Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
File size: 7,507 Bytes
d0ec5fb bb37359 4a08319 202aabf bb37359 2605bbb bb37359 7faee58 bb37359 f386421 d0ec5fb 1f1e56e d0ec5fb 1f1e56e d0ec5fb 3aadc78 d0ec5fb bb37359 d0ec5fb 3aadc78 d0ec5fb 1f1e56e d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 1f1e56e d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 1f1e56e d0ec5fb 3aadc78 d0ec5fb 1f1e56e d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 3aadc78 d0ec5fb 2605bbb d0ec5fb 3aadc78 d0ec5fb 2605bbb d0ec5fb f386421 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
license:
- cc-by-4.0
multilinguality:
- monolingual
pretty_name: CosmosQA
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- multiple-choice
task_ids:
- multiple-choice-qa
paperswithcode_id: cosmosqa
dataset_info:
features:
- name: id
dtype: string
- name: context
dtype: string
- name: question
dtype: string
- name: answer0
dtype: string
- name: answer1
dtype: string
- name: answer2
dtype: string
- name: answer3
dtype: string
- name: label
dtype: int32
splits:
- name: test
num_bytes: 5121479
num_examples: 6963
- name: train
num_bytes: 17159918
num_examples: 25262
- name: validation
num_bytes: 2186987
num_examples: 2985
download_size: 24399475
dataset_size: 24468384
---
# Dataset Card for "cosmos_qa"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://wilburone.github.io/cosmos/](https://wilburone.github.io/cosmos/)
- **Repository:** https://github.com/wilburOne/cosmosqa/
- **Paper:** [Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning](https://arxiv.org/abs/1909.00277)
- **Point of Contact:** [Lifu Huang](mailto:warrior.fu@gmail.com)
- **Size of downloaded dataset files:** 23.27 MB
- **Size of the generated dataset:** 23.37 MB
- **Total amount of disk used:** 46.64 MB
### Dataset Summary
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 23.27 MB
- **Size of the generated dataset:** 23.37 MB
- **Total amount of disk used:** 46.64 MB
An example of 'validation' looks as follows.
```
This example was too long and was cropped:
{
"answer0": "If he gets married in the church he wo nt have to get a divorce .",
"answer1": "He wants to get married to a different person .",
"answer2": "He wants to know if he does nt like this girl can he divorce her ?",
"answer3": "None of the above choices .",
"context": "\"Do i need to go for a legal divorce ? I wanted to marry a woman but she is not in the same religion , so i am not concern of th...",
"id": "3BFF0DJK8XA7YNK4QYIGCOG1A95STE##3180JW2OT5AF02OISBX66RFOCTG5J7##A2LTOS0AZ3B28A##Blog_56156##q1_a1##378G7J1SJNCDAAIN46FM2P7T6KZEW2",
"label": 1,
"question": "Why is this person asking about divorce ?"
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `id`: a `string` feature.
- `context`: a `string` feature.
- `question`: a `string` feature.
- `answer0`: a `string` feature.
- `answer1`: a `string` feature.
- `answer2`: a `string` feature.
- `answer3`: a `string` feature.
- `label`: a `int32` feature.
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default|25262| 2985|6963|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
As reported via email by Yejin Choi, the dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.
### Citation Information
```
@inproceedings{huang-etal-2019-cosmos,
title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning",
author = "Huang, Lifu and
Le Bras, Ronan and
Bhagavatula, Chandra and
Choi, Yejin",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
month = nov,
year = "2019",
address = "Hong Kong, China",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/D19-1243",
doi = "10.18653/v1/D19-1243",
pages = "2391--2401",
}
```
### Contributions
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova), [@thomwolf](https://github.com/thomwolf) for adding this dataset. |