The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: ReadTimeout Message: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 4c2da59a-7852-4214-ad86-d8a84c4e8644)') Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 79, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1910, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1885, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1263, in get_module patterns = get_data_patterns(base_path, download_config=self.download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 497, in get_data_patterns return _get_data_files_patterns(resolver) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 272, in _get_data_files_patterns data_files = pattern_resolver(pattern) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/data_files.py", line 384, in resolve_pattern for filepath, info in fs.glob(pattern, detail=True, **glob_kwargs).items() File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 416, in glob path = self.resolve_path(path, revision=kwargs.get("revision")).unresolve() File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 183, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_file_system.py", line 131, in _repo_and_revision_exist self._api.repo_info(repo_id, revision=revision, repo_type=repo_type, timeout=HF_HUB_ETAG_TIMEOUT) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2588, in repo_info return method( File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_validators.py", line 114, in _inner_fn return fn(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/hf_api.py", line 2445, in dataset_info r = get_session().get(path, headers=headers, timeout=timeout, params=params) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 602, in get return self.request("GET", url, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 589, in request resp = self.send(prep, **send_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/sessions.py", line 703, in send r = adapter.send(request, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/huggingface_hub/utils/_http.py", line 66, in send return super().send(request, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/requests/adapters.py", line 635, in send raise ReadTimeout(e, request=request) requests.exceptions.ReadTimeout: (ReadTimeoutError("HTTPSConnectionPool(host='huggingface.co', port=443): Read timed out. (read timeout=10)"), '(Request ID: 4c2da59a-7852-4214-ad86-d8a84c4e8644)')
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Dataset Card for ACL Anthology Corpus
This repository provides full-text and metadata to the ACL anthology collection (80k articles/posters as of September 2022) also including .pdf files and grobid extractions of the pdfs.
How is this different from what ACL anthology provides and what already exists?
- We provide pdfs, full-text, references and other details extracted by grobid from the PDFs while ACL Anthology only provides abstracts.
- There exists a similar corpus call ACL Anthology Network but is now showing its age with just 23k papers from Dec 2016.
>>> import pandas as pd
>>> df = pd.read_parquet('acl-publication-info.74k.parquet')
>>> df
acl_id abstract full_text corpus_paper_id pdf_hash ... number volume journal editor isbn
0 O02-2002 There is a need to measure word similarity whe... There is a need to measure word similarity whe... 18022704 0b09178ac8d17a92f16140365363d8df88c757d0 ... None None None None None
1 L02-1310 8220988 8d5e31610bc82c2abc86bc20ceba684c97e66024 ... None None None None None
2 R13-1042 Thread disentanglement is the task of separati... Thread disentanglement is the task of separati... 16703040 3eb736b17a5acb583b9a9bd99837427753632cdb ... None None None None None
3 W05-0819 In this paper, we describe a word alignment al... In this paper, we describe a word alignment al... 1215281 b20450f67116e59d1348fc472cfc09f96e348f55 ... None None None None None
4 L02-1309 18078432 011e943b64a78dadc3440674419821ee080f0de3 ... None None None None None
... ... ... ... ... ... ... ... ... ... ... ...
73280 P99-1002 This paper describes recent progress and the a... This paper describes recent progress and the a... 715160 ab17a01f142124744c6ae425f8a23011366ec3ee ... None None None None None
73281 P00-1009 We present an LFG-DOP parser which uses fragme... We present an LFG-DOP parser which uses fragme... 1356246 ad005b3fd0c867667118482227e31d9378229751 ... None None None None None
73282 P99-1056 The processes through which readers evoke ment... The processes through which readers evoke ment... 7277828 924cf7a4836ebfc20ee094c30e61b949be049fb6 ... None None None None None
73283 P99-1051 This paper examines the extent to which verb d... This paper examines the extent to which verb d... 1829043 6b1f6f28ee36de69e8afac39461ee1158cd4d49a ... None None None None None
73284 P00-1013 Spoken dialogue managers have benefited from u... Spoken dialogue managers have benefited from u... 10903652 483c818c09e39d9da47103fbf2da8aaa7acacf01 ... None None None None None
[73285 rows x 21 columns]
Dataset Summary
Dataframe with extracted metadata (table below with details) and full text of the collection for analysis : size 489M
Languages
en, zh and others
Dataset Structure
Dataframe
Data Instances
Each row is a paper from ACL anthology
Data Fields
Column name | Description |
---|---|
acl_id |
unique ACL id |
abstract |
abstract extracted by GROBID |
full_text |
full text extracted by GROBID |
corpus_paper_id |
Semantic Scholar ID |
pdf_hash |
sha1 hash of the pdf |
numcitedby |
number of citations from S2 |
url |
link of publication |
publisher |
- |
address |
Address of conference |
year |
- |
month |
- |
booktitle |
- |
author |
list of authors |
title |
title of paper |
pages |
- |
doi |
- |
number |
- |
volume |
- |
journal |
- |
editor |
- |
isbn |
- |
Dataset Creation
The corpus has all the papers in ACL anthology - as of September'22
Source Data
Additional Information
Licensing Information
The ACL OCL corpus is released under the CC BY-NC 4.0. By using this corpus, you are agreeing to its usage terms.
Citation Information
If you use this corpus in your research please use the following BibTeX entry:
@Misc{acl-ocl,
author = {Shaurya Rohatgi, Yanxia Qin, Benjamin Aw, Niranjana Unnithan, Min-Yen Kan},
title = {The ACL OCL Corpus: advancing Open science in Computational Linguistics},
howpublished = {arXiv},
year = {2022},
url = {https://huggingface.co/datasets/ACL-OCL/ACL-OCL-Corpus}
}
Acknowledgements
We thank Semantic Scholar for providing access to the citation-related data in this corpus.
Contributions
Thanks to @shauryr, Yanxia Qin and Benjamin Aw for adding this dataset.
- Downloads last month
- 5,114