Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Commit
•
2605bbb
1
Parent(s):
bb37359
Add license and citation information to cosmos_qa dataset (#4913)
Browse files* Add license information to cosmos_qa dataset card
* Add license to script
* Regenerate metadata JSON
* Update citation information
* Fix style
Commit from https://github.com/huggingface/datasets/commit/c47e6a987e838445bd5d8f84cbb17ab55df65535
- README.md +16 -8
- cosmos_qa.py +26 -32
- dataset_infos.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ language:
|
|
6 |
language_creators:
|
7 |
- found
|
8 |
license:
|
9 |
-
-
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
pretty_name: CosmosQA
|
@@ -167,17 +167,25 @@ The data fields are the same among all splits.
|
|
167 |
|
168 |
### Licensing Information
|
169 |
|
170 |
-
[
|
171 |
|
172 |
### Citation Information
|
173 |
|
174 |
```
|
175 |
-
@inproceedings{cosmos,
|
176 |
-
title={
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
}
|
182 |
```
|
183 |
|
|
|
6 |
language_creators:
|
7 |
- found
|
8 |
license:
|
9 |
+
- cc-by-4.0
|
10 |
multilinguality:
|
11 |
- monolingual
|
12 |
pretty_name: CosmosQA
|
|
|
167 |
|
168 |
### Licensing Information
|
169 |
|
170 |
+
As reported via email by Yejin Choi, the dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) license.
|
171 |
|
172 |
### Citation Information
|
173 |
|
174 |
```
|
175 |
+
@inproceedings{huang-etal-2019-cosmos,
|
176 |
+
title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning",
|
177 |
+
author = "Huang, Lifu and
|
178 |
+
Le Bras, Ronan and
|
179 |
+
Bhagavatula, Chandra and
|
180 |
+
Choi, Yejin",
|
181 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
|
182 |
+
month = nov,
|
183 |
+
year = "2019",
|
184 |
+
address = "Hong Kong, China",
|
185 |
+
publisher = "Association for Computational Linguistics",
|
186 |
+
url = "https://www.aclweb.org/anthology/D19-1243",
|
187 |
+
doi = "10.18653/v1/D19-1243",
|
188 |
+
pages = "2391--2401",
|
189 |
}
|
190 |
```
|
191 |
|
cosmos_qa.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
"""
|
2 |
|
3 |
|
4 |
import csv
|
@@ -7,22 +7,32 @@ import json
|
|
7 |
import datasets
|
8 |
|
9 |
|
10 |
-
|
11 |
-
_CITATION = """\
|
12 |
-
@inproceedings{cosmos,
|
13 |
-
title={COSMOS QA: Machine Reading Comprehension
|
14 |
-
with Contextual Commonsense Reasoning},
|
15 |
-
author={Lifu Huang and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
|
16 |
-
booktitle ={arXiv:1909.00277v2},
|
17 |
-
year={2019}
|
18 |
-
}
|
19 |
-
"""
|
20 |
|
21 |
-
# TODO(cosmos_qa):
|
22 |
_DESCRIPTION = """\
|
23 |
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context
|
24 |
"""
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
_URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/"
|
27 |
_URLS = {
|
28 |
"train": _URL + "train.csv",
|
@@ -32,17 +42,13 @@ _URLS = {
|
|
32 |
|
33 |
|
34 |
class CosmosQa(datasets.GeneratorBasedBuilder):
|
35 |
-
"""
|
36 |
|
37 |
-
# TODO(cosmos_qa): Set up version.
|
38 |
VERSION = datasets.Version("0.1.0")
|
39 |
|
40 |
def _info(self):
|
41 |
-
# TODO(cosmos_qa): Specifies the datasets.DatasetInfo object
|
42 |
return datasets.DatasetInfo(
|
43 |
-
# This is the description that will appear on the datasets page.
|
44 |
description=_DESCRIPTION,
|
45 |
-
# datasets.features.FeatureConnectors
|
46 |
features=datasets.Features(
|
47 |
{
|
48 |
"id": datasets.Value("string"),
|
@@ -52,47 +58,35 @@ class CosmosQa(datasets.GeneratorBasedBuilder):
|
|
52 |
"answer1": datasets.Value("string"),
|
53 |
"answer2": datasets.Value("string"),
|
54 |
"answer3": datasets.Value("string"),
|
55 |
-
"label": datasets.Value("int32")
|
56 |
-
# These are the features of your dataset like images, labels ...
|
57 |
}
|
58 |
),
|
59 |
-
|
60 |
-
# specify them here. They'll be used if as_supervised=True in
|
61 |
-
# builder.as_dataset.
|
62 |
-
supervised_keys=None,
|
63 |
-
# Homepage of the dataset for documentation
|
64 |
-
homepage="https://wilburone.github.io/cosmos/",
|
65 |
citation=_CITATION,
|
|
|
66 |
)
|
67 |
|
68 |
def _split_generators(self, dl_manager):
|
69 |
"""Returns SplitGenerators."""
|
70 |
-
# TODO(cosmos_qa): Downloads the data and defines the splits
|
71 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
72 |
-
# download and extract URLs
|
73 |
urls_to_download = _URLS
|
74 |
dl_dir = dl_manager.download_and_extract(urls_to_download)
|
75 |
return [
|
76 |
datasets.SplitGenerator(
|
77 |
name=datasets.Split.TRAIN,
|
78 |
-
# These kwargs will be passed to _generate_examples
|
79 |
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
80 |
),
|
81 |
datasets.SplitGenerator(
|
82 |
name=datasets.Split.TEST,
|
83 |
-
# These kwargs will be passed to _generate_examples
|
84 |
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
85 |
),
|
86 |
datasets.SplitGenerator(
|
87 |
name=datasets.Split.VALIDATION,
|
88 |
-
# These kwargs will be passed to _generate_examples
|
89 |
gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"},
|
90 |
),
|
91 |
]
|
92 |
|
93 |
def _generate_examples(self, filepath, split):
|
94 |
"""Yields examples."""
|
95 |
-
# TODO(cosmos_qa): Yields (key, example) tuples from the dataset
|
96 |
with open(filepath, encoding="utf-8") as f:
|
97 |
if split == "test":
|
98 |
for id_, row in enumerate(f):
|
|
|
1 |
+
"""Cosmos QA dataset."""
|
2 |
|
3 |
|
4 |
import csv
|
|
|
7 |
import datasets
|
8 |
|
9 |
|
10 |
+
_HOMEPAGE = "https://wilburone.github.io/cosmos/"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
|
|
12 |
_DESCRIPTION = """\
|
13 |
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context
|
14 |
"""
|
15 |
|
16 |
+
_CITATION = """\
|
17 |
+
@inproceedings{huang-etal-2019-cosmos,
|
18 |
+
title = "Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning",
|
19 |
+
author = "Huang, Lifu and
|
20 |
+
Le Bras, Ronan and
|
21 |
+
Bhagavatula, Chandra and
|
22 |
+
Choi, Yejin",
|
23 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)",
|
24 |
+
month = nov,
|
25 |
+
year = "2019",
|
26 |
+
address = "Hong Kong, China",
|
27 |
+
publisher = "Association for Computational Linguistics",
|
28 |
+
url = "https://www.aclweb.org/anthology/D19-1243",
|
29 |
+
doi = "10.18653/v1/D19-1243",
|
30 |
+
pages = "2391--2401",
|
31 |
+
}
|
32 |
+
"""
|
33 |
+
|
34 |
+
_LICENSE = "CC BY 4.0"
|
35 |
+
|
36 |
_URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/"
|
37 |
_URLS = {
|
38 |
"train": _URL + "train.csv",
|
|
|
42 |
|
43 |
|
44 |
class CosmosQa(datasets.GeneratorBasedBuilder):
|
45 |
+
"""Cosmos QA dataset."""
|
46 |
|
|
|
47 |
VERSION = datasets.Version("0.1.0")
|
48 |
|
49 |
def _info(self):
|
|
|
50 |
return datasets.DatasetInfo(
|
|
|
51 |
description=_DESCRIPTION,
|
|
|
52 |
features=datasets.Features(
|
53 |
{
|
54 |
"id": datasets.Value("string"),
|
|
|
58 |
"answer1": datasets.Value("string"),
|
59 |
"answer2": datasets.Value("string"),
|
60 |
"answer3": datasets.Value("string"),
|
61 |
+
"label": datasets.Value("int32"),
|
|
|
62 |
}
|
63 |
),
|
64 |
+
homepage=_HOMEPAGE,
|
|
|
|
|
|
|
|
|
|
|
65 |
citation=_CITATION,
|
66 |
+
license=_LICENSE,
|
67 |
)
|
68 |
|
69 |
def _split_generators(self, dl_manager):
|
70 |
"""Returns SplitGenerators."""
|
|
|
|
|
|
|
71 |
urls_to_download = _URLS
|
72 |
dl_dir = dl_manager.download_and_extract(urls_to_download)
|
73 |
return [
|
74 |
datasets.SplitGenerator(
|
75 |
name=datasets.Split.TRAIN,
|
|
|
76 |
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
77 |
),
|
78 |
datasets.SplitGenerator(
|
79 |
name=datasets.Split.TEST,
|
|
|
80 |
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
81 |
),
|
82 |
datasets.SplitGenerator(
|
83 |
name=datasets.Split.VALIDATION,
|
|
|
84 |
gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"},
|
85 |
),
|
86 |
]
|
87 |
|
88 |
def _generate_examples(self, filepath, split):
|
89 |
"""Yields examples."""
|
|
|
90 |
with open(filepath, encoding="utf-8") as f:
|
91 |
if split == "test":
|
92 |
for id_, row in enumerate(f):
|
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"default": {"description": "Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context\n", "citation": "@inproceedings{cosmos,\n title={
|
|
|
1 |
+
{"default": {"description": "Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context\n", "citation": "@inproceedings{huang-etal-2019-cosmos,\n title = \"Cosmos {QA}: Machine Reading Comprehension with Contextual Commonsense Reasoning\",\n author = \"Huang, Lifu and\n Le Bras, Ronan and\n Bhagavatula, Chandra and\n Choi, Yejin\",\n booktitle = \"Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)\",\n month = nov,\n year = \"2019\",\n address = \"Hong Kong, China\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/D19-1243\",\n doi = \"10.18653/v1/D19-1243\",\n pages = \"2391--2401\",\n}\n", "homepage": "https://wilburone.github.io/cosmos/", "license": "CC BY 4.0", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer0": {"dtype": "string", "id": null, "_type": "Value"}, "answer1": {"dtype": "string", "id": null, "_type": "Value"}, "answer2": {"dtype": "string", "id": null, "_type": "Value"}, "answer3": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "cosmos_qa", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 17159918, "num_examples": 25262, "dataset_name": "cosmos_qa"}, "test": {"name": "test", "num_bytes": 5121479, "num_examples": 6963, "dataset_name": "cosmos_qa"}, "validation": {"name": "validation", "num_bytes": 2186987, "num_examples": 2985, "dataset_name": "cosmos_qa"}}, "download_checksums": {"https://github.com/wilburOne/cosmosqa/raw/master/data/train.csv": {"num_bytes": 16660449, "checksum": "d8d5ca1f9f6534b6530550718591af89372d976a8fc419360fab4158dee4d0b2"}, "https://github.com/wilburOne/cosmosqa/raw/master/data/test.jsonl": {"num_bytes": 5610681, "checksum": "70005196dc2588b95de34f1657b25e2c1a4810cfe55b5bb0c0e15580c37b3ed0"}, "https://github.com/wilburOne/cosmosqa/raw/master/data/valid.csv": {"num_bytes": 2128345, "checksum": "a6a94fc1463ca82bb10f98ef68ed535405e6f5c36e044ff8e136b5c19dea63f3"}}, "download_size": 24399475, "post_processing_size": null, "dataset_size": 24468384, "size_in_bytes": 48867859}}
|