Datasets:
File size: 15,703 Bytes
d021ade 995e34e 0365440 f556ae0 bedf5ff 0e8ad98 979024b 29ea5fe d021ade 796ab23 e12caad d021ade 995e34e 0365440 f556ae0 bedf5ff 0e8ad98 979024b 29ea5fe 796ab23 d021ade 796ab23 e12caad d021ade 9fe5378 d6561f9 9fe5378 d6561f9 9fe5378 d6561f9 9fe5378 1155689 9fe5378 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 |
---
license: cc-by-nc-sa-4.0
task_categories:
- zero-shot-classification
- zero-shot-image-classification
language:
- ar
- el
- en
- hi
- ja
- ko
- te
- th
- uk
- zh
tags:
- multimodal
- representation learning
- multilingual
pretty_name: Symile-M3
size_categories:
- 10M<n<100M
configs:
- config_name: symile-m3-10-l
data_files:
- split: train
path: symile-m3-10-l/train-*
- split: val
path: symile-m3-10-l/val-*
- split: test
path: symile-m3-10-l/test-*
- config_name: symile-m3-10-m
data_files:
- split: train
path: symile-m3-10-m/train-*
- split: val
path: symile-m3-10-m/val-*
- split: test
path: symile-m3-10-m/test-*
- config_name: symile-m3-2-l
data_files:
- split: train
path: symile-m3-2-l/train-*
- split: val
path: symile-m3-2-l/val-*
- split: test
path: symile-m3-2-l/test-*
- config_name: symile-m3-2-m
data_files:
- split: train
path: symile-m3-2-m/train-*
- split: val
path: symile-m3-2-m/val-*
- split: test
path: symile-m3-2-m/test-*
- config_name: symile-m3-2-s
data_files:
- split: train
path: symile-m3-2-s/train-*
- split: val
path: symile-m3-2-s/val-*
- split: test
path: symile-m3-2-s/test-*
- config_name: symile-m3-2-xs
data_files:
- split: train
path: symile-m3-2-xs/train-*
- split: val
path: symile-m3-2-xs/val-*
- split: test
path: symile-m3-2-xs/test-*
- config_name: symile-m3-5-l
data_files:
- split: train
path: symile-m3-5-l/train-*
- split: val
path: symile-m3-5-l/val-*
- split: test
path: symile-m3-5-l/test-*
- config_name: symile-m3-5-m
data_files:
- split: train
path: symile-m3-5-m/train-*
- split: val
path: symile-m3-5-m/val-*
- split: test
path: symile-m3-5-m/test-*
- config_name: symile-m3-5-s
data_files:
- split: train
path: symile-m3-5-s/train-*
- split: val
path: symile-m3-5-s/val-*
- split: test
path: symile-m3-5-s/test-*
- config_name: symile-m3-5-xs
data_files:
- split: train
path: symile-m3-5-xs/train-*
- split: val
path: symile-m3-5-xs/val-*
- split: test
path: symile-m3-5-xs/test-*
dataset_info:
- config_name: symile-m3-10-l
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 1446543825495.0
num_examples: 10000000
- name: val
num_bytes: 72759133130.0
num_examples: 500000
- name: test
num_bytes: 73115450770.0
num_examples: 500000
download_size: 1581842669512
dataset_size: 1592418409395.0
- config_name: symile-m3-10-m
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 730037036870.0
num_examples: 5000000
- name: val
num_bytes: 34629271677.0
num_examples: 250000
- name: test
num_bytes: 36151216283.0
num_examples: 250000
download_size: 791259211281
dataset_size: 800817524830.0
- config_name: symile-m3-2-l
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 1505566993378.0
num_examples: 10000000
- name: val
num_bytes: 72552235656.0
num_examples: 500000
- name: test
num_bytes: 74556954653.0
num_examples: 500000
download_size: 1614310359255
dataset_size: 1652676183687.0
- config_name: symile-m3-2-m
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 705910308274.0
num_examples: 5000000
- name: val
num_bytes: 36243856806.0
num_examples: 250000
- name: test
num_bytes: 36343275454.0
num_examples: 250000
download_size: 807287520293
dataset_size: 778497440534.0
- config_name: symile-m3-2-s
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 146636122338.0
num_examples: 1000000
- name: val
num_bytes: 6986579320.0
num_examples: 50000
- name: test
num_bytes: 7092936758.0
num_examples: 50000
download_size: 161657435865
dataset_size: 160715638416.0
- config_name: symile-m3-2-xs
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 71351902981.0
num_examples: 500000
- name: val
num_bytes: 3538429599.0
num_examples: 25000
- name: test
num_bytes: 3872603007.0
num_examples: 25000
download_size: 80789426573
dataset_size: 78762935587.0
- config_name: symile-m3-5-l
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 1436698424427.0
num_examples: 10000000
- name: val
num_bytes: 72348250632.0
num_examples: 500000
- name: test
num_bytes: 73383131337.0
num_examples: 500000
download_size: 1596667549079
dataset_size: 1582429806396.0
- config_name: symile-m3-5-m
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 725049451643.0
num_examples: 5000000
- name: val
num_bytes: 35602464495.0
num_examples: 250000
- name: test
num_bytes: 36207897705.0
num_examples: 250000
download_size: 798705714640
dataset_size: 796859813843.0
- config_name: symile-m3-5-s
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 142185812397.0
num_examples: 1000000
- name: val
num_bytes: 7217779117.0
num_examples: 50000
- name: test
num_bytes: 7586183683.0
num_examples: 50000
download_size: 159628727029
dataset_size: 156989775197.0
- config_name: symile-m3-5-xs
features:
- name: lang
dtype: string
- name: audio
dtype: audio
- name: image
dtype: image
- name: text
dtype: string
- name: cls
dtype: string
- name: cls_id
dtype: int64
- name: target_text
dtype: string
splits:
- name: train
num_bytes: 70410563197.0
num_examples: 500000
- name: val
num_bytes: 3607295872.0
num_examples: 25000
- name: test
num_bytes: 3624041386.0
num_examples: 25000
download_size: 80003029310
dataset_size: 77641900455.0
---
# Dataset Card for Symile-M3
Symile-M3 is a multilingual dataset of (audio, image, text) samples. The dataset is specifically designed to test a model's ability to capture higher-order information between three distinct high-dimensional data types: by incorporating multiple languages, we construct a task where text and audio are both needed to predict the image, and where, importantly, neither text nor audio alone would suffice.
- Paper: https://arxiv.org/abs/2411.01053
- GitHub: https://github.com/rajesh-lab/symile
- Questions & Discussion: https://www.alphaxiv.org/abs/2411.01053v1
## Overview
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66d8e34b27d76ef6e481c2b5/mR0kJkgVyUK5rTNUOCOFx.jpeg)
Let `w` represent the number of languages in the dataset (`w=2`, `w=5`, and `w=10` correspond to Symile-M3-2, Symile-M3-5, and Symile-M3-10, respectively). An (audio, image, text) sample is generated by first drawing a short one-sentence audio clip from [Common Voice](https://commonvoice.mozilla.org/en/datasets) spoken in one of `w` languages with equal probability. An image is drawn from [ImageNet](https://www.image-net.org/) that corresponds to one of 1,000 classes with equal probability. Finally, text containing exactly `w` words is generated based on the drawn audio and image: one of the `w` words in the text is the drawn image class name in the drawn audio language. The remaining `w-1` words are randomly chosen from the ImageNet class names and written in one of the `w` languages such that there is no overlap in language or class name across the `w` words in the text. The words are separated by underscores, and their order is randomized.
## Tasks
The dataset was designed to evaluate a model on the zero-shot retrieval task of finding an image of the appropriate class given the audio and text. The most probable image for a given query audio and text pair, selected from all possible candidate images in the test set, is that with the highest similarity score.
The dataset was designed to ensure that neither text nor audio alone would suffice to predict the image. Therefore, success on this zero-shot retrieval task hinges on a model's ability to capture joint information between the three modalities.
### Dataset Structure
Each sample in the dataset is a dictionary containing the following fields:
```python
{
# language code of the audio clip
'lang': 'ja',
# audio data
'audio': {
'path': 'common_voice_ja_39019065.mp3', # Common Voice filename
'array': array([0.00000000e+00, ..., 7.78421963e-06]), # raw audio waveform
'sampling_rate': 32000 # sampling rate in Hz
},
# image as a PIL Image object (RGB, size varies)
'image': <PIL.JpegImageFile image mode=RGB size=500x375>,
# text containing w words (one per language) separated by underscores
'text': 'σπιτάκι πουλιών_ドーム_प्रयोगशाला कोट_мавпа-павук_gown',
# target word class name in English (key in translations.json)
'cls': 'dome',
# class ID from translations.json (0 to 999)
'cls_id': 538,
# target word (class name in the language of the audio)
'target_text': 'ドーム'
}
```
The dataset includes a `translations.json` file that maps ImageNet class names across all supported languages. Each entry contains:
- The English class name as the key
- Translations for all supported languages (`ar`, `el`, `en`, `hi`, `ja`, `ko`, `te`, `th`, `uk`, `zh-CN`)
- The ImageNet synset ID
- A unique class ID (0-999)
Example structure:
```json
{
"tench": {
"synset_id": "n01440764",
"cls_id": 0,
"ar": "سمك البنش",
"el": "είδος κυπρίνου",
"en": "tench",
"hi": "टेंच",
"ja": "テンチ",
"ko": "텐치",
"te": "టెంచ్",
"th": "ปลาเทนช์",
"uk": "линь",
"zh-CN": "丁鱥"
}
}
```
## Dataset Variants
We release three variants of the dataset:
- Symile-M3-2 with 2 languages: English (`en`) and Greek (`el`).
- Symile-M3-5 with 5 languages: English (`en`), Greek (`el`), Hindi (`hi`), Japanese (`ja`), and Ukrainian (`uk`).
- Symile-M3-10 with 10 languages: Arabic (`ar`), Greek (`el`), English (`en`), Hindi (`hi`), Japanese (`ja`), Korean (`ko`), Telugu (`te`), Thai (`th`), Ukrainian (`uk`), and Chinese (`zh-CN`).
Each variant is available in four sizes:
- Large (`l`): 10M training samples, 500K validation samples, 500K test samples
- Medium (`m`): 5M training samples, 250K validation samples, 250K test samples
- Small (`s`): 1M training samples, 50K validation samples, 50K test samples
- Extra Small (`xs`): 500K training samples, 25K validation samples, 25K test samples
## Usage
Before using the dataset, ensure you have the required audio and image processing libraries installed:
```bash
pip install librosa soundfile pillow
```
To load a specific version of Symile-M3, use a configuration name following the pattern `symile-m3-{num_langs}-{size}` where:
- `num_langs` is `2`, `5`, or `10`
- `size` is `xs`, `s`, `m`, or `l`
For example, to load the `xs` version of Symile-M3-5:
```python
from datasets import load_dataset
dataset = load_dataset("arsaporta/symile-m3", "symile-m3-5-xs")
print(dataset['train'][0]) # access first train sample
print(len(dataset['train'])) # get number of train samples
```
To process the dataset without loading it entirely into memory, use streaming mode to load samples one at a time:
```python
from datasets import load_dataset
dataset = load_dataset("arsaporta/symile-m3", "symile-m3-5-xs", streaming=True)
print(next(iter(dataset['train'])))
```
To download the dataset for offline use:
```python
import os
from datasets import load_dataset
from huggingface_hub import snapshot_download
local_dir = "./symile-m3-5-xs" # where to save
# download parquet files
snapshot_download(
repo_id="arsaporta/symile-m3",
repo_type="dataset",
local_dir=local_dir,
allow_patterns=["symile-m3-5-xs/*"] # which configuration to download
)
# load the downloaded parquet files
dataset = load_dataset(
"parquet",
data_files={
"train": os.path.join(data_dir, "train-*.parquet"),
"validation": os.path.join(data_dir, "val-*.parquet"),
"test": os.path.join(data_dir, "test-*.parquet")
}
)
```
## Working with Raw Data
To work directly with the source images (jpeg) and audio (mp3):
1. Download the source data:
- **ImageNet:** Get the training data from [Kaggle's ImageNet Challenge](https://www.kaggle.com/c/imagenet-object-localization-challenge/data?select=ILSVRC)
- **Common Voice:** Download your needed languages from [Common Voice](https://commonvoice.mozilla.org/en/datasets):
* All languages use Common Voice v16.0, except English which uses v14.0
* Required languages vary by configuration:
- Symile-M3-2: English (`en`), Greek (`el`)
- Symile-M3-5: English, Greek, Hindi (`hi`), Japanese (`ja`), Ukrainian (`uk`)
- Symile-M3-10: All of the above plus Arabic (`ar`), Korean (`ko`), Telugu (`te`), Thai (`th`), Chinese (`zh-CN`)
2. Access the dataset CSV files:
- Find them in the `.csv_files` directory, organized by configuration (e.g., `symile-m3-2-xs`, `symile-m3-10-l`)
- Each configuration contains `train.csv`, `val.csv`, and `test.csv`
- CSV paths match the default extraction paths of ImageNet (`ILSVRC/Data/CLS-LOC/train/...`) and Common Voice (`cv/{lang}/clips/...`)
## Citation
```
@inproceedings{saporta2024symile,
title = {Contrasting with Symile: Simple Model-Agnostic Representation Learning for Unlimited Modalities}
author = {Saporta, Adriel and Puli, Aahlad and Goldstein, Mark and Ranganath, Rajesh}
booktitle = {Advances in Neural Information Processing Systems},
year = {2024}
}
``` |