argument('--d', dest='data_dir', type=str)
95
+ arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
96
+ # Future work: Support the rest of the arguments from the CL.
97
+ args = arg_parser.parse_args()
98
+ except SystemExit:
99
+ args = {'d': DATA_DIR}
100
+
101
+ # Get California licenses, saving them to the specified directory.
102
+ data_dir = args.get('d', args.get('data_dir'))
103
+ get_licenses_ca(data_dir)
algorithms/get_licenses_mt.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Cannabis Licenses | Get Montana Licenses
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Created: 9/27/2022
8
+ Updated: 9/28/2022
9
+ License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
10
+
11
+ Description:
12
+
13
+ Collect Montana cannabis license data.
14
+
15
+ Data Source:
16
+
17
+ - Montana Department of Revenue | Cannabis Control Division
18
+ URL: <https://mtrevenue.gov/cannabis/#CannabisLicenses>
19
+
20
+ """
21
+ # Standard imports.
22
+ from datetime import datetime
23
+ import os
24
+ from time import sleep
25
+
26
+ # External imports.
27
+ from bs4 import BeautifulSoup
28
+ from cannlytics.utils import camel_to_snake
29
+ from cannlytics.utils.constants import DEFAULT_HEADERS
30
+ import pdfplumber
31
+ import requests
32
+
33
+
34
+ # Specify where your data lives.
35
+ DATA_DIR = '../data/mt'
36
+ PDF_DIR = '../data/mt/pdfs'
37
+
38
+ MONTANA = {
39
+ 'retailers': {
40
+ 'url': 'https://mtrevenue.gov/?mdocs-file=60245',
41
+ 'columns': ['city', 'dba', 'license_type', 'phone']
42
+ },
43
+ 'processors': {'url': 'https://mtrevenue.gov/?mdocs-file=60250'},
44
+ 'cultivators': {'url': 'https://mtrevenue.gov/?mdocs-file=60252'},
45
+ 'labs': {'url': 'https://mtrevenue.gov/?mdocs-file=60248'},
46
+ 'transporters': {'url': 'https://mtrevenue.gov/?mdocs-file=72489'},
47
+ }
48
+
49
+ # Create directories if necessary.
50
+ if not os.path.exists(DATA_DIR): os.makedirs(DATA_DIR)
51
+ if not os.path.exists(PDF_DIR): os.makedirs(PDF_DIR)
52
+
53
+
54
+ # Download the retailers PDF.
55
+ timestamp = datetime.now().isoformat()[:19].replace(':', '-')
56
+ outfile = f'{PDF_DIR}/mt-retailers-{timestamp}.pdf'
57
+ response = requests.get(MONTANA['retailers']['url'], headers=DEFAULT_HEADERS)
58
+ with open(outfile, 'wb') as pdf:
59
+ pdf.write(response.content)
60
+
61
+ # Extract the data from the PDF.
62
+ rows = []
63
+ skip_lines = ['GOVERNOR ', 'DIRECTOR ', 'Cannabis Control Division',
64
+ 'Licensed Dispensary locations', 'Please note', 'registered ',
65
+ 'City Location Name Sales Type Phone Number', 'Page ']
66
+ doc = pdfplumber.open(outfile)
67
+ for page in doc.pages:
68
+ text = page.extract_text()
69
+ lines = text.split('\n')
70
+ for line in lines:
71
+ skip = False
72
+ for skip_line in skip_lines:
73
+ if line.startswith(skip_line):
74
+ skip = True
75
+ break
76
+ if skip:
77
+ continue
78
+ rows.append(line)
79
+
80
+ # Collect licensee data.
81
+ licensees = []
82
+ for row in rows:
83
+
84
+ # FIXME: Rows with double-line text get cut-off.
85
+ if '(' not in row:
86
+ continue
87
+
88
+ obs = {}
89
+ if 'Adult Use' in row:
90
+ parts = row.split('Adult Use')
91
+ obs['license_type'] = 'Adult Use'
92
+ else:
93
+ parts = row.split('Medical Only')
94
+ obs['license_type'] = 'Medical Only'
95
+ obs['dba'] = parts[0].strip()
96
+ obs['phone'] = parts[-1].strip()
97
+ licensees.append(obs)
98
+
99
+ # Get a list of Montana cities.
100
+ cities = []
101
+ # response = requests.get('http://www.mlct.org/', headers=DEFAULT_HEADERS)
102
+ # soup = BeautifulSoup(response.content, 'html.parser')
103
+ # table = soup.find('table')
104
+ # for tr in table.findAll('tr'):
105
+ # if not tr.text.strip().replace('\n', ''):
106
+ # continue
107
+ # city = tr.find('td').text
108
+ # if '©' in city or ',' in city or '\n' in city or city == 'Home' or city == 'City':
109
+ # continue
110
+ # cities.append(city)
111
+
112
+ # remove_lines = ['RESOURCES', 'Official State Website', 'State Legislature',
113
+ # 'Chamber of Commerce', 'Contact Us']
114
+ # for ele in remove_lines:
115
+ # cities.remove(ele)
116
+
117
+ # FIXME:
118
+ url = 'https://dojmt.gov/wp-content/uploads/2011/05/mvmtcitiescountieszips.pdf'
119
+
120
+ # TODO: Separate `city` from `dba` using list of Montana cities.
121
+ for i, licensee in enumerate(licensees):
122
+ dba = licensee['dba']
123
+ city_found = False
124
+ for city in cities:
125
+ city_name = city.upper()
126
+ if city_name in dba:
127
+ licensees[i]['dba'] = dba.replace(city_name, '').strip()
128
+ licensees[i]['city'] = city
129
+ city_found = True
130
+ break
131
+ if not city_found:
132
+ print("Couldn't identify city:", dba)
133
+
134
+
135
+ # TODO: Remove duplicates.
136
+
137
+
138
+ # TODO: Lookup the address of the licenses?
algorithms/get_licenses_or.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Cannabis Licenses | Get Oregon Licenses
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Created: 9/28/2022
8
+ Updated: 9/28/2022
9
+ License: <https://github.com/cannlytics/cannlytics/blob/main/LICENSE>
10
+
11
+ Description:
12
+
13
+ Collect Oregon cannabis license data.
14
+
15
+ Data Source:
16
+
17
+ - Oregon Liquor and Cannabis Commission
18
+ URL: <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx>
19
+
20
+ """
21
+ # Standard imports.
22
+ from datetime import datetime
23
+ import os
24
+ from typing import Optional
25
+
26
+ # External imports.
27
+ from dotenv import dotenv_values
28
+ import pandas as pd
29
+ import requests
30
+ from cannlytics.data.gis import geocode_addresses
31
+
32
+
33
+ # Specify where your data lives.
34
+ DATA_DIR = '../data/or'
35
+
36
+ # Specify state-specific constants.
37
+ OREGON = {
38
+ 'licensing_authority_id': 'OLCC',
39
+ 'licensing_authority': 'Oregon Liquor and Cannabis Commission',
40
+ 'licenses': {
41
+ 'url': 'https://www.oregon.gov/olcc/marijuana/Documents/MarijuanaLicenses_Approved.xlsx',
42
+ },
43
+ 'retailers': {
44
+ 'url': 'https://www.oregon.gov/olcc/marijuana/Documents/Approved_Retail_Licenses.xlsx',
45
+ 'columns': {
46
+ 'TRADE NAME': 'business_dba_name',
47
+ 'POSTAL CITY': 'premise_city',
48
+ 'COUNTY': 'premise_county',
49
+ 'STREET ADDRESS': 'premise_street_address',
50
+ 'ZIP': 'premise_zip_code',
51
+ 'Med Grade': 'medicinal',
52
+ 'Delivery': 'delivery',
53
+ },
54
+ },
55
+ }
56
+
57
+ def get_licenses_or(
58
+ data_dir: Optional[str] = None,
59
+ env_file: Optional[str] = '.env',
60
+ # Optional: Add print statements.
61
+ # verbose: Optional[bool] = False,
62
+ ):
63
+ """Get California cannabis license data."""
64
+
65
+ # Create the necessary directories.
66
+ file_dir = f'{data_dir}/.datasets'
67
+ if not os.path.exists(data_dir): os.makedirs(data_dir)
68
+ if not os.path.exists(file_dir): os.makedirs(file_dir)
69
+
70
+ # Download the data workbooks.
71
+ timestamp = datetime.now().isoformat()[:19].replace(':', '-')
72
+ outfile = f'{file_dir}/retailers-or-{timestamp}.xlsx'
73
+ response = requests.get(OREGON['retailers']['url'])
74
+ with open(outfile, 'wb') as doc:
75
+ doc.write(response.content)
76
+
77
+ # Extract data from the workbooks, removing the footnote.
78
+ data = pd.read_excel(outfile, skiprows=3)
79
+ data = data[:-1]
80
+ data.rename(columns=OREGON['retailers']['columns'], inplace=True)
81
+
82
+ # Optional: Remove licenses with an asterisk (*).
83
+
84
+ # Curate the data.
85
+ data['licensing_authority_id'] = OREGON['licensing_authority_id']
86
+ data['licensing_authority'] = OREGON['licensing_authority']
87
+ data['license_status'] = 'Active'
88
+ data['license_designation'] = 'Adult-Use'
89
+ data['premise_state'] = 'OR'
90
+ data.loc[data['medicinal'] == 'Yes', 'license_designation'] = 'Adult-Use and Medicinal'
91
+
92
+ # Convert `medicinal` and `delivery` columns to boolean.
93
+ data['medicinal'] = data['medicinal'].map(dict(Yes=1))
94
+ data['delivery'] = data['delivery'].map(dict(Yes=1))
95
+ data['medicinal'].fillna(0, inplace=True)
96
+ data['delivery'].fillna(0, inplace=True)
97
+
98
+ # Convert certain columns from upper case title case.
99
+ cols = ['business_dba_name', 'premise_city', 'premise_county',
100
+ 'premise_street_address']
101
+ for col in cols:
102
+ data[col] = data[col].apply(lambda x: x.title().strip())
103
+
104
+ # Convert zip code to a string.
105
+ data.loc[:, 'premise_zip_code'] = data['premise_zip_code'].apply(lambda x: str(int(x)))
106
+
107
+ # Get the `data_refreshed_date`.
108
+ df = pd.read_excel(outfile, index_col=None, usecols='C', header=1, nrows=0)
109
+ header = df.columns.values[0]
110
+ date = pd.to_datetime(header.split(' ')[-1])
111
+ data['data_refreshed_date'] = date.isoformat()
112
+
113
+ # Get the `license_number` and `license_type` from license list.
114
+ license_file = f'{file_dir}/licenses-or-{timestamp}.xlsx'
115
+ response = requests.get(OREGON['licenses']['url'])
116
+ with open(license_file, 'wb') as doc:
117
+ doc.write(response.content)
118
+ licenses = pd.read_excel(license_file, skiprows=2)
119
+ licenses['BUSINESS NAME'] = licenses['BUSINESS NAME'].apply(
120
+ lambda x: str(x).title().strip(),
121
+ )
122
+ licenses = licenses.loc[licenses['LICENSE TYPE'] == 'Recreational Retailer']
123
+ data = pd.merge(
124
+ data,
125
+ licenses[['BUSINESS NAME', 'COUNTY', 'LICENSE NUMBER', 'LICENSE TYPE']],
126
+ left_on=['business_dba_name', 'premise_county'],
127
+ right_on=['BUSINESS NAME', 'COUNTY'],
128
+ how='left',
129
+ )
130
+
131
+ # Clean the merged columns.
132
+ data.drop_duplicates(subset='premise_street_address', inplace=True)
133
+ columns = {
134
+ 'LICENSE NUMBER': 'license_number',
135
+ 'LICENSE TYPE': 'license_type',
136
+ }
137
+ data.rename(columns=columns, inplace=True)
138
+ data.drop(columns=['BUSINESS NAME', 'COUNTY'], inplace=True)
139
+
140
+ # Geocode licenses to get `premise_latitude` and `premise_longitude`.
141
+ config = dotenv_values(env_file)
142
+ google_maps_api_key = config['GOOGLE_MAPS_API_KEY']
143
+ cols = ['premise_street_address', 'premise_city', 'premise_state',
144
+ 'premise_zip_code']
145
+ data['address'] = data[cols].apply(
146
+ lambda row: ', '.join(row.values.astype(str)),
147
+ axis=1,
148
+ )
149
+ data = geocode_addresses(
150
+ data,
151
+ api_key=google_maps_api_key,
152
+ address_field='address',
153
+ )
154
+ drop_cols = ['state', 'state_name', 'county', 'address']
155
+ data.drop(columns=drop_cols, inplace=True)
156
+ gis_cols = {
157
+ 'latitude': 'premise_latitude',
158
+ 'longitude': 'premise_longitude'
159
+ }
160
+ data.rename(columns=gis_cols, inplace=True)
161
+
162
+ # Optional: Lookup details by searching for business' websites.
163
+ # - business_email
164
+ # - business_phone
165
+
166
+ # Optional: Create fields for standardization:
167
+ # - id
168
+
169
+ # Save the license data.
170
+ if data_dir is not None:
171
+ timestamp = datetime.now().isoformat()[:19].replace(':', '-')
172
+ data.to_excel(f'{data_dir}/licenses-or-{timestamp}.xlsx')
173
+ return data
174
+
175
+
176
+ if __name__ == '__main__':
177
+
178
+ # Support command line usage.
179
+ import argparse
180
+ try:
181
+ arg_parser = argparse.ArgumentParser()
182
+ arg_parser.add_argument('--d', dest='data_dir', type=str)
183
+ arg_parser.add_argument('--data_dir', dest='data_dir', type=str)
184
+ arg_parser.add_argument('--env', dest='env_file', type=str)
185
+ args = arg_parser.parse_args()
186
+ except SystemExit:
187
+ args = {'d': DATA_DIR, 'env_file': '../.env'}
188
+
189
+ # Get California licenses, saving them to the specified directory.
190
+ data_dir = args.get('d', args.get('data_dir'))
191
+ env_file = args.get('env_file')
192
+ get_licenses_or(data_dir, env_file=env_file)
analysis/figures/cannabis-licenses-map.html ADDED
The diff for this file is too large to render. See raw diff
 
analysis/license_map.py ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Interstate Cannabis Commerce
3
+ Copyright (c) 2022 Cannlytics
4
+
5
+ Authors:
6
+ Keegan Skeate <https://github.com/keeganskeate>
7
+ Created: 9/22/2022
8
+ Updated: 9/28/2022
9
+ License: <https://github.com/cannlytics/cannabis-data-science/blob/main/LICENSE>
10
+
11
+ Description:
12
+
13
+ Map the adult-use cannabis retailers permitted in the United States.
14
+
15
+ Data Sources (16):
16
+
17
+ - Alaska
18
+ URL: <>
19
+
20
+ - Arizona Department of Health Services | Division of Licensing
21
+ URL: <https://azcarecheck.azdhs.gov/s/?licenseType=null>
22
+
23
+ - Colorado
24
+ URL: <>
25
+
26
+ - Connecticut
27
+ URL: <>
28
+
29
+ - Illinois
30
+ URL: <>
31
+
32
+ - Maine
33
+ URL: <>
34
+
35
+ - Massachusetts
36
+ URL: <>
37
+
38
+ - Michigan
39
+ URL: <>
40
+
41
+ - Montana Department of Revenue | Cannabis Control Division
42
+ URL: <https://mtrevenue.gov/cannabis/#CannabisLicenses>
43
+
44
+ - New Mexico
45
+ URL: <https://nmrldlpi.force.com/bcd/s/public-search-license?division=CCD&language=en_US>
46
+
47
+ - Nevada Cannabis Compliance Board | Nevada Cannabis Licensees
48
+ URL: <https://ccb.nv.gov/list-of-licensees/>
49
+
50
+ - New Jersey
51
+ URL: <>
52
+
53
+ - Oregon Liquor and Cannabis Commission
54
+ URL: <https://www.oregon.gov/olcc/marijuana/pages/recreational-marijuana-licensing.aspx>
55
+
56
+ - Rhode Island
57
+ URL: <>
58
+
59
+ - Vermont
60
+ URL: <>
61
+
62
+ - Washington
63
+ URL: <https://lcb.wa.gov/records/frequently-requested-lists>
64
+
65
+ Coming Soon (3):
66
+
67
+ - New York
68
+ - Virginia
69
+ - D.C.
70
+
71
+ Medical (17):
72
+
73
+ - Utah
74
+ - Oklahoma
75
+ - North Dakota
76
+ - South Dakota
77
+ - Minnesota
78
+ - Missouri
79
+ - Arkansas
80
+ - Louisiana
81
+ - Mississippi
82
+ - Alabama
83
+ - Florida
84
+ - Ohio
85
+ - West Virginia
86
+ - Pennsylvania
87
+ - Maryland
88
+ - Delaware
89
+ - New Hampshire
90
+
91
+ """
92
+ # Standard imports.
93
+
94
+ # External imports.
95
+ import folium
96
+ import matplotlib.pyplot as plt
97
+ import pandas as pd
98
+ import seaborn as sns
99
+
100
+
101
+ # Specify where your data lives.
102
+ DATA_DIR = '../data'
103
+
104
+ #-----------------------------------------------------------------------
105
+ # Get the data.
106
+ #-----------------------------------------------------------------------
107
+
108
+ # California retailers.
109
+ filename = f'{DATA_DIR}/ca/licenses-ca-2022-09-21T19-02-29.xlsx'
110
+ ca_licenses = pd.read_excel(filename, index_col=0)
111
+
112
+ # Alaska retailers.
113
+
114
+ # Arizona retailers.
115
+
116
+ # Colorado retailers.
117
+
118
+ # Connecticut retailers.
119
+
120
+ # Illinois retailers.
121
+
122
+ # Maine retailers.
123
+
124
+ # Massachusetts retailers.
125
+
126
+ # Michigan retailers.
127
+
128
+ # Montana retailers.
129
+
130
+ # New Mexico retailers.
131
+
132
+ # Nevada retailers.
133
+
134
+ # New Jersey retailers.
135
+
136
+ # Oregon retailers.
137
+ filename = f'{DATA_DIR}/or/licenses-or-2022-09-28T10-11-12.xlsx'
138
+ or_licenses = pd.read_excel(filename, index_col=0)
139
+
140
+ # Rhode Island retailers.
141
+
142
+ # Vermont retailers.
143
+
144
+ # Washington retailers.
145
+
146
+
147
+ #-----------------------------------------------------------------------
148
+ # Look at the data!
149
+ #-----------------------------------------------------------------------
150
+
151
+ # Aggregate all of the retailer data.
152
+ retailers = pd.concat([
153
+ ca_licenses,
154
+ or_licenses,
155
+ ])
156
+ retailers = retailers.loc[
157
+ (~retailers['premise_longitude'].isnull()) &
158
+ (~retailers['premise_latitude'].isnull())
159
+ ]
160
+
161
+ # Create a scatterplot of latitude and longitude with hue as license type.
162
+ sns.scatterplot(
163
+ data=retailers,
164
+ x='premise_longitude',
165
+ y='premise_latitude',
166
+ hue='license_type',
167
+ )
168
+ plt.show()
169
+
170
+ # Optional: Create a nice static map.
171
+
172
+ # Create an interactive map.
173
+ locations = retailers[['premise_latitude', 'premise_longitude']].to_numpy()
174
+ m = folium.Map(
175
+ location=[45.5236, -122.6750],
176
+ zoom_start=4,
177
+ control_scale=True,
178
+ )
179
+ for index, row in retailers.iterrows():
180
+ folium.Circle(
181
+ radius=10,
182
+ location=[row['premise_latitude'], row['premise_longitude']],
183
+ color='crimson',
184
+ ).add_to(m)
185
+ m.save('figures/cannabis-licenses-map.html')
186
+
187
+
188
+ #-----------------------------------------------------------------------
189
+ # Get supplementary data.
190
+ #-----------------------------------------------------------------------
191
+
192
+ from bs4 import BeautifulSoup
193
+ from cannlytics.data.gis import get_state_population
194
+ from cannlytics.utils.constants import state_names
195
+ from dotenv import dotenv_values
196
+ from fredapi import Fred
197
+ import requests
198
+
199
+ # Read your FRED API key.
200
+ config = dotenv_values('../.env')
201
+ fred_api_key = config['FRED_API_KEY']
202
+
203
+ # Get the population for each state (in 2021).
204
+ state_data = {}
205
+ for state, abbv in state_names.items():
206
+ population = get_state_population(
207
+ abbv,
208
+ fred_api_key=fred_api_key,
209
+ obs_start='2021-01-01',
210
+ )
211
+ state_data[state] = {'population': population['population']}
212
+
213
+ # Get the square miles of land for each state.
214
+ url = 'https://en.wikipedia.org/wiki/List_of_U.S._states_and_territories_by_area'
215
+ response = requests.get(url).text
216
+ soup = BeautifulSoup(response, 'lxml')
217
+ table = soup.find('table', class_='wikitable')
218
+ for items in table.find_all('tr'):
219
+ data = items.find_all(['th', 'td'])
220
+ if data:
221
+ try:
222
+ rank = int(data[1].text)
223
+ except:
224
+ continue
225
+ state = data[0].text.replace('\n', '')
226
+ land_area = float(data[5].text.replace('\n', '').replace(',', ''))
227
+ state_data[state]['land_area_sq_mi']
228
+
229
+ # Get the change in GDP for each state in 2022 Q1.
230
+ code = 'NQGSP'
231
+ fred = Fred(api_key=fred_api_key)
232
+ for state, abbv in state_names.items():
233
+ try:
234
+ series = fred.get_series(abbv + code, '2021-10-01')
235
+ except ValueError:
236
+ continue
237
+ current, past = series[-1], series[-2]
238
+ change_gdp = ((current - past) / past) * 100
239
+ state_data[state]['change_gdp_2022_q1'] = change_gdp
240
+
241
+
242
+ #-----------------------------------------------------------------------
243
+ # Analyze the data.
244
+ #-----------------------------------------------------------------------
245
+
246
+ import statsmodels.api as sm
247
+
248
+ # FIXME: Compile all of the state statistics.
249
+ stats = pd.DataFrame()
250
+
251
+ # TODO: Count the number of retailers by state.
252
+
253
+
254
+ # TODO: Calculate retailers per capita (100,000) by state.
255
+
256
+
257
+ # TODO: Calculate retailers per 100 square miles by state.
258
+
259
+
260
+ # TODO: Create `adult_use` dummy variable. Assign 0 `retailers_per_capita`.
261
+
262
+
263
+ # Regress GDP on adult-use status and retailers per capita.
264
+ Y = stats['change_gdp_2022_q1']
265
+ X = stats[['adult_use', 'retailers_per_capita']]
266
+ X = sm.add_constant(X)
267
+ regression = sm.OLS(Y, X).fit()
268
+ print(regression.summary())
269
+
270
+ # Interpret the relationships.
271
+ beta = regression.params.adult_use
272
+ statement = """If a state permitted adult-use at the start of 2022,
273
+ then everything else held constant one would expect
274
+ GDP in 2022 Q1 to change by {}.
275
+ """.format(beta)
276
+ print(statement)
277
+
278
+ # Interpret the relationships.
279
+ beta = regression.params.retailers_per_capita
280
+ statement = """If retailers per 100,000 adults increases by 1,
281
+ then everything else held constant one would expect
282
+ GDP in 2022 Q1 to change by {}.
283
+ """.format(beta)
284
+ print(statement)
requirements.txt ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Cannabis Licenses | Python Requirements
2
+ # Created: 9/28/2022
3
+ # Updated: 9/28/2022
4
+ beautifulsoup4==4.11.1
5
+ cannlytics==0.0.12
6
+ firebase_admin==5.3.0
7
+ folium==0.12.1.post1
8
+ fredapi==0.5.0
9
+ matplotlib==3.6.0
10
+ pandas==1.4.4
11
+ pdfplumber==0.7.4
12
+ python-dotenv==0.21.0
13
+ seaborn==0.12.0