Datasets:
license: apache-2.0
language:
- multilingual
- af
- am
- ar
- as
- azb
- be
- bg
- bm
- bn
- bo
- bs
- ca
- ceb
- cs
- cy
- da
- de
- du
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- ga
- gd
- gl
- ha
- hi
- hr
- ht
- hu
- id
- ig
- is
- it
- iw
- ja
- jv
- ka
- ki
- kk
- km
- ko
- la
- lb
- ln
- lo
- lt
- lv
- mi
- mr
- ms
- mt
- my
- 'no'
- oc
- pa
- pl
- pt
- qu
- ro
- ru
- sa
- sc
- sd
- sg
- sk
- sl
- sm
- so
- sq
- sr
- ss
- sv
- sw
- ta
- te
- th
- ti
- tl
- tn
- tpi
- tr
- ts
- tw
- uk
- ur
- uz
- vi
- war
- wo
- xh
- yo
- zh
- zu
task_categories:
- image-to-text
tags:
- ocr
size_categories:
- 1M<n<10M
Synthdog Multilingual
The Synthdog dataset created for training in Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model.
Using the official Synthdog code, we created >1 million training samples for improving OCR capabilities in Large Vision-Language Models.
Dataset Details
We provide the images for download in two .tar.gz
files. Download and extract them in folders of the same name (so tar xvzf images.tar.gz -C images; tar xvzf images.tar.gz -C images_non_latin
).
The image path in the dataset expects images to be in those respective folders for unique identification.
Every language has the following amount of samples: 500,000 for English, 10,000 for non-Latin scripts, and 5,000 otherwise.
Text is taken from Wikipedia of the respective languages. Font is GoNotoKurrent-Regular
.
Note: Right-to-left written scripts (Arabic, Hebrew, ...) are unfortunatly writte correctly right-to-left but also bottom-to-top. We were not able to fix this issue. However, empirical results in Centurio suggest that this data is still helpful for improving model performance.
Citation
BibTeX:
@article{centurio2025,
author = {Gregor Geigle and
Florian Schneider and
Carolin Holtermann and
Chris Biemann and
Radu Timofte and
Anne Lauscher and
Goran Glava\v{s}},
title = {Centurio: On Drivers of Multilingual Ability of Large Vision-Language Model},
journal = {arXiv},
volume = {abs/2501.05122},
year = {2025},
url = {https://arxiv.org/abs/2501.05122},
eprinttype = {arXiv},
eprint = {2501.05122},
}