File size: 88,290 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 |
{
"paper_id": "2020",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:44:25.591379Z"
},
"title": "Virtual Citation Proximity (VCP): Empowering Document Recommender Systems by Learning a Hypothetical In-Text Citation-Proximity Metric for Uncited Documents",
"authors": [
{
"first": "Paul",
"middle": [],
"last": "Molley",
"suffix": "",
"affiliation": {},
"email": "molloyp1@tcd.ie"
},
{
"first": "Joeran",
"middle": [],
"last": "Beel",
"suffix": "",
"affiliation": {},
"email": "joeran.beel@uni-siegen.de"
},
{
"first": "Akiko",
"middle": [],
"last": "Aizawa",
"suffix": "",
"affiliation": {},
"email": "aizawa@nii.ac.jp"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The relatedness of research articles, patents, court rulings, web pages, and other document types is often calculated with citation or hyperlink-based approaches like co-citation (proximity) analysis. The main limitation of citation-based approaches is that they cannot be used for documents that receive little or no citations. We propose Virtual Citation Proximity (VCP), a Siamese Neural Network architecture, which combines the advantages of co-citation proximity analysis (diverse notions of relatedness / high recommendation performance), with the advantage of content-based filtering (high coverage). VCP is trained on a corpus of documents with textual features, and with real citation proximity as ground truth. VCP then predicts for any two documents, based on their title and abstract, in what proximity the two documents would be co-cited, if they were indeed co-cited. The prediction can be used in the same way as real citation proximity to calculate document relatedness, even for uncited documents. In our evaluation with 2 million co-citations from Wikipedia articles, VCP achieves an MAE of 0.0055, i.e. an improvement of 20% over the baseline, though the learning curve suggests that more work is needed.",
"pdf_parse": {
"paper_id": "2020",
"_pdf_hash": "",
"abstract": [
{
"text": "The relatedness of research articles, patents, court rulings, web pages, and other document types is often calculated with citation or hyperlink-based approaches like co-citation (proximity) analysis. The main limitation of citation-based approaches is that they cannot be used for documents that receive little or no citations. We propose Virtual Citation Proximity (VCP), a Siamese Neural Network architecture, which combines the advantages of co-citation proximity analysis (diverse notions of relatedness / high recommendation performance), with the advantage of content-based filtering (high coverage). VCP is trained on a corpus of documents with textual features, and with real citation proximity as ground truth. VCP then predicts for any two documents, based on their title and abstract, in what proximity the two documents would be co-cited, if they were indeed co-cited. The prediction can be used in the same way as real citation proximity to calculate document relatedness, even for uncited documents. In our evaluation with 2 million co-citations from Wikipedia articles, VCP achieves an MAE of 0.0055, i.e. an improvement of 20% over the baseline, though the learning curve suggests that more work is needed.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "Calculating document relatedness is key in creating recommender systems for digital libraries (we focus on research paper recommenders -our work is, however, equally applicable to patents, websites, court rulings and other documents with hyperlinks, citations respectively). Recommender systems in digital libraries calculate relatedness of research articles typically via content-based filtering or hyperlink/citation-based approaches (Jannach et al., 2010; Beel et al., 2016; Lops et al., 2019) . Citation-based approaches consider documents as related that reference the same documents (bibliographic coupling), that are co-cited by other documents or that are otherwise connected in the citation graph (Beel et al., 2016) .",
"cite_spans": [
{
"start": 436,
"end": 458,
"text": "(Jannach et al., 2010;",
"ref_id": "BIBREF15"
},
{
"start": 459,
"end": 477,
"text": "Beel et al., 2016;",
"ref_id": "BIBREF4"
},
{
"start": 478,
"end": 496,
"text": "Lops et al., 2019)",
"ref_id": "BIBREF22"
},
{
"start": 706,
"end": 725,
"text": "(Beel et al., 2016)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Citation-based approaches may recommend more diverse items than content-based filtering, as citations can be made for various reasons (Willett, 2013; F\u00e4rber and Sampath, 2019; Erikson and Erlandson, 2014) . For instance, two documents can be co-cited because they address the same research problem; use the same methodology (to solve different problems); or two documents may be cocited for less predictable reasons. Today's textbased methods can hardly distinguish such diverse types of relatedness. Instead, text-based methods generally consider two documents as related the more terms they have in common 1 .",
"cite_spans": [
{
"start": 134,
"end": 149,
"text": "(Willett, 2013;",
"ref_id": "BIBREF30"
},
{
"start": 150,
"end": 175,
"text": "F\u00e4rber and Sampath, 2019;",
"ref_id": "BIBREF9"
},
{
"start": 176,
"end": 204,
"text": "Erikson and Erlandson, 2014)",
"ref_id": "BIBREF8"
},
{
"start": 608,
"end": 609,
"text": "1",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "A particularly promising citation-based approach is Citation Proximity Analysis (CPA) (Gipp and Beel, 2009) , which is illustrated in Figure 1 . CPA considers documents as the more related, the closer the distance in which they are co-cited. For instance, in the example, the Citing Document cites Document A and Document B in the same sentence. Document C is cited in a different paragraph. Hence, A and B are more related than A and C (or B and C).",
"cite_spans": [
{
"start": 86,
"end": 107,
"text": "(Gipp and Beel, 2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 134,
"end": 142,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "CPA out-performs standard co-citation analysis by up to 95% (Schwarzer et al., 2016) and has successfully been used with research articles (Balaji et al., 2017; Liu and Chen, 2011; Knoth and Khadka, 2017; Gipp and Beel, 2009) , Wikipedia (Schwarzer et al., 2016 (Schwarzer et al., , 2017 , web pages , mind-maps and authors (Kim et al., 2016) . The downside of CPA is that it can be only be applied to documents that are (co-)cited. Most research articles, however, are (Gipp and Beel, 2009) . A citing document cites the three documents A, B, and C. Documents A and B are cited within the same sentence and are hence strongly related. Documents A and C, as well as documents B and C, are each cited within different paragraphs. Hence, they are considered as less strongly related to each other. A recommender system that receives document B as input, and that should recommend the most related document, would recommend document A.",
"cite_spans": [
{
"start": 60,
"end": 84,
"text": "(Schwarzer et al., 2016)",
"ref_id": "BIBREF29"
},
{
"start": 139,
"end": 160,
"text": "(Balaji et al., 2017;",
"ref_id": "BIBREF1"
},
{
"start": 161,
"end": 180,
"text": "Liu and Chen, 2011;",
"ref_id": "BIBREF20"
},
{
"start": 181,
"end": 204,
"text": "Knoth and Khadka, 2017;",
"ref_id": "BIBREF17"
},
{
"start": 205,
"end": 225,
"text": "Gipp and Beel, 2009)",
"ref_id": "BIBREF10"
},
{
"start": 238,
"end": 261,
"text": "(Schwarzer et al., 2016",
"ref_id": "BIBREF29"
},
{
"start": 262,
"end": 287,
"text": "(Schwarzer et al., , 2017",
"ref_id": "BIBREF28"
},
{
"start": 324,
"end": 342,
"text": "(Kim et al., 2016)",
"ref_id": "BIBREF16"
},
{
"start": 470,
"end": 491,
"text": "(Gipp and Beel, 2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "never cited, and even if they are, it usually takes a year or more before they receive their first citation (Golosovsky, 2017; Abramo et al., 2016) . Consequently, CPA has a low coverage, i.e. it can only be applied to a small fraction of research articles in a corpus and only relatively late.",
"cite_spans": [
{
"start": 108,
"end": 126,
"text": "(Golosovsky, 2017;",
"ref_id": "BIBREF12"
},
{
"start": 127,
"end": 147,
"text": "Abramo et al., 2016)",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We propose 2 , implement and evaluate a novel approach that we name 'Virtual Citation Proximity' (VCP). We hypothesize that VCP combines the advantages of co-citation proximity analysis (diverse notions of relatedness / high recommendation effectiveness), with the advantage of content-based filtering (high coverage). Hence, we expect that VCP advances the state-of-the-art in related-document calculations for search engines and recommender systems significantly.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Virtual Citation Proximity (VCP) predicts in which distance two documents -that are not co-citedwould be co-cited if they were co-cited. This pre- 2 We proposed VCP previously in a non-peer-reviewed research proposal, but did neither implement nor evaluate it (Beel, 2017) . Also, please note that the work we present is based on Paul Molloy's Bachelor thesis \"Virtual Citation Proximity: Using Citation-Ground Truth to Train a Text-Based Machine Learning Model\" at Trinity College Dublin, Ireland, 2018/2019. The Bachelor thesis is not (yet) published. dicted proximity can then be used in the same way as real co-citation proximity to calculate document relatedness. At an abstract level, the idea behind VCP is that there is an inherent concept of relatedness between articles. This inherent relatedness can be described either through text or co-citations. As both, text and citations, eventually refer to the same relatedness, the text and citation are kind of a 'siamese twin'.",
"cite_spans": [
{
"start": 147,
"end": 148,
"text": "2",
"ref_id": null
},
{
"start": 260,
"end": 272,
"text": "(Beel, 2017)",
"ref_id": "BIBREF2"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Virtual Citation Proximity (VCP)",
"sec_num": "2"
},
{
"text": "We propose to implement VCP via artificial neural networks that are trained with textual features -e.g. terms or word embeddings from the title or abstract -as input, and real citation proximity as target. In other words, we feed a neural network with pairs of documents of which we know how strongly they are related (expressed by the real proximity of their co-citations). The network then learns a similarity function that predicts based on the text the degree to which the two documents are related -even if the two documents have no terms or word embeddings in common.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Virtual Citation Proximity (VCP)",
"sec_num": "2"
},
{
"text": "We hypothesize that a neural network will be able to learn the diverse types of relatedness inherent to co-citations. Once the network is trained, it receives the text of two documents as input, and predicts in what proximity these two documents would be co-cited if they were co-cited. VCP can be applied to all document pairs in a corpus that contain a title (and abstract), i.e. typically all document in a corpus (100% coverage). If the predictions of VCP are precise, a recommender system based on VCP would be as effective as a system based on real citation proximity, but with a coverage as high as content-based filtering (100%).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Virtual Citation Proximity (VCP)",
"sec_num": "2"
},
{
"text": "Although Virtual Citation Proximity is based on textual features as input, we hypothesise that VCP will create recommendations similar to those based on real citation-proximity, since the machine learning algorithm is trained on real citation proximity as ground truth. With the recent advances in (deep) machine learning we hypothesise that a (deep) machine-learning algorithm will be able to detect hidden layers in the text. These will allow determining what makes two documents related, more reliable than the typical assumption in textbased approaches that two documents are related when they share the same terms or embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Virtual Citation Proximity (VCP)",
"sec_num": "2"
},
{
"text": "Virtual Citation Proximity trains a machine learning model with real citation proximity as ground truth / target, and to the best of our knowledge we are first to do this. The method that is closest to using citation-proximity as ground truth for machine learning is using expert judgements (or knowledge bases) as ground truth, e.g. MeSH, ACM CCS, or DMOZ (Mohammadi et al., 2016; Hassan, 2017) .",
"cite_spans": [
{
"start": 357,
"end": 381,
"text": "(Mohammadi et al., 2016;",
"ref_id": "BIBREF23"
},
{
"start": 382,
"end": 395,
"text": "Hassan, 2017)",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "For instance, the MeSH classification is a classification tree that represents the major fields and subfields in the biomedical domain. MeSH was created by medical experts and biomedical manuscripts are often classified with MeSH, i.e. manuscripts are assigned to one of the MeSH categories, whereas two documents in the same category are considered to be related, and can be used either for training machine learning models or evaluating recommendation approaches (Hassan, 2017). Machine learning algorithms can infer from the existing documents in a category, which textual features make a document likely to belong to a certain category. New documents can then automatically be classified based on their text (Peng et al., 2018) , There are disadvantages to using expert classifications like MeSH, when compared to citations and VCP respectively. First, expert classifications are often one-dimensional, i.e. they provide only one type of relatedness (typically, the overall topic a research article is about). Second, most expert classification schemes allow documents to be in few categories only, and they focus on one field (e.g. medicine or computer science). Especially with today's increasingly interdisciplinary work, this is often not enough to adequately find all related documents. Third, classification schemes typically have a limited number of categories (a few thousand at most). This means, in large collections, categories contain thousands of documents that are somewhat related to each other but only at a relatively broad level. Fourth, classifications are often static, i.e. articles are classified at the time of publication. If a classification scheme is changed, the papers are not updated or re-classified. Finally, for many domains, expert classifications simply do not exist.",
"cite_spans": [
{
"start": 712,
"end": 731,
"text": "(Peng et al., 2018)",
"ref_id": "BIBREF26"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "With VCP, the problems could be overcome. (Virtual) citation proximity (1) covers many types of relatedness; (2) allows documents to be in unlimited numbers of co-citation clusters;",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "(3) has no limitations for the number of clusters; (4) is dynamic; and (5) can be learned for any domain that uses citations.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "In recent years advances in deep-learning have shown the ability to identify complex patterns in text based data in areas such as translation (Wu et al., 2016) and sentiment analysis (Dos Santos and Gatti, 2014).",
"cite_spans": [
{
"start": 142,
"end": 159,
"text": "(Wu et al., 2016)",
"ref_id": "BIBREF31"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "A document embedding (Le and Mikolov, 2014; Dai et al., 2015) is an embedding representing an entire document trained using a paragraph embedding model. Document embedding vectors have been shown to be superior to other text representations such as bag-of-words as they take into account the relative positions of the words in the text, although experimental they may be an interesting feature representation to train VCP. Overall, papers with success in using machine learning for dealing with larger passages of text more limited in number (Liu et al., 2018 ), compared to longer texts (Lopez and Kalita, 2017). Some relevant research was found in the areas of news article recommender systems (Park et al., 2017) .",
"cite_spans": [
{
"start": 21,
"end": 43,
"text": "(Le and Mikolov, 2014;",
"ref_id": "BIBREF18"
},
{
"start": 44,
"end": 61,
"text": "Dai et al., 2015)",
"ref_id": "BIBREF6"
},
{
"start": 542,
"end": 559,
"text": "(Liu et al., 2018",
"ref_id": "BIBREF19"
},
{
"start": 696,
"end": 715,
"text": "(Park et al., 2017)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "3"
},
{
"text": "We implement four VCP variations. The first implementation is a sequential neural network with a CNN and LSTM layer with drop-out. The second, third and fourth implementation are Siamese neural networks, whereas the second implementation consists of two LSTM layers with drop-out (Figure 3) ; the third implementation consists of a CNN and LSTM layer with drop-out; and the fourth implementation consists of a CNN and LSTM layer with no drop-out. The Siamese architectures finish with a sequential dense layer to join the subnetworks. We choose combinations of 200-neuron LSTM and 64-filter CNN layers in both sequential and Siamese architectures.",
"cite_spans": [],
"ref_spans": [
{
"start": 280,
"end": 290,
"text": "(Figure 3)",
"ref_id": "FIGREF2"
}
],
"eq_spans": [],
"section": "VCP Implementation",
"sec_num": "4.1"
},
{
"text": "So far, Siamese networks have been particularly successful in face recognition. During training, the network receives a triplet as input consisting of an anchor image of a person A, another image of the same person, and an image of a person that is not A. The network is trained to learn a similarity or distance function that can express the high similarity (or low distance) of the anchor image and images of the same person, and disimilarity (or high distance) of the anchor image and negative person. Siamese networks also have been successfully used to learn text similarity (Mueller and Thyagarajan, 2016) . Siamese architectures facilitate the sister sub-networks to learn high level representations from both input texts first. Then once the Siamese Neural Network has transformed the input into higher level representations they can be combined together again to determine the relationship between the two texts.",
"cite_spans": [
{
"start": 580,
"end": 611,
"text": "(Mueller and Thyagarajan, 2016)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "VCP Implementation",
"sec_num": "4.1"
},
{
"text": "In our scenario, triplets consist of an anchor citation and a close co-citation (as both express the same semantic concept) as well as of a document that is dissimilar to the anchor citation. We hypothesize that a neural network that is capable of learning the abstract concept of a \"person\", based on vastly different images (pixels) of that person, should also be able to learn the abstract semantic concept of relatedness, based on vastly different documents (textual features) and citation proximity.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VCP Implementation",
"sec_num": "4.1"
},
{
"text": "Each of the four implementations takes as input two documents represented by their title and the first 200 words of the body text, and predicts the distance in which these two documents would be co-cited, if they were co-cited. All VCP variations used the GloVe6B word embedding model to represent textual features. We used Glove6B out-of-box, i.e. trained on a dump from English Wikipedia in 2014, and with 100 dimensions. All four models were implemented in Keras, and trained over 50 epochs. The source code and data is available on GitHub https://github.com/BeelGroup/Virtual-Citation-Proximity/.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VCP Implementation",
"sec_num": "4.1"
},
{
"text": "We need to emphasize that we did not compare our implementations against a state-of-the-art baseline as there does not exist any other work that predicts citation proximity. Hence, we only compare the performance of our models against a trivial baseline, i.e. the average co-citation proximity in the corpus. In the future, the predicted citation proximity should be used in a recommender system and could then be compared against baselines like content-based filtering .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "VCP Implementation",
"sec_num": "4.1"
},
{
"text": "We initially aimed to use research papers and citations for our experiments. Eventually, we decided to choose Wikipedia as a substitute. Parsing research papers (PDF files) for their in-text citation was too computationally expensive and error prone, and we did not find existing suitable dataset that would have contained enough in-text citation data 3 . Wikipedia contains millions of articles, that are somewhat comparable to research articles, and these articles contain hyperlinks, that are comparable to citations. Also, Wikipedia data is machine readable, i.e. hyperlinks/citations can easily be identified. We used the Wikipedia dump from January 1st 2019 with15 million articles, of which we choose a random sample (filtering out articles co-cited less than 5 times) of 1,000 articles and all articles co-cited with those sample articles. This resulted in 2.1 million co-citation pairs.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.2"
},
{
"text": "A key factor in citation proximity analysis is the question how to exactly measure proximity, or distance. The original authors of Citation Proximity Analysis expressed the distance between two cocitations through a 'citation proximity index' (CPI) (Gipp and Beel, 2009) . If two documents were cocited in the same sentence, CPI was 1; if documents were co-cited in the same paragraph, CPI was 0.5; and so on (Table 1) . Many more variations have been proposed to calculate CPIs, e.g. (Kim et al., 2016) . We follow Schwarzer et al. including their suggested damping factor \u03b1 of 0.855 to scale word distance (Schwarzer et al., 2016) . : CPI values for co-cited document pairs, as proposed by the original authors (Gipp and Beel, 2009) . However, these values are only for a single occurrence of a co-citation pair. If e.g. documents A and B are co-cited by document C in the same sentence but by document D in different paragraphs, the final CPI value must be a fusion of these CPI values (e.g. the min, max or average).",
"cite_spans": [
{
"start": 249,
"end": 270,
"text": "(Gipp and Beel, 2009)",
"ref_id": "BIBREF10"
},
{
"start": 485,
"end": 503,
"text": "(Kim et al., 2016)",
"ref_id": "BIBREF16"
},
{
"start": 608,
"end": 632,
"text": "(Schwarzer et al., 2016)",
"ref_id": "BIBREF29"
},
{
"start": 713,
"end": 734,
"text": "(Gipp and Beel, 2009)",
"ref_id": "BIBREF10"
}
],
"ref_spans": [
{
"start": 409,
"end": 418,
"text": "(Table 1)",
"ref_id": "TABREF0"
}
],
"eq_spans": [],
"section": "Dataset",
"sec_num": "4.2"
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "CP I(a, b) = m j=1 \u2206 j (a, b) \u2212\u03b1 , with \u2206 j (a, b) \u2212\u03b1 = |v a,j \u2212 v b,j | \u2212\u03b1 , v a,j > 0 \u2227 v b,j > 0 0, otherwise",
"eq_num": "(1)"
}
],
"section": "Dataset",
"sec_num": "4.2"
},
{
"text": "Sentence 1 Paragraph 1/2 Chapter 1/4 Same journal / same book 1/8 Same journal but different edition",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Occurrence CPI Value",
"sec_num": null
},
{
"text": "A second important question is how to deal with multiple occurrences of the same co-citation pair in different documents, and hence different CPI values for each occurrence. The most simple solutions are using the minimum, average or sum of the individual CPIs (Knoth and Khadka, 2017) . We choose for our work the average CPI as this has been shown to be among the most effective choices typically (Knoth and Khadka, 2017) . We calculated CPI values with the tool Citolytics (Schwarzer et al., 2017) 4 as per the equation below, based on Schwarzer et al.. (a,b) is a document pair with m co-citations and v a,j is the position in words of the jth citation of a. See example data (Table 2) .",
"cite_spans": [
{
"start": 261,
"end": 285,
"text": "(Knoth and Khadka, 2017)",
"ref_id": "BIBREF17"
},
{
"start": 399,
"end": 423,
"text": "(Knoth and Khadka, 2017)",
"ref_id": "BIBREF17"
},
{
"start": 476,
"end": 502,
"text": "(Schwarzer et al., 2017) 4",
"ref_id": null
}
],
"ref_spans": [
{
"start": 680,
"end": 689,
"text": "(Table 2)",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "1/16",
"sec_num": null
},
{
"text": "We evaluate the VCP implementations based on how well they predict the actual CPI, which theoretically takes values between 0 and 1, but typically is between 0 and 0.1 (Figure 4 ). Performance is measured by mean absolute error (MAE).",
"cite_spans": [],
"ref_spans": [
{
"start": 168,
"end": 177,
"text": "(Figure 4",
"ref_id": "FIGREF3"
}
],
"eq_spans": [],
"section": "Evaluation Metric",
"sec_num": "4.3"
},
{
"text": "We have not yet conducted additional 4 Citolytics only returns the sum of the individual CPIs, so we calculated average CPIs ourselves recommender-system specific experiments. We assume that the more precise the prediction of the CPIs are, the better the recommendation performance becomes. Of course, this is a strong assumption that needs to be validated in future experiments.",
"cite_spans": [
{
"start": 37,
"end": 38,
"text": "4",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Evaluation Metric",
"sec_num": "4.3"
},
{
"text": "All four models achieved relatively low MAEs between 0.0059 (Sequential 1D CNN + LSTM) and 0.0055 (Siamese LSTM + LSTM; Siamese CNN + LSTM, No Dropout) ( Figure 5 ). All three Siamese Neural Networks outperformed the simple Sequential model CNN+LSTM. The differences among the three Siamese architectures are statistically not significant. All four models performed statistically significant better (p\u00a10.01; two-tailed t-test) than the baseline, i.e. the mean CPI in the dataset (MAE=0.0069). The low MAEs must be seen with some skepticism. The average of the actual CPI values in the dataset was 0.0069 with data skewed towards smaller values. Hence, an MAE of e.g. 0.0055 is promising (20% lower, i.e. better, than the mean CPI) but not as good as it may seem on first glance. The learning curves of the four VCP approaches indicates that citation proximity could not be learned very effectively. Figure 6 shows the training and validation error rates of the Siamese CNN + LSTM Model over 50 epochs. The validation error shows that no real learning occurs after the first epoch.",
"cite_spans": [],
"ref_spans": [
{
"start": 154,
"end": 162,
"text": "Figure 5",
"ref_id": "FIGREF4"
},
{
"start": 899,
"end": 907,
"text": "Figure 6",
"ref_id": "FIGREF5"
}
],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Overall, our result, i.e. a 20% improvement over the trivial 'mean' baseline, is promising but more research is needed to confirm the effectiveness of Virtual Citation Proximity. In the current experiment, we used the average CPI of document pairs as target, but alternatives such as the minimum or maximum CPI might be easier to learn for a Siamese network. Also, there were many documents with low CPI values in the corpus, which might have introduced noise. In future work, we would focus on documents with higher CPI values as we expect their signal to be stronger. We also plan to use more than 200 words in future experiments, as more words might contain more semantic meaning of why a document was cited. Maybe most importantly, Virtual Citation Proximity needs to be evaluated in more recommender-system specific experiments. So far, we 'only' predicted citation distance. The key question, however, is how good VCP-based recommendations can be, i.e. how precise they need to be to contribute to business value (Jannach and Jugovac, 2019) . It will also be interesting to see how VCP compares with contentbased filtering, citation-based approaches, and machine learning models trained on expert opinions as ground truth.",
"cite_spans": [
{
"start": 1019,
"end": 1046,
"text": "(Jannach and Jugovac, 2019)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "While our initial results are 'only' good, we see an enormous potential in Virtual Citation Proximity for improving recommender systems for research papers, web pages, patents, and other document types. We are confident that VCP could become a new state-of-the-art approach for research paper recommender systems that brings citation-based recommendation effectiveness to the community, applicable to all textual documents. In the best case, VCP might even outperform citation based approaches as VCP learns from both terms and citations and hence VCP might be able to learn semantic concepts in a completely new way beyond traditional citation and content analysis.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results and Discussion",
"sec_num": "5"
},
{
"text": "Of course, there are multiple approaches like word embeddings that go beyond a simple term-overlap comparison. However, eventually, text-based approaches focus on content similarity, which is just one type of relatedness.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "unarXive(Saier and F\u00e4rber, 2020) might be suitable, but it was just released after we conducted our experiments",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "The dispersion of the citation distribution of top scientists publications",
"authors": [
{
"first": "Giovanni",
"middle": [],
"last": "Abramo",
"suffix": ""
},
{
"first": "Andrea",
"middle": [],
"last": "Ciriaco",
"suffix": ""
},
{
"first": "Anastasiia",
"middle": [],
"last": "Dangelo",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Soldatenkova",
"suffix": ""
}
],
"year": 2016,
"venue": "Scientometrics",
"volume": "109",
"issue": "3",
"pages": "1711--1724",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Giovanni Abramo, Ciriaco Andrea DAngelo, and Anas- tasiia Soldatenkova. 2016. The dispersion of the ci- tation distribution of top scientists publications. Sci- entometrics, 109(3):1711-1724.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Finding related research papers using semantic and co-citation proximity analysis",
"authors": [
{
"first": "A",
"middle": [],
"last": "Balaji",
"suffix": ""
},
{
"first": "G",
"middle": [
"S"
],
"last": "Sendhilkumar",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mahalakshmi",
"suffix": ""
}
],
"year": 2017,
"venue": "Journal of Computational and Theoretical Nanoscience",
"volume": "14",
"issue": "6",
"pages": "2905--2909",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A Balaji, S Sendhilkumar, and GS Mahalakshmi. 2017. Finding related research papers using semantic and co-citation proximity analysis. Journal of Compu- tational and Theoretical Nanoscience, 14(6):2905- 2909.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Virtual citation proximity (vcp): Calculating co-citation-proximity-based document relatedness for uncited documents with machine learning",
"authors": [
{
"first": "Joeran",
"middle": [],
"last": "Beel",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"DOI": [
"10.13140/RG.2.2.18759.39842"
]
},
"num": null,
"urls": [],
"raw_text": "Joeran Beel. 2017. Virtual citation proximity (vcp): Calculating co-citation-proximity-based document relatedness for uncited documents with machine learning [proposal].",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Research paper recommender systems: A literature survey",
"authors": [
{
"first": "Joeran",
"middle": [],
"last": "Beel",
"suffix": ""
},
{
"first": "Bela",
"middle": [],
"last": "Gipp",
"suffix": ""
},
{
"first": "Stefan",
"middle": [],
"last": "Langer",
"suffix": ""
},
{
"first": "Corinna",
"middle": [],
"last": "Breitinger",
"suffix": ""
}
],
"year": 2016,
"venue": "International Journal on Digital Libraries",
"volume": "",
"issue": "4",
"pages": "305--338",
"other_ids": {
"DOI": [
"10.1007/s00799-015-0156-0"
]
},
"num": null,
"urls": [],
"raw_text": "Joeran Beel, Bela Gipp, Stefan Langer, and Corinna Breitinger. 2016. Research paper recommender sys- tems: A literature survey. International Journal on Digital Libraries, (4):305-338.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Link analysis in mind maps: a new approach to determining document relatedness",
"authors": [
{
"first": "J\u00f6ran",
"middle": [],
"last": "Beel",
"suffix": ""
},
{
"first": "Bela",
"middle": [],
"last": "Gipp",
"suffix": ""
}
],
"year": 2010,
"venue": "4th International Conference on Uniquitous Information Management and Communication",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J\u00f6ran Beel and Bela Gipp. 2010. Link analysis in mind maps: a new approach to determining docu- ment relatedness. In 4th International Conference on Uniquitous Information Management and Com- munication, page 38. ACM.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Document embedding with paragraph vectors",
"authors": [
{
"first": "M",
"middle": [],
"last": "Andrew",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Dai",
"suffix": ""
},
{
"first": "Quoc V",
"middle": [],
"last": "Olah",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Le",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1507.07998"
]
},
"num": null,
"urls": [],
"raw_text": "Andrew M Dai, Christopher Olah, and Quoc V Le. 2015. Document embedding with paragraph vectors. arXiv preprint arXiv:1507.07998.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Deep convolutional neural networks for sentiment analysis of short texts",
"authors": [
{
"first": "Santos",
"middle": [],
"last": "Cicero Dos",
"suffix": ""
},
{
"first": "Maira",
"middle": [],
"last": "Gatti",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers",
"volume": "",
"issue": "",
"pages": "69--78",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Cicero Dos Santos and Maira Gatti. 2014. Deep con- volutional neural networks for sentiment analysis of short texts. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 69-78.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "A taxonomy of motives to cite",
"authors": [
{
"first": "G",
"middle": [],
"last": "Martin",
"suffix": ""
},
{
"first": "Peter",
"middle": [],
"last": "Erikson",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Erlandson",
"suffix": ""
}
],
"year": 2014,
"venue": "Social Studies of Science",
"volume": "44",
"issue": "4",
"pages": "625--637",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin G Erikson and Peter Erlandson. 2014. A tax- onomy of motives to cite. Social Studies of Science, 44(4):625-637.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Determining how citations are used in citation contexts",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "F\u00e4rber",
"suffix": ""
},
{
"first": "Ashwath",
"middle": [],
"last": "Sampath",
"suffix": ""
}
],
"year": 2019,
"venue": "Digital Libraries for Open Knowledge",
"volume": "",
"issue": "",
"pages": "380--383",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael F\u00e4rber and Ashwath Sampath. 2019. Deter- mining how citations are used in citation contexts. In Digital Libraries for Open Knowledge, pages 380-383, Cham. Springer International Publishing.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Citation proximity analysis (cpa): A new approach for identifying related work based on co-citation analysis",
"authors": [
{
"first": "Bela",
"middle": [],
"last": "Gipp",
"suffix": ""
},
{
"first": "J\u00f6ran",
"middle": [],
"last": "Beel",
"suffix": ""
}
],
"year": 2009,
"venue": "ISSI09: 12th International Conference on Scientometrics and Informetrics",
"volume": "",
"issue": "",
"pages": "571--575",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bela Gipp and J\u00f6ran Beel. 2009. Citation proxim- ity analysis (cpa): A new approach for identify- ing related work based on co-citation analysis. In ISSI09: 12th International Conference on Sciento- metrics and Informetrics, pages 571-575.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Link proximity analysis-clustering websites by examining link proximity",
"authors": [
{
"first": "Bela",
"middle": [],
"last": "Gipp",
"suffix": ""
},
{
"first": "Adriana",
"middle": [],
"last": "Taylor",
"suffix": ""
},
{
"first": "J\u00f6ran",
"middle": [],
"last": "Beel",
"suffix": ""
}
],
"year": 2010,
"venue": "International Conference on Theory and Practice of Digital Libraries",
"volume": "",
"issue": "",
"pages": "449--452",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Bela Gipp, Adriana Taylor, and J\u00f6ran Beel. 2010. Link proximity analysis-clustering websites by examin- ing link proximity. In International Conference on Theory and Practice of Digital Libraries, pages 449- 452. Springer.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Power-law citation distributions are not scale-free",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Golosovsky",
"suffix": ""
}
],
"year": 2017,
"venue": "Physical Review E",
"volume": "96",
"issue": "3",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Golosovsky. 2017. Power-law citation dis- tributions are not scale-free. Physical Review E, 96(3):032306.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Personalized research paper recommendation using deep learning",
"authors": [
{
"first": "Mohamed",
"middle": [],
"last": "Hebatallah",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Hassan",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 25th conference on user modeling, adaptation and personalization",
"volume": "",
"issue": "",
"pages": "327--330",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hebatallah A Mohamed Hassan. 2017. Personalized research paper recommendation using deep learning. In Proceedings of the 25th conference on user model- ing, adaptation and personalization, pages 327-330. ACM.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Measuring the business value of recommender systems",
"authors": [
{
"first": "Dietmar",
"middle": [],
"last": "Jannach",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "Jugovac",
"suffix": ""
}
],
"year": 2019,
"venue": "ACM Transactions on Management Information Systems (TMIS)",
"volume": "10",
"issue": "4",
"pages": "1--23",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dietmar Jannach and Michael Jugovac. 2019. Mea- suring the business value of recommender systems. ACM Transactions on Management Information Sys- tems (TMIS), 10(4):1-23.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Recommender Systems: An Introduction",
"authors": [
{
"first": "Dietmar",
"middle": [],
"last": "Jannach",
"suffix": ""
},
{
"first": "Markus",
"middle": [],
"last": "Zanker",
"suffix": ""
},
{
"first": "Alexander",
"middle": [],
"last": "Felfernig",
"suffix": ""
},
{
"first": "Gerhard",
"middle": [
"Friedrich"
],
"last": "",
"suffix": ""
}
],
"year": 2010,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich. 2010. Recommender Sys- tems: An Introduction. Cambridge University Press.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Content-and proximity-based author cocitation analysis using citation sentences",
"authors": [
{
"first": "Jin",
"middle": [],
"last": "Ha",
"suffix": ""
},
{
"first": "Yoo",
"middle": [],
"last": "Kim",
"suffix": ""
},
{
"first": "Min",
"middle": [],
"last": "Kyung Jeong",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Song",
"suffix": ""
}
],
"year": 2016,
"venue": "Journal of Informetrics",
"volume": "10",
"issue": "4",
"pages": "954--966",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ha Jin Kim, Yoo Kyung Jeong, and Min Song. 2016. Content-and proximity-based author co- citation analysis using citation sentences. Journal of Informetrics, 10(4):954-966.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Can we do better than co-citations?",
"authors": [
{
"first": "Petr",
"middle": [],
"last": "Knoth",
"suffix": ""
},
{
"first": "Anita",
"middle": [],
"last": "Khadka",
"suffix": ""
}
],
"year": 2017,
"venue": "2nd BIRNDL Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Petr Knoth and Anita Khadka. 2017. Can we do better than co-citations? In 2nd BIRNDL Workshop, Tokyo, Japan.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Distributed representations of sentences and documents",
"authors": [
{
"first": "Quoc",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Tomas",
"middle": [],
"last": "Mikolov",
"suffix": ""
}
],
"year": 2014,
"venue": "International conference on machine learning",
"volume": "",
"issue": "",
"pages": "1188--1196",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Quoc Le and Tomas Mikolov. 2014. Distributed repre- sentations of sentences and documents. In Interna- tional conference on machine learning, pages 1188- 1196.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Matching long text documents via graph convolutional networks",
"authors": [
{
"first": "Bang",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Ting",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Di",
"middle": [],
"last": "Niu",
"suffix": ""
},
{
"first": "Jinghong",
"middle": [],
"last": "Lin",
"suffix": ""
},
{
"first": "Kunfeng",
"middle": [],
"last": "Lai",
"suffix": ""
},
{
"first": "Yu",
"middle": [],
"last": "Xu",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1802.07459"
]
},
"num": null,
"urls": [],
"raw_text": "Bang Liu, Ting Zhang, Di Niu, Jinghong Lin, Kun- feng Lai, and Yu Xu. 2018. Matching long text documents via graph convolutional networks. arXiv preprint arXiv:1802.07459.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "The effects of co-citation proximity on co-citation analysis",
"authors": [
{
"first": "Shengbo",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Chaomei",
"middle": [],
"last": "Chen",
"suffix": ""
}
],
"year": 2011,
"venue": "Proc. of ISSI",
"volume": "",
"issue": "",
"pages": "474--484",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shengbo Liu and Chaomei Chen. 2011. The effects of co-citation proximity on co-citation analysis. In Proc. of ISSI, pages 474-484.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Deep learning applied to nlp",
"authors": [
{
"first": "Marc",
"middle": [],
"last": "Moreno Lopez",
"suffix": ""
},
{
"first": "Jugal",
"middle": [],
"last": "Kalita",
"suffix": ""
}
],
"year": 2017,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1703.03091"
]
},
"num": null,
"urls": [],
"raw_text": "Marc Moreno Lopez and Jugal Kalita. 2017. Deep learning applied to nlp. arXiv preprint arXiv:1703.03091.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Trends in contentbased recommendation",
"authors": [
{
"first": "Pasquale",
"middle": [],
"last": "Lops",
"suffix": ""
},
{
"first": "Dietmar",
"middle": [],
"last": "Jannach",
"suffix": ""
},
{
"first": "Cataldo",
"middle": [],
"last": "Musto",
"suffix": ""
},
{
"first": "Toine",
"middle": [],
"last": "Bogers",
"suffix": ""
},
{
"first": "Marijn",
"middle": [],
"last": "Koolen",
"suffix": ""
}
],
"year": 2019,
"venue": "User Modeling and User-Adapted Interaction",
"volume": "29",
"issue": "2",
"pages": "239--249",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Pasquale Lops, Dietmar Jannach, Cataldo Musto, Toine Bogers, and Marijn Koolen. 2019. Trends in content- based recommendation. User Modeling and User- Adapted Interaction, 29(2):239-249.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Context-specific recommendation system for predicting similar pubmed articles",
"authors": [
{
"first": "Shahin",
"middle": [],
"last": "Mohammadi",
"suffix": ""
},
{
"first": "Sudhir",
"middle": [],
"last": "Kylasa",
"suffix": ""
},
{
"first": "Giorgos",
"middle": [],
"last": "Kollias",
"suffix": ""
},
{
"first": "Ananth",
"middle": [],
"last": "Grama",
"suffix": ""
}
],
"year": 2016,
"venue": "16th International Conference on Data Mining",
"volume": "",
"issue": "",
"pages": "1007--1014",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shahin Mohammadi, Sudhir Kylasa, Giorgos Kollias, and Ananth Grama. 2016. Context-specific recom- mendation system for predicting similar pubmed ar- ticles. In 16th International Conference on Data Mining, pages 1007-1014. IEEE.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Siamese recurrent architectures for learning sentence similarity",
"authors": [
{
"first": "Jonas",
"middle": [],
"last": "Mueller",
"suffix": ""
},
{
"first": "Aditya",
"middle": [],
"last": "Thyagarajan",
"suffix": ""
}
],
"year": 2016,
"venue": "30th AAAI Conference on Artificial Intelligence",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for learning sentence similar- ity. In 30th AAAI Conference on Artificial Intelli- gence.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Deep neural networks for news recommendations",
"authors": [
{
"first": "Keunchan",
"middle": [],
"last": "Park",
"suffix": ""
},
{
"first": "Jisoo",
"middle": [],
"last": "Lee",
"suffix": ""
},
{
"first": "Jaeho",
"middle": [],
"last": "Choi",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 2017 ACM on Conference on Information and Knowledge Management",
"volume": "",
"issue": "",
"pages": "2255--2258",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Keunchan Park, Jisoo Lee, and Jaeho Choi. 2017. Deep neural networks for news recommendations. In Pro- ceedings of the 2017 ACM on Conference on Infor- mation and Knowledge Management, pages 2255- 2258. ACM.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Meshlabeler and deepmesh: Recent progress in large-scale mesh indexing",
"authors": [
{
"first": "Shengwen",
"middle": [],
"last": "Peng",
"suffix": ""
},
{
"first": "Hiroshi",
"middle": [],
"last": "Mamitsuka",
"suffix": ""
},
{
"first": "Shanfeng",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2018,
"venue": "Data Mining for Systems Biology",
"volume": "",
"issue": "",
"pages": "203--209",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shengwen Peng, Hiroshi Mamitsuka, and Shanfeng Zhu. 2018. Meshlabeler and deepmesh: Recent progress in large-scale mesh indexing. In Data Min- ing for Systems Biology, pages 203-209. Springer.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "2020. unarxive: a large scholarly data set with publications' full-text, annotated in-text citations, and links to metadata",
"authors": [
{
"first": "Tarek",
"middle": [],
"last": "Saier",
"suffix": ""
},
{
"first": "Michael",
"middle": [],
"last": "F\u00e4rber",
"suffix": ""
}
],
"year": null,
"venue": "Scientometrics",
"volume": "",
"issue": "",
"pages": "1--24",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tarek Saier and Michael F\u00e4rber. 2020. unarxive: a large scholarly data set with publications' full-text, annotated in-text citations, and links to metadata. Scientometrics, pages 1-24.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Citolytics: A link-based recommender system for wikipedia",
"authors": [
{
"first": "Malte",
"middle": [],
"last": "Schwarzer",
"suffix": ""
},
{
"first": "Corinna",
"middle": [],
"last": "Breitinger",
"suffix": ""
},
{
"first": "Moritz",
"middle": [],
"last": "Schubotz",
"suffix": ""
},
{
"first": "Norman",
"middle": [],
"last": "Meuschke",
"suffix": ""
},
{
"first": "Bela",
"middle": [],
"last": "Gipp",
"suffix": ""
}
],
"year": 2017,
"venue": "Proceedings of the 11th ACM Conference on Recommender Systems",
"volume": "",
"issue": "",
"pages": "360--361",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Malte Schwarzer, Corinna Breitinger, Moritz Schubotz, Norman Meuschke, and Bela Gipp. 2017. Citolytics: A link-based recommender system for wikipedia. In Proceedings of the 11th ACM Conference on Recom- mender Systems, pages 360-361.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "Evaluating link-based recommendations for wikipedia",
"authors": [
{
"first": "Malte",
"middle": [],
"last": "Schwarzer",
"suffix": ""
},
{
"first": "Moritz",
"middle": [],
"last": "Schubotz",
"suffix": ""
},
{
"first": "Norman",
"middle": [],
"last": "Meuschke",
"suffix": ""
},
{
"first": "Corinna",
"middle": [],
"last": "Breitinger",
"suffix": ""
},
{
"first": "Bela",
"middle": [],
"last": "Volker Markl",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Gipp",
"suffix": ""
}
],
"year": 2016,
"venue": "16th ACM/IEEE Joint Conference on Digital Libraries",
"volume": "",
"issue": "",
"pages": "191--200",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Malte Schwarzer, Moritz Schubotz, Norman Meuschke, Corinna Breitinger, Volker Markl, and Bela Gipp. 2016. Evaluating link-based recom- mendations for wikipedia. In 16th ACM/IEEE Joint Conference on Digital Libraries, pages 191-200.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Readers' perceptions of authors' citation behaviour",
"authors": [
{
"first": "Peter",
"middle": [],
"last": "Willett",
"suffix": ""
}
],
"year": 2013,
"venue": "Journal of Documentation",
"volume": "69",
"issue": "1",
"pages": "145--156",
"other_ids": {
"DOI": [
"10.1108/00220411311295360"
]
},
"num": null,
"urls": [],
"raw_text": "Peter Willett. 2013. Readers' perceptions of au- thors' citation behaviour. Journal of Documenta- tion, 69(1):145-156.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Google's neural machine translation system",
"authors": [
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Macherey",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Klaus",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Macherey",
"suffix": ""
}
],
"year": 2016,
"venue": "Bridging the gap between human and machine translation",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.08144"
]
},
"num": null,
"urls": [],
"raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between hu- man and machine translation. arXiv preprint arXiv:1609.08144.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"uris": null,
"type_str": "figure",
"text": "Illustration of Citation Proximity Analysis",
"num": null
},
"FIGREF1": {
"uris": null,
"type_str": "figure",
"text": "Screenshot of the MeSH classification tree",
"num": null
},
"FIGREF2": {
"uris": null,
"type_str": "figure",
"text": "Siamese Neural Network Architecture Diagram.",
"num": null
},
"FIGREF3": {
"uris": null,
"type_str": "figure",
"text": "Distribution of CPI Values in the Wikipedia dataset. Many CPI values are very small.",
"num": null
},
"FIGREF4": {
"uris": null,
"type_str": "figure",
"text": "Mean Average Error of the four VCP variations and the mean-baseline.",
"num": null
},
"FIGREF5": {
"uris": null,
"type_str": "figure",
"text": "Mean Average Error of Siamese 1D CNN and LSTM over 50 Epochs.",
"num": null
},
"TABREF0": {
"content": "<table/>",
"num": null,
"type_str": "table",
"html": null,
"text": ""
},
"TABREF1": {
"content": "<table><tr><td>Hash</td><td>Title A</td><td>Title B</td><td>Dist</td><td>Count</td><td colspan=\"3\">Title A ID Title B ID CPI</td></tr><tr><td>-124</td><td>USA</td><td>USSR</td><td>312</td><td>12</td><td>5</td><td>7</td><td>0.26</td></tr></table>",
"num": null,
"type_str": "table",
"html": null,
"text": "Citolytics Wikipedia CPI Pair Dataset Format Example."
}
}
}
} |