File size: 129,954 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:07:17.156199Z"
    },
    "title": "ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects",
    "authors": [
        {
            "first": "Imane",
            "middle": [],
            "last": "Guellil",
            "suffix": "",
            "affiliation": {
                "laboratory": "SEA Research group",
                "institution": "Aston university / Birmingham",
                "location": {
                    "country": "UK"
                }
            },
            "email": "i.guellil@aston.ac.uk"
        },
        {
            "first": "Faical",
            "middle": [],
            "last": "Azouaou",
            "suffix": "",
            "affiliation": {
                "laboratory": "Laboratoire des M\u00e9thodes de Conception des Syst\u00e8mes (LMCS)",
                "institution": "Oued-Smar",
                "location": {
                    "postCode": "BP 68M, 16309",
                    "settlement": "Alger",
                    "country": "Alg\u00e9rie"
                }
            },
            "email": ""
        },
        {
            "first": "Fodil",
            "middle": [],
            "last": "Benali",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Ala-Eddine",
            "middle": [],
            "last": "Hachani",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country uses at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Arabic is the official language of 22 countries, spoken by more than 400 million speakers. Each one of this country uses at least on dialect for daily life conversation. Then, Arabic has at least 22 dialects. Each dialect can be written in Arabic or Arabizi Scripts. The most recent researches focus on constructing a language model and a training corpus for each dialect, in each script. Following this technique means constructing 46 different resources (by including the Modern Standard Arabic, MSA) for handling only one language. In this paper, we extract ONE corpus, and we propose ONE algorithm to automatically construct ONE training corpus using ONE classification model architecture for sentiment analysis MSA and different dialects. After manually reviewing the training corpus, the obtained results outperform all the research literature results for the targeted test corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "All the survey works in the literature (Habash, 2010; Farghaly and Shaalan, 2009; Harrat et al., 2017) classify Arabic in three main varieties: 1) Classical Arabic (CA), 2) Modern Standard Arabic (MSA) and 3) Dialectal Arabic (Boudad et al., 2017) . Arabic Dialects are another form of Arabic used in daily life communication. Each dialect shares many features with MSA, but they globally differ in some aspects. Arabic and its dialects can be written either in Arabic Script or in Arabizi one. Arabizi is a form of writing Arabic text that relies on Latin letters, numerals and punctuation rather than Arabic letters (Guellil et al., 2019a,b) . For ex-ample, the Arabic sentence:",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 53,
                        "text": "(Habash, 2010;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 54,
                        "end": 81,
                        "text": "Farghaly and Shaalan, 2009;",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 82,
                        "end": 102,
                        "text": "Harrat et al., 2017)",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 226,
                        "end": 247,
                        "text": "(Boudad et al., 2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 618,
                        "end": 643,
                        "text": "(Guellil et al., 2019a,b)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": ", meaning \"I am happy,\" is written in Arabizi as \"rani fer7ana\". Arabizi is generally used by Arab speakers in social media or chat and SMS applications. Almost all the work on Arabic sentiment analysis focus on constructing new resources (new lexicons(Abdul-Mageed and Diab, 2012; Mataoui et al., 2016; Mohammad et al., 2016a; Gilbert et al., 2018) , new training corpora (Aly and Atiya, 2013; ElSahar and El-Beltagy, 2015; Mourad and Darwish, 2013; Rahab et al., 2019; Alahmary et al., 2019; Al-Twairesh et al., 2017) , new language models (Baly et al., 2020) ) for each dialect. More recently, particular attention has been given to Arabizi as well (Baert et al., 2020) . However, constructing a unique resource for each dialect is time and effort consuming. Moreover, this resource will be exploitable only for the targeted dialect.",
                "cite_spans": [
                    {
                        "start": 239,
                        "end": 281,
                        "text": "(new lexicons(Abdul-Mageed and Diab, 2012;",
                        "ref_id": null
                    },
                    {
                        "start": 282,
                        "end": 303,
                        "text": "Mataoui et al., 2016;",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 304,
                        "end": 327,
                        "text": "Mohammad et al., 2016a;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 328,
                        "end": 349,
                        "text": "Gilbert et al., 2018)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 373,
                        "end": 394,
                        "text": "(Aly and Atiya, 2013;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 395,
                        "end": 424,
                        "text": "ElSahar and El-Beltagy, 2015;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 425,
                        "end": 450,
                        "text": "Mourad and Darwish, 2013;",
                        "ref_id": "BIBREF40"
                    },
                    {
                        "start": 451,
                        "end": 470,
                        "text": "Rahab et al., 2019;",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 471,
                        "end": 493,
                        "text": "Alahmary et al., 2019;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 494,
                        "end": 519,
                        "text": "Al-Twairesh et al., 2017)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 542,
                        "end": 561,
                        "text": "(Baly et al., 2020)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 652,
                        "end": 672,
                        "text": "(Baert et al., 2020)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This paper proposes a general algorithm constructing a language model from a large corpus and a training corpus automatically to bridge the gap. It also proposes the transliteration of the Arabizi messages into Arabic. This approach was applied to Algerian dialect (a Maghrebi dialect), having a lack of resources. However, the constructed model was used for classifying the sentiment of messages written in MSA, Tunisian dialect or even Egyptian dialect. The results were very encouraging. However, the manual review of a small part of the training corpus constructed automatically leads to outperform all the research literature results for the testing corpora cited above.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The aim of the proposed model is to analyse the sentiment of Arabic message (written with both Arabic/Arabizi scripts). In this context, we need to focus on three categories of works: 1) Works on Arabizi transliteration. 2) Works on lexicon-based approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring the proposed work",
                "sec_num": "2"
            },
            {
                "text": "3) Works on corpus-based approach. In the following sections, we present the set of strengths/weaknesses of the research works inspiring our proposed approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring the proposed work",
                "sec_num": "2"
            },
            {
                "text": "The transliteration approach is firstly inspired by the work presented by van et al. (van der Wees et al., 2016) , where the authors used a table extracted from Wikipedia 1 for the passage from Arabizi to Arabic. We also present a passage table from Arabizi to Arabic. However, we also use a set of passage rules for handling the position of letters and some missed cases in the literature studied approaches. The proposed approach is also inspired by the works presented in (Al-Badrashiny et al., 2014; Darwish, 2013; May et al., 2014; van der Wees et al., 2016) . All these authors generate a set of possible candidates for the transliteration of an Arabizi word into Arabic. The major issue of these approaches is the omission of some candidates because the vowels are not properly handled. Finally, This work is also inspired by the proposed approach in (Darwish, 2014; van der Wees et al., 2016 ) using a language model to determine the best possible candidate for a word in Arabizi. On the other hand, these works assimilate the task of transliteration to a translation task. The major drawback of these approaches is that they depend on a parallel corpus. The used corpus is usually constructed manually.",
                "cite_spans": [
                    {
                        "start": 85,
                        "end": 112,
                        "text": "(van der Wees et al., 2016)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 475,
                        "end": 503,
                        "text": "(Al-Badrashiny et al., 2014;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 504,
                        "end": 518,
                        "text": "Darwish, 2013;",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 519,
                        "end": 536,
                        "text": "May et al., 2014;",
                        "ref_id": "BIBREF36"
                    },
                    {
                        "start": 537,
                        "end": 563,
                        "text": "van der Wees et al., 2016)",
                        "ref_id": "BIBREF46"
                    },
                    {
                        "start": 858,
                        "end": 873,
                        "text": "(Darwish, 2014;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 874,
                        "end": 899,
                        "text": "van der Wees et al., 2016",
                        "ref_id": "BIBREF46"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring our transliteration approach",
                "sec_num": "2.1"
            },
            {
                "text": "The proposed sentiment lexicon construction approach is firstly inspired by the group of approaches using the automatic translation of an existing English lexicon (Mohammad et al., 2016a; Salameh et al., 2015; Mohammad et al., 2016b; Abdul-Mageed and Diab, 2012; Abdulla et al., 2014) . The majority of these approaches are based on Google translate. However, Google translate deals with MSA only (i.e. Google translate is not adequate for translating dialects). Moreover, the Arabic/English dictionaries are covering MSA and some dialects such as Egyptian and Levantine. Limited resources are dedicated to Maghrebi dialects such as Tunisian, Moroccan or Algerian dialects. Hence, we opt to use Glosbe API 2 , which is an online API offering the translation from/to MSA and almost all dialects. This API is open-source (i.e. no fees are required for using it). The proposed approach is also inspired by the work using a semi-automatic construction (El-Beltagy, 2016) where the authors manually review the constructed lexicon.",
                "cite_spans": [
                    {
                        "start": 163,
                        "end": 187,
                        "text": "(Mohammad et al., 2016a;",
                        "ref_id": "BIBREF38"
                    },
                    {
                        "start": 188,
                        "end": 209,
                        "text": "Salameh et al., 2015;",
                        "ref_id": "BIBREF45"
                    },
                    {
                        "start": 210,
                        "end": 233,
                        "text": "Mohammad et al., 2016b;",
                        "ref_id": "BIBREF39"
                    },
                    {
                        "start": 234,
                        "end": 262,
                        "text": "Abdul-Mageed and Diab, 2012;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 263,
                        "end": 284,
                        "text": "Abdulla et al., 2014)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 948,
                        "end": 966,
                        "text": "(El-Beltagy, 2016)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring our lexicon-based approach",
                "sec_num": "2.2"
            },
            {
                "text": "For handling morphological aspects of Arabic dialects, some works relying on stemming tools, dedicated to MSA. For example, the work of Mataoui et al. (Mataoui et al., 2016) used the Khoja stemmer (Khoja and Garside, 1999) for stemming the DALG, which is designed for MSA. In our work, we treat agglutination by employing an algorithm that supports the originality of the studied dialect (DALG), principally related to its prefixes, suffixes, and negative pronouns. The work of Al-Twairesh et al. (Al-Twairesh et al., 2017) also inspires the proposed approach. This work is relying on sentiments words for automatically annotating large corpus in Saudi dialects. However, in contrast to this work, our approach is not only concentrating on sentiment words, but it is also based on a sentiment algorithm for handling opposition, Arabic morphology and negation.",
                "cite_spans": [
                    {
                        "start": 136,
                        "end": 173,
                        "text": "Mataoui et al. (Mataoui et al., 2016)",
                        "ref_id": "BIBREF35"
                    },
                    {
                        "start": 197,
                        "end": 222,
                        "text": "(Khoja and Garside, 1999)",
                        "ref_id": "BIBREF34"
                    },
                    {
                        "start": 497,
                        "end": 523,
                        "text": "(Al-Twairesh et al., 2017)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring our lexicon-based approach",
                "sec_num": "2.2"
            },
            {
                "text": "The works that firstly inspire our proposed (Pak and Paroubek, 2010; Hogenboom et al., 2013; Yadav and Pandya, 2017) are not dedicated to Arabic but other languages (English and Dutch) The main idea of these works is to use emoticons for automatically tag a large corpus. Hence, the proposed contribution also exploits the presence of emoticons to determine the sentiment of messages. However, it can be seen that all emoticons are not appropriate for determining sentiment. Hence, our proposed approach also considers emoticons for annotation but not all emoticons, only the emoticons with the strongest sentiment (either positive or negative). Our approach of constructing corpus is also inspired by the work of Gamal et al. (Gamal et al., 2019) that they relied on a sentiment lexicon to automatically annotate a sentiment corpus. However, their algorithm relies only on the positive and negative words count. For these authors, if the number of positives words is higher than or equal twice the number of negatives words than the message is considered as positive, and the same philosophy is applied for the negative messages. In contrast to these authors, we developed more sophisticated algorithms handling Arabic agglutination, opposition and negation. We also consider a set of heuristics, including the number of words.",
                "cite_spans": [
                    {
                        "start": 44,
                        "end": 68,
                        "text": "(Pak and Paroubek, 2010;",
                        "ref_id": "BIBREF42"
                    },
                    {
                        "start": 69,
                        "end": 92,
                        "text": "Hogenboom et al., 2013;",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 93,
                        "end": 116,
                        "text": "Yadav and Pandya, 2017)",
                        "ref_id": "BIBREF47"
                    },
                    {
                        "start": 727,
                        "end": 747,
                        "text": "(Gamal et al., 2019)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring our corpus-based approach",
                "sec_num": "2.3"
            },
            {
                "text": "Our contribution is also inspired by the work of Medhaffar et al. (Medhaffar et al., 2017) , which is the unique work, to the best of our knowledge, focusing on Arabic and Arabizi at the same time. However, in contrast to this work, we used a more voluminous corpus (which was constructed automatically), and we propose a transliteration step. Finally, our contribution is also inspired by the approach proposed by Duwairi et al. (Duwairi et al., 2016) . Hence, we firstly define and apply a transliteration step. However, in contrast to this work, our contribution is dealing with ambiguities treatment (especially vowels ambiguities), and our corpus sentiment is constructed automatically, so it is more voluminous than the corpora which the authors constructed manually.",
                "cite_spans": [
                    {
                        "start": 66,
                        "end": 90,
                        "text": "(Medhaffar et al., 2017)",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 415,
                        "end": 452,
                        "text": "Duwairi et al. (Duwairi et al., 2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The research works inspiring our corpus-based approach",
                "sec_num": "2.3"
            },
            {
                "text": "The general algorithm proposed and developed in the context of this work is presented in Algorithm 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "It can be seen from Algorithm 1 that the proposed steps are executed in the following order :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "1. The first step is to manually construct some resources including the list of the identifiers of some famous Algerian pages, the list of positive/negative emoticons and expressions, the list of prefixes/suffixes and finally the list of negation/ opposition terms. This step is illustrated by the function MANUALRESCON-STRUCTION().",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "2. The second step is to automatically extract comments from Facebook pages (using the collected identifiers). This step is illustrated by the function COMMENTSEXTRACTION(Facebook key ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "3. The third step is to automatically construct the Algerian sentiment lexicon by relying on an existing English sentiment lexicon. This step is illustrated by the function AUTOMATICARLEXCONSTRUCT(Eng lex ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "4. The fourth step is to review the constructed lexicon manually. This step is illustrated by the function MANUALLEXREVIEW(Alg lexV1 ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The proposed algorithm",
                "sec_num": "3.1"
            },
            {
                "text": "annotate each message from the corpus (extracted from Facebook). This step is illustrated by the function",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The fifth step is to automatically",
                "sec_num": "5."
            },
            {
                "text": "ANNOTATE(Alg lexV2 , m, L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op , pos, neg).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The fifth step is to automatically",
                "sec_num": "5."
            },
            {
                "text": "6. The sixth step is to transliterate each message in the used Arabizi corpus. This step is illustrated by the function ARABIZ-ITRANSLITERATE(CORPUS). For translteration we rely on the same algorithm proposed and used by Guellil et al. (Guellil et al., 2018c (Guellil et al., , 2020a (Guellil et al., , 2018a 7. The last step is to classify the sentiment (written with Arabic script) in both corpora (the initially Arabic one and the transliterated one). This step is illustrated by the function SENTIMENTCLASS(corpus, Senti A lg).",
                "cite_spans": [
                    {
                        "start": 236,
                        "end": 258,
                        "text": "(Guellil et al., 2018c",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 259,
                        "end": 283,
                        "text": "(Guellil et al., , 2020a",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 284,
                        "end": 308,
                        "text": "(Guellil et al., , 2018a",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The fifth step is to automatically",
                "sec_num": "5."
            },
            {
                "text": "For classification, we use two kinds of algorithms, shallow and deep. For both classifications, we extract features with word embedding techniques. With shallow classification, ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The used models for classification",
                "sec_num": "3.2"
            },
            {
                "text": "Alg lexV1 : Algerian Lexicon V1, Alg lexV2 : Algerian lexicon V2, Ar corp1 ,Ar corp2 : Large Arabic corpora, Senti Alg : Automatic annotated Algerian (Arabic) corpus L f : List identifiant of Facebook pages, L emp : List of positive emoticons, L emn : List of negative emoticons, L exp : List of positive expressions, L exn : List of negative expressions, L pr : List of prefixes, L s f : List of suffixes, L neg : List of negation terms, L op : List of opposition terms 3 1: Senti Alg \u2190 \u2205 2: L f , L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op \u2190MANUALRESCONSTRUCTION() 3: Ar corp1 ,Ar corp2 \u2190COMMENTSEXTRACTION(Facebook key ) 4: Alg lexV1 \u2190AUTOMATICARLEXCONSTRUCT(Eng lex ) 5: Alg lexV2 \u2190MANUALLEXREVIEW(Alg lexV1 ) 6: for each m \u2208 Ar corp2 do 7: polarity\u2190 ANNOTATE(Alg lexV2 , m, L emp , L emn , L exp , L exn , L pr , L s f , L neg , L op ) 8:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The used models for classification",
                "sec_num": "3.2"
            },
            {
                "text": "add m, polarity in Senti Alg 9: end for 10: for each corpus \u2208 ArTest corp do 11: SENTIMENTCLASS(corpus, Senti Alg ) 12: end for 13: for each corpus \u2208 ArabiziTest corp do 14:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The used models for classification",
                "sec_num": "3.2"
            },
            {
                "text": "Corpus tr \u2190 ARABIZITRANSLITERATE(corpus, Ar corp1 ) 15: ADD(ArabiziTrTest corp , Corpus tr ) 16: SENTIMENTCLASSIFICATION(Corpus tr , Senti Alg )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The used models for classification",
                "sec_num": "3.2"
            },
            {
                "text": "17: end for we use Word2vec algorithm. While we use fastText for deep classification. For Word2vec, we used a context of 10 words to produce representations for both CBOW and SG of length 300. For classification we use five Algorithms such as: GaussianNB (GNB), LogisticRegression (LR), RandomForset (RF), SGDClassifier (SGD, with loss='log' and penalty='l1') and LinearSVC (LSVC with C='1e1'). For deep learning classification, we first used the model presented by Attia et al. (Attia et al., 2018) with five layers using 300 filters and a width equal to 7. To enrich this model, our approach also uses the CBOW and SG of FastText for calculating the weights of embedding matrix. Also, our approach used other deep learning algorithms, such as LSTM and Bi-LSTM. Table 1 gives more details about the configuration and architecture of the layers of our models on the training corpus. For all the models, we use an epoch equal to 100 with an early stopping parameter. This parameter is used for stopping the iteration in the absence of improvements (for handling overfitting). This parameter al-lows stopping the models after 20 epochs (on average). Adam optimiser is used in all the deep learning experiments.",
                "cite_spans": [
                    {
                        "start": 479,
                        "end": 499,
                        "text": "(Attia et al., 2018)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 763,
                        "end": 770,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "The used models for classification",
                "sec_num": "3.2"
            },
            {
                "text": "For the experiments part, the following dataset were used: 1) A large corpus (Ar corpus2), extracted in November 2017, and containing 15,407,910 messages with 7,926,504 written in Arabic letters.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "2) ALG Senti (Guellil et al., 2018b (Guellil et al., , 2020a is an annotated sentiment corpus which was automatically constructed based on AL-GLex V2 (Guellil et al., 2020b ) and on the sentiment algorithm that we proposed and implemented. The annotation process also considers other features such as the sentiment score of the message and the number of positives/negatives words recognised in the lexicon. The final corpus contains 127,004 positive messages and 127,004 negative ones.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 35,
                        "text": "(Guellil et al., 2018b",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 36,
                        "end": 60,
                        "text": "(Guellil et al., , 2020a",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 150,
                        "end": 172,
                        "text": "(Guellil et al., 2020b",
                        "ref_id": "BIBREF26"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "3) TSAC 4 (Medhaffar et al., 2017 ) is a Tunisian sentiment corpus. This corpus is the unique corpus in the research literature, to the best of our knowledge, containing both Arabic and Arabizi. For testing our approach on other corpus presented in the research literature, we propose to transliterate the Arabizi part of TSAC into Arabic, using our transliteration approach. 4) SANA Alg 5 (Rahab et al., 2019) is an Algerian annotated sentiment corpus. This corpus includes 513 messages that were manually annotated. 5) ASTD/QCRI/ARTwitter 6 (Altowayan and Tao, 2016) is an Arabic corpus including 1,589 tweets from astd (Nabil et al., 2015) , 1, 951 tweets from ArTwitter (Abdulla et al., 2013) and 754 from QCRI (Mourad and Darwish, 2013) ",
                "cite_spans": [
                    {
                        "start": 10,
                        "end": 33,
                        "text": "(Medhaffar et al., 2017",
                        "ref_id": "BIBREF37"
                    },
                    {
                        "start": 390,
                        "end": 410,
                        "text": "(Rahab et al., 2019)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 622,
                        "end": 642,
                        "text": "(Nabil et al., 2015)",
                        "ref_id": "BIBREF41"
                    },
                    {
                        "start": 674,
                        "end": 696,
                        "text": "(Abdulla et al., 2013)",
                        "ref_id": null
                    },
                    {
                        "start": 715,
                        "end": 741,
                        "text": "(Mourad and Darwish, 2013)",
                        "ref_id": "BIBREF40"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "The aim of this work is to classify an Arabic message into positive/negative automatically. More particularly to use a language model and the resources constructed for one dialect for classifying the sentiments of an another dialect (and MSA). Hence, for validating our approach , we applied it on four corpora annotated manually by natives speakers. Two of these corpora are in Algerian dialect (Senti Alg (Guellil et al., 2018b,a) and Sana Alg (Rahab et al., 2019) ), one of them is in MSA (ASTD QCRI ArTwitter)(Altowayan and Tao, 2016) and the last one in Tunisian dialect (TSAC) (Medhaffar et al., 2017) . Two of these corpora include both Arabic and Arabizi (Senti Alg and TSAC) and the others are dedicated to Arabic script. Our purpose behind the different experiments is not only to validate our approach but to also highlight its adaptability to MSA and other dialects written with both scripts Arabic and Arabizi. For doing so, we apply the following steps:",
                "cite_spans": [
                    {
                        "start": 407,
                        "end": 432,
                        "text": "(Guellil et al., 2018b,a)",
                        "ref_id": null
                    },
                    {
                        "start": 446,
                        "end": 466,
                        "text": "(Rahab et al., 2019)",
                        "ref_id": "BIBREF44"
                    },
                    {
                        "start": 583,
                        "end": 607,
                        "text": "(Medhaffar et al., 2017)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4.2"
            },
            {
                "text": "1. For Senti Alg, we focus on both sides, Arabic and Arabizi. For Arabizi part, we investigate the results using both automatic and manual transliteration.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4.2"
            },
            {
                "text": "2. As Sana Alg and ASTD QCRI ARTwitter use only Arabic script, no need for the transliteration process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4.2"
            },
            {
                "text": "3. As TSAC Test represents a combination between Arabic and Arabizi messages, for each experiment on TSAC, we use both, the initial test (Initial test) corpus and the test corpus obtained after applying the proposed translietration system (Transliterated test).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4.2"
            },
            {
                "text": "The different experiments and the obtained results are presented in the following sections. ). However, the results obtained using Word2vec model combined with shallow classifiers outperform those obtained using fast-Text model combined with deep learning classifiers. The results obtained by using the corpus transliterated manually (Senti_Alg_ test_trmanu) are better than those obtained on the corpus transliterated automatically ((Senti_Alg_test_trauto). However, the improvement between both transliterations is non-consequential (0.9, less than 1 point For F1-score). This small improvement rate highlights the quality of the proposed transliteration system. More details are presented (in the Appendices, section 7) in the Table 3 ).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 730,
                        "end": 737,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "4.2"
            },
            {
                "text": "For the experiments, we use both versions of the Tunisian corpus. We denote the version in its current state (before transliteration) as TSAC test. We denote the version after proceeding to the transliteration as TSAC Test Tr.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results on Tunisian dialect",
                "sec_num": "4.2.2"
            },
            {
                "text": "To compare the sentiment analysis results obtained before and after transliteration step, we divide However, the results obtained using Word2vec model combined with shallow classifiers outperform those obtained using FastText model combined with deep learning classifiers. More details are presented (in the Appendices, Section 7) in the Table 6) 5 Synthesis and corpus validation",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 338,
                        "end": 346,
                        "text": "Table 6)",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results on Tunisian dialect",
                "sec_num": "4.2.2"
            },
            {
                "text": "The best results obtained from the different experiments and that we discussed in Section 4.2 are summarised in Table 2. For Algerian dialect, the corpora that we used (i.e. Senti_Alg_test_Arabic, Senti_ Alg_test_trauto and Senti_Alg_test_trmanu) were presented and used in many research papers (Guellil et al., 2017 (Guellil et al., , 2018b Imane et al., 2019) . We based on the issues of each presented research work to improve the results presented in this paper (where the best F1= 87.77% for the Arabic side and F=76.13% for the Arabizi side, after transliteration). The best results obtained on SANA Alg are up to 81.00% (for F1-score). This result outperforms the results presented in the research literature, where the F1-score presented by Rahab et al. .(Rahab et al., 2019 ) was up to 75%. Hence, our approach and corpus lead to an improvement of 6% on this corpus.",
                "cite_spans": [
                    {
                        "start": 295,
                        "end": 316,
                        "text": "(Guellil et al., 2017",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 317,
                        "end": 341,
                        "text": "(Guellil et al., , 2018b",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 342,
                        "end": 361,
                        "text": "Imane et al., 2019)",
                        "ref_id": "BIBREF33"
                    },
                    {
                        "start": 749,
                        "end": 782,
                        "text": "Rahab et al. .(Rahab et al., 2019",
                        "ref_id": "BIBREF44"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 112,
                        "end": 120,
                        "text": "Table 2.",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Synthesis",
                "sec_num": "5.1"
            },
            {
                "text": "For Tunisian dialect, it can be seen that the results obtained by using the corpus transliterated (TSAC_Test_Tr) are relatively better than those obtained on the initial corpus (TSAC_ Test) (without transliteration). Medhaffar et al. (Medhaffar et al., 2017) obtained an F1score up to 78% for TSAC Test corpus. Our best results by using our approach on the corpus (Senti Alg) is up to 75.24% (F1-score). The results are then comparable to the results obtained by the authors (even with a corpus constructed automatically and dedicated to Algerian dialect). However, our transliteration system drastically improves the results. The results are up to 91.59% after transliterating both the training and the testing corpus (by using TSAC train for the training). Hence an improvement of 14% was observed on this corpus. Another interesting observation is that, except for the training corpus, all the approach and corpora used for TSAC corpus are the same that we used for our other experiments. The vast corpus used for training Word2vec and fastText dedicated to Al-gerian dialect. The language model used for extracting the best candidate transliteration was also dedicated to Algerian dialect. Finally, concerning MSA, we opt for using the corpus ASTD/QCRI/ArTwitter (Altowayan and Tao, 2016). The best results obtained by Altowayen et al. (Altowayan and Tao, 2016) are up to 79.62% (for F1-score). It can be seen from Table  6 that the best results that we obtained are up to 80.58% (for F1-score). Moreover, This corpus is dedicated to MSA with a focus on Egyptian dialect (for ASTD). Hence, our approach and corpus, which are dedicated to Algerian dialect, outperforms the results presented for corpora dedicated to MSA and Egyptian dialect.",
                "cite_spans": [
                    {
                        "start": 217,
                        "end": 258,
                        "text": "Medhaffar et al. (Medhaffar et al., 2017)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 1419,
                        "end": 1427,
                        "text": "Table  6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Synthesis",
                "sec_num": "5.1"
            },
            {
                "text": "To validate the constructed corpus automatically, we focus on a sample containing 3,048 messages (1,488 positives and 1,560 negatives). Afterwards, we manually review this sample. The messages that are correctly annotated were kept, and the messages which were wrongly annotated were corrected. Our first observation is that, among the 3,048 messages that are manually reviewed, 85.17% (2,596 messages) were correctly annotated. To the best of our knowledge, this corpus is the first manually checked annotated sentiment corpus that handles DALG as well as MSA. For showing the efficiency of the manually reviewed corpus, we present Table 3 . Almost all the results were improved with the corpus, which was reviewed manually. The best F1 on Senti Alg test Arabic is now up to 90.16 (it was up to 87.77 with Senti Alg auto). The best F1 on Senti Alg test trauto is now up to 80.95 (it was up to 75.23 with Senti Alg auto). The best F1 on Senti Alg test trmanu is now up to 83.10 (it was up to 76.13 with Senti Alg auto). The best F1 on ASTD/QCRI/ARTwitter is now up to 81.75 (it was up to 80.58 with Senti Alg auto). The decrease for SANA Alg is insignificant, where the best F1 was up to 81.00, and now it is up to 80.97.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 633,
                        "end": 640,
                        "text": "Table 3",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Manual corpus validation",
                "sec_num": "5.2"
            },
            {
                "text": "Concerning the experiments on Tunisian corpus (TSAC), It can be seen from ) . These results outperform the results presented in the research literature ((Medhaffar et al., 2017) ), where the bestpresented F1 was up to 78.00. Hence, the manual reviewing of a corpus which was initially constructed automatically outperforms all the results presented in the research literature.",
                "cite_spans": [
                    {
                        "start": 152,
                        "end": 177,
                        "text": "((Medhaffar et al., 2017)",
                        "ref_id": "BIBREF37"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 74,
                        "end": 75,
                        "text": ")",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Manual corpus validation",
                "sec_num": "5.2"
            },
            {
                "text": "The major contribution in this paper is the new perspectives that it opens:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Automatic training corpus construction.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Using one language model trained for one dialect to MSA and either to other dialects.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Moreover, using the training corpus of one dialect to others (which is a case of transfer learning).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "\u2022 Stop handling Arabizi as it is. Translitertaion is crucial for improving the results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "Moreover, only simple word embedding models were used (word2vec and fastText). It was for showing the efficacy of the approach even with the fastest models. However, in the future, we are planning to improve this approach with the most recent models such as BERT (Devlin et al., 2018) ",
                "cite_spans": [
                    {
                        "start": 263,
                        "end": 284,
                        "text": "(Devlin et al., 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            },
            {
                "text": "https://en.wikipedia.org/wiki/Arabic chat alphabet",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://en.glosbe.com/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/fbougares/TSAC 5 http://rahab.e-monsite.com/medias/files/corpus.rar 6 https://github.com/iamaziz/arembeddings/tree/master/datasets",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In this section, more details about the obtained results on each model, corpus are given.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Toward building a large-scale arabic sentiment lexicon",
                "authors": [
                    {
                        "first": "Muhammad",
                        "middle": [],
                        "last": "Abdul-Mageed",
                        "suffix": ""
                    },
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Diab",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Proceedings of the 6th international global WordNet conference",
                "volume": "",
                "issue": "",
                "pages": "18--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Muhammad Abdul-Mageed and Mona Diab. 2012. Toward building a large-scale arabic sentiment lexicon. In Proceedings of the 6th international global WordNet conference, pages 18-22.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Automatic lexicon construction for arabic sentiment analysis",
                "authors": [
                    {
                        "first": "Nawaf",
                        "middle": [],
                        "last": "Abdulla",
                        "suffix": ""
                    },
                    {
                        "first": "Salwa",
                        "middle": [],
                        "last": "Mohammed",
                        "suffix": ""
                    },
                    {
                        "first": "Mahmoud",
                        "middle": [],
                        "last": "Al-Ayyoub",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Al-Kabi",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Future Internet of Things and Cloud",
                "volume": "",
                "issue": "",
                "pages": "547--552",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nawaf Abdulla, Salwa Mohammed, Mahmoud Al-Ayyoub, Mohammed Al-Kabi, et al. 2014. Au- tomatic lexicon construction for arabic sentiment analysis. In Future Internet of Things and Cloud (Fi- Cloud), 2014 International Conference on, pages 547- 552. IEEE.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Arabic sentiment analysis: Lexicon-based and corpus-based",
                "authors": [],
                "year": null,
                "venue": "Applied Electrical Engineering and Computing Technologies (AEECT), 2013 IEEE Jordan Conference on",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Arabic sentiment analysis: Lexicon-based and corpus-based. In Applied Electrical Engineering and Computing Technologies (AEECT), 2013 IEEE Jordan Conference on, pages 1-6. IEEE.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Automatic transliteration of romanized dialectal arabic",
                "authors": [
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Al-Badrashiny",
                        "suffix": ""
                    },
                    {
                        "first": "Ramy",
                        "middle": [],
                        "last": "Eskander",
                        "suffix": ""
                    },
                    {
                        "first": "Nizar",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    },
                    {
                        "first": "Owen",
                        "middle": [],
                        "last": "Rambow",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the Eighteenth Conference on Computational Natural Language Learning",
                "volume": "",
                "issue": "",
                "pages": "30--38",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohamed Al-Badrashiny, Ramy Eskander, Nizar Habash, and Owen Rambow. 2014. Automatic transliteration of romanized dialectal arabic. In Proceedings of the Eighteenth Conference on Computa- tional Natural Language Learning, pages 30-38.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Arasentitweet: A corpus for arabic sentiment analysis of saudi tweets",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Al-Twairesh",
                        "suffix": ""
                    },
                    {
                        "first": "Hend",
                        "middle": [],
                        "last": "Al-Khalifa",
                        "suffix": ""
                    },
                    {
                        "first": "Abdulmalik",
                        "middle": [],
                        "last": "Al-Salman",
                        "suffix": ""
                    },
                    {
                        "first": "Yousef",
                        "middle": [],
                        "last": "Al-Ohali",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Procedia Computer Science",
                "volume": "117",
                "issue": "",
                "pages": "63--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nora Al-Twairesh, Hend Al-Khalifa, AbdulMalik Al-Salman, and Yousef Al-Ohali. 2017. Arasenti- tweet: A corpus for arabic sentiment analysis of saudi tweets. Procedia Computer Science, 117:63- 72.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Sentiment analysis of saudi dialect using deep learning techniques",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rahma M Alahmary",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Hmood",
                        "suffix": ""
                    },
                    {
                        "first": "Ahmed",
                        "middle": [
                            "Z"
                        ],
                        "last": "Al-Dossari",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Emam",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 International Conference on Electronics, Information, and Communication (ICEIC)",
                "volume": "",
                "issue": "",
                "pages": "1--6",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rahma M Alahmary, Hmood Z Al-Dossari, and Ahmed Z Emam. 2019. Sentiment analysis of saudi dialect using deep learning techniques. In 2019 International Conference on Electronics, Informa- tion, and Communication (ICEIC), pages 1-6. IEEE.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Word embeddings for arabic sentiment analysis",
                "authors": [
                    {
                        "first": "Lixin",
                        "middle": [],
                        "last": "Aziz Altowayan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Tao",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "2016 IEEE International Conference on",
                "volume": "",
                "issue": "",
                "pages": "3820--3825",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A Aziz Altowayan and Lixin Tao. 2016. Word embeddings for arabic sentiment analysis. In Big Data (Big Data), 2016 IEEE International Conference on, pages 3820-3825. IEEE.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Labr: A large scale arabic book reviews dataset",
                "authors": [
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Aly",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Atiya",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics",
                "volume": "2",
                "issue": "",
                "pages": "494--498",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohamed Aly and Amir Atiya. 2013. Labr: A large scale arabic book reviews dataset. In Proceed- ings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), volume 2, pages 494-498.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Multilingual multiclass sentiment classification using convolutional neural networks",
                "authors": [
                    {
                        "first": "Mohammed",
                        "middle": [],
                        "last": "Attia",
                        "suffix": ""
                    },
                    {
                        "first": "Younes",
                        "middle": [],
                        "last": "Samih",
                        "suffix": ""
                    },
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "El-Kahky",
                        "suffix": ""
                    },
                    {
                        "first": "Laura",
                        "middle": [],
                        "last": "Kallmeyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohammed Attia, Younes Samih, Ali El-Kahky, and Laura Kallmeyer. 2018. Multilingual multi- class sentiment classification using convolutional neural networks. In LREC.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Arabizi language models for sentiment analysis",
                "authors": [
                    {
                        "first": "Ga\u00e9tan",
                        "middle": [],
                        "last": "Baert",
                        "suffix": ""
                    },
                    {
                        "first": "Souhir",
                        "middle": [],
                        "last": "Gahbiche",
                        "suffix": ""
                    },
                    {
                        "first": "Guillaume",
                        "middle": [],
                        "last": "Gadek",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandre",
                        "middle": [],
                        "last": "Pauchet",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 28th International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "592--603",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ga\u00e9tan Baert, Souhir Gahbiche, Guillaume Gadek, and Alexandre Pauchet. 2020. Arabizi language models for sentiment analysis. In Proceedings of the 28th International Conference on Computational Linguistics, pages 592-603.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Arabert: Transformer-based model for arabic language understanding",
                "authors": [
                    {
                        "first": "Fady",
                        "middle": [],
                        "last": "Baly",
                        "suffix": ""
                    },
                    {
                        "first": "Hazem",
                        "middle": [],
                        "last": "Hajj",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection",
                "volume": "",
                "issue": "",
                "pages": "9--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fady Baly, Hazem Hajj, et al. 2020. Arabert: Transformer-based model for arabic language un- derstanding. In Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection, pages 9-15.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Sentiment analysis in arabic: A review of the literature",
                "authors": [
                    {
                        "first": "Naaima",
                        "middle": [],
                        "last": "Boudad",
                        "suffix": ""
                    },
                    {
                        "first": "Rdouan",
                        "middle": [],
                        "last": "Faizi",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Ain Shams Engineering Journal",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Naaima Boudad, Rdouan Faizi, Rachid Oulad Haj Thami, and Raddouane Chiheb. 2017. Sentiment analysis in arabic: A review of the literature. Ain Shams Engineering Journal.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Arabizi detection and conversion to arabic",
                "authors": [
                    {
                        "first": "Kareem",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1306.6755"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Kareem Darwish. 2013. Arabizi detection and con- version to arabic. arXiv preprint arXiv:1306.6755.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Arabizi detection and conversion to arabic",
                "authors": [
                    {
                        "first": "Kareem",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Processing (ANLP)",
                "volume": "",
                "issue": "",
                "pages": "217--224",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kareem Darwish. 2014. Arabizi detection and con- version to arabic. In Proceedings of the EMNLP 2014 Workshop on Arabic Natural Language Process- ing (ANLP), pages 217-224.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Bert: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1810.04805"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert: Pre-training of deep bidirectional transformers for language un- derstanding. arXiv preprint arXiv:1810.04805.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Sentiment analysis for arabizi text",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Rehab",
                        "suffix": ""
                    },
                    {
                        "first": "Mosab",
                        "middle": [],
                        "last": "Duwairi",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Alfaqeh",
                        "suffix": ""
                    },
                    {
                        "first": "Areen",
                        "middle": [],
                        "last": "Wardat",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Alrabadi",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Information and Communication Systems (ICICS)",
                "volume": "",
                "issue": "",
                "pages": "127--132",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rehab M Duwairi, Mosab Alfaqeh, Mohammad Wardat, and Areen Alrabadi. 2016. Sentiment analysis for arabizi text. In Information and Com- munication Systems (ICICS), 2016 7th International Conference on, pages 127-132. IEEE.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Nileulex: A phrase and word level sentiment lexicon for egyptian and modern standard arabic",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Samhaa R El-Beltagy",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samhaa R El-Beltagy. 2016. Nileulex: A phrase and word level sentiment lexicon for egyptian and modern standard arabic. In LREC.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Building large arabic multi-domain resources for sentiment analysis",
                "authors": [
                    {
                        "first": "Hady",
                        "middle": [],
                        "last": "Elsahar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Samhaa R El-Beltagy",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "23--34",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hady ElSahar and Samhaa R El-Beltagy. 2015. Building large arabic multi-domain resources for sentiment analysis. In International Conference on Intelligent Text Processing and Computational Lin- guistics, pages 23-34. Springer.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Arabic natural language processing: Challenges and solutions",
                "authors": [
                    {
                        "first": "Ali",
                        "middle": [],
                        "last": "Farghaly",
                        "suffix": ""
                    },
                    {
                        "first": "Khaled",
                        "middle": [],
                        "last": "Shaalan",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "ACM Transactions on Asian Language Information Processing (TALIP)",
                "volume": "8",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ali Farghaly and Khaled Shaalan. 2009. Arabic natural language processing: Challenges and so- lutions. ACM Transactions on Asian Language Infor- mation Processing (TALIP), 8(4):14.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Twitter benchmark dataset for arabic sentiment analysis",
                "authors": [
                    {
                        "first": "Donia",
                        "middle": [],
                        "last": "Gamal",
                        "suffix": ""
                    },
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Alfonse",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "El-Sayed",
                        "suffix": ""
                    },
                    {
                        "first": "Abdel-Badeeh M",
                        "middle": [],
                        "last": "El-Horbaty",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Salem",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Journal of Modern Education and Computer Science",
                "volume": "11",
                "issue": "1",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Donia Gamal, Marco Alfonse, El-Sayed M El- Horbaty, and Abdel-Badeeh M Salem. 2019. Twit- ter benchmark dataset for arabic sentiment anal- ysis. International Journal of Modern Education and Computer Science, 11(1):33.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Arsel: A large scale arabic sentiment and emotion lexicon",
                "authors": [
                    {
                        "first": "Badaroand",
                        "middle": [],
                        "last": "Gilbert",
                        "suffix": ""
                    },
                    {
                        "first": "Jundiand",
                        "middle": [],
                        "last": "Hussein",
                        "suffix": ""
                    },
                    {
                        "first": "Hajj",
                        "middle": [],
                        "last": "Hazem",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Badaroand Gilbert, Jundiand Hussein, Hajj Hazem, El-Hajj Wassim, and Habash Nizar. 2018. Arsel: A large scale arabic sentiment and emotion lexicon.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Arabizi sentiment analysis based on transliteration and automatic corpus annotation",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Ahsan",
                        "middle": [],
                        "last": "Adeel",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Fodil",
                        "middle": [],
                        "last": "Benali",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
                "volume": "",
                "issue": "",
                "pages": "335--341",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Ahsan Adeel, Faical Azouaou, Fodil Benali, Ala-eddine Hachani, and Amir Hus- sain. 2018a. Arabizi sentiment analysis based on transliteration and automatic corpus annotation. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Me- dia Analysis, pages 335-341.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Sentialg: Automated corpus annotation for algerian sentiment analysis",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Ahsan",
                        "middle": [],
                        "last": "Adeel",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Hussain",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1808.05079"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Ahsan Adeel, Faical Azouaou, and Amir Hussain. 2018b. Sentialg: Automated cor- pus annotation for algerian sentiment analysis. arXiv preprint arXiv:1808.05079.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "The role of transliteration in the process of arabizi translation/sentiment analysis",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Fodil",
                        "middle": [],
                        "last": "Benali",
                        "suffix": ""
                    },
                    {
                        "first": "Ala",
                        "middle": [
                            "Eddine"
                        ],
                        "last": "Hachani",
                        "suffix": ""
                    },
                    {
                        "first": "Marcelo",
                        "middle": [],
                        "last": "Mendoza",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Recent Advances in NLP: The Case of Arabic Language",
                "volume": "",
                "issue": "",
                "pages": "101--128",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Faical Azouaou, Fodil Benali, Ala Eddine Hachani, and Marcelo Mendoza. 2020a. The role of transliteration in the process of arabizi translation/sentiment analysis. In Re- cent Advances in NLP: The Case of Arabic Language, pages 101-128. Springer.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Approche hybride pour la translit\u00e9ration de l'arabizi alg\u00e9rien : une\u00e9tude pr\u00e9liminaire",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Fodil",
                        "middle": [],
                        "last": "Benali",
                        "suffix": ""
                    },
                    {
                        "first": "Houda",
                        "middle": [],
                        "last": "Hachani",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Saadane",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Conference: 25e conf\u00e9rence sur le Traitement Automatique des Langues Naturelles (TALN)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Faical Azouaou, Fodil Benali, ala-eddine Hachani, and Houda Saadane. 2018c. Approche hybride pour la translit\u00e9ration de l'arabizi alg\u00e9rien : une\u00e9tude pr\u00e9liminaire. In Conference: 25e conf\u00e9rence sur le Traite- ment Automatique des Langues Naturelles (TALN), May 2018, Rennes, FranceAt: Rennes, France. https://www.researchgate.net/ publication/326354578_Approche_Hybride_ pour_la_transliteration_de_l%27arabizi_ algerien_une_etude_preliminaire.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Arautosenti: Automatic annotation and new tendencies for sentiment classification of arabic messages",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Francisco",
                        "middle": [],
                        "last": "Chiclana",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Social Network Analysis and Mining",
                "volume": "10",
                "issue": "1",
                "pages": "1--20",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Faical Azouaou, and Francisco Chi- clana. 2020b. Arautosenti: Automatic annotation and new tendencies for sentiment classification of arabic messages. Social Network Analysis and Min- ing, 10(1):1-20.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Une approche fond\u00e9e sur les lexiques d'analyse de sentiments du dialecte alg\u00e9rien",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Houda",
                        "middle": [],
                        "last": "Sa\u00e2dane",
                        "suffix": ""
                    },
                    {
                        "first": "Nasredine",
                        "middle": [],
                        "last": "Semmar",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Faical Azouaou, Houda Sa\u00e2dane, and Nasredine Semmar. 2017. Une approche fond\u00e9e sur les lexiques d'analyse de sentiments du dialecte alg\u00e9rien.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "English vs arabic sentiment analysis: A survey presenting 100 work studies, resources and tools",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Valitutti",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA)",
                "volume": "",
                "issue": "",
                "pages": "1--8",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Faical Azouaou, and Alessandro Valitutti. 2019a. English vs arabic sentiment anal- ysis: A survey presenting 100 work studies, re- sources and tools. In 2019 IEEE/ACS 16th Interna- tional Conference on Computer Systems and Applica- tions (AICCSA), pages 1-8. IEEE.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "Arabic natural language processing: An overview",
                "authors": [
                    {
                        "first": "Imane",
                        "middle": [],
                        "last": "Guellil",
                        "suffix": ""
                    },
                    {
                        "first": "Houda",
                        "middle": [],
                        "last": "Sa\u00e2dane",
                        "suffix": ""
                    },
                    {
                        "first": "Faical",
                        "middle": [],
                        "last": "Azouaou",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Imane Guellil, Houda Sa\u00e2dane, Faical Azouaou, Billel Gueni, and Damien Nouvel. 2019b. Arabic natural language processing: An overview. Jour- nal of King Saud University-Computer and Informa- tion Sciences.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Introduction to arabic natural language processing",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Nizar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Habash",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Synthesis Lectures on Human Language Technologies",
                "volume": "3",
                "issue": "1",
                "pages": "1--187",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nizar Y Habash. 2010. Introduction to arabic natu- ral language processing. Synthesis Lectures on Hu- man Language Technologies, 3(1):1-187.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Maghrebi arabic dialect processing: an overview",
                "authors": [
                    {
                        "first": "Salima",
                        "middle": [],
                        "last": "Harrat",
                        "suffix": ""
                    },
                    {
                        "first": "Karima",
                        "middle": [],
                        "last": "Meftouh",
                        "suffix": ""
                    },
                    {
                        "first": "Kamel",
                        "middle": [],
                        "last": "Sma\u00efli",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "ICNLSSP 2017-International Conference on Natural Language, Signal and Speech Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Salima Harrat, Karima Meftouh, and Kamel Sma\u00efli. 2017. Maghrebi arabic dialect processing: an overview. In ICNLSSP 2017-International Con- ference on Natural Language, Signal and Speech Pro- cessing.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Exploiting emoticons in sentiment analysis",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Hogenboom",
                        "suffix": ""
                    },
                    {
                        "first": "Daniella",
                        "middle": [],
                        "last": "Bal",
                        "suffix": ""
                    },
                    {
                        "first": "Flavius",
                        "middle": [],
                        "last": "Frasincar",
                        "suffix": ""
                    },
                    {
                        "first": "Malissa",
                        "middle": [],
                        "last": "Bal",
                        "suffix": ""
                    },
                    {
                        "first": "Franciska",
                        "middle": [],
                        "last": "De",
                        "suffix": ""
                    },
                    {
                        "first": "Jong",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    },
                    {
                        "first": "Uzay",
                        "middle": [],
                        "last": "Kaymak",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 28th Annual ACM Symposium on Applied Computing",
                "volume": "",
                "issue": "",
                "pages": "703--710",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Hogenboom, Daniella Bal, Flavius Frasincar, Malissa Bal, Franciska de Jong, and Uzay Kaymak. 2013. Exploiting emoticons in sen- timent analysis. In Proceedings of the 28th Annual ACM Symposium on Applied Computing, pages 703- 710. ACM.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "A set of parameters for automatically annotating a sentiment arabic corpus",
                "authors": [
                    {
                        "first": "Guellil",
                        "middle": [],
                        "last": "Imane",
                        "suffix": ""
                    },
                    {
                        "first": "Darwish",
                        "middle": [],
                        "last": "Kareem",
                        "suffix": ""
                    },
                    {
                        "first": "Azouaou",
                        "middle": [],
                        "last": "Faical",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Journal of Web Information Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guellil Imane, Darwish Kareem, and Azouaou Faical. 2019. A set of parameters for automati- cally annotating a sentiment arabic corpus. Inter- national Journal of Web Information Systems.",
                "links": null
            },
            "BIBREF34": {
                "ref_id": "b34",
                "title": "Stemming arabic text",
                "authors": [
                    {
                        "first": "Shereen",
                        "middle": [],
                        "last": "Khoja",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Garside",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shereen Khoja and Roger Garside. 1999. Stem- ming arabic text. Lancaster, UK, Computing Depart- ment, Lancaster University.",
                "links": null
            },
            "BIBREF35": {
                "ref_id": "b35",
                "title": "A proposed lexicon-based sentiment analysis approach for the vernacular algerian arabic",
                "authors": [
                    {
                        "first": "M'hamed",
                        "middle": [],
                        "last": "Mataoui",
                        "suffix": ""
                    },
                    {
                        "first": "Omar",
                        "middle": [],
                        "last": "Zelmati",
                        "suffix": ""
                    },
                    {
                        "first": "Madiha",
                        "middle": [],
                        "last": "Boumechache",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Research in Computing Science",
                "volume": "110",
                "issue": "",
                "pages": "55--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M'hamed Mataoui, Omar Zelmati, and Madiha Boumechache. 2016. A proposed lexicon-based sentiment analysis approach for the vernacular algerian arabic. Research in Computing Science, 110:55-70.",
                "links": null
            },
            "BIBREF36": {
                "ref_id": "b36",
                "title": "An arabizi-english social media statistical machine translation system",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "May",
                        "suffix": ""
                    },
                    {
                        "first": "Yassine",
                        "middle": [],
                        "last": "Benjira",
                        "suffix": ""
                    },
                    {
                        "first": "Abdessamad",
                        "middle": [],
                        "last": "Echihabi",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 11th Conference of the Association for Machine Translation in the Americas",
                "volume": "",
                "issue": "",
                "pages": "329--341",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jonathan May, Yassine Benjira, and Abdessamad Echihabi. 2014. An arabizi-english social media statistical machine translation system. In Proceed- ings of the 11th Conference of the Association for Ma- chine Translation in the Americas, pages 329-341.",
                "links": null
            },
            "BIBREF37": {
                "ref_id": "b37",
                "title": "Sentiment analysis of tunisian dialects: Linguistic ressources and experiments",
                "authors": [
                    {
                        "first": "Salima",
                        "middle": [],
                        "last": "Medhaffar",
                        "suffix": ""
                    },
                    {
                        "first": "Fethi",
                        "middle": [],
                        "last": "Bougares",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Third Arabic Natural Language Processing Workshop",
                "volume": "",
                "issue": "",
                "pages": "55--61",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Salima Medhaffar, Fethi Bougares, Yannick Es- teve, and Lamia Hadrich-Belguith. 2017. Sen- timent analysis of tunisian dialects: Linguistic ressources and experiments. In Proceedings of the Third Arabic Natural Language Processing Workshop, pages 55-61.",
                "links": null
            },
            "BIBREF38": {
                "ref_id": "b38",
                "title": "Sentiment lexicons for arabic social media",
                "authors": [
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Salameh",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "LREC",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif Mohammad, Mohammad Salameh, and Svet- lana Kiritchenko. 2016a. Sentiment lexicons for arabic social media. In LREC.",
                "links": null
            },
            "BIBREF39": {
                "ref_id": "b39",
                "title": "How translation alters sentiment",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Saif",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Salameh",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Journal of Artificial Intelligence Research",
                "volume": "55",
                "issue": "",
                "pages": "95--130",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Saif M Mohammad, Mohammad Salameh, and Svetlana Kiritchenko. 2016b. How translation al- ters sentiment. Journal of Artificial Intelligence Re- search, 55:95-130.",
                "links": null
            },
            "BIBREF40": {
                "ref_id": "b40",
                "title": "Subjectivity and sentiment analysis of modern standard arabic and arabic microblogs",
                "authors": [
                    {
                        "first": "Ahmed",
                        "middle": [],
                        "last": "Mourad",
                        "suffix": ""
                    },
                    {
                        "first": "Kareem",
                        "middle": [],
                        "last": "Darwish",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis",
                "volume": "",
                "issue": "",
                "pages": "55--64",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ahmed Mourad and Kareem Darwish. 2013. Sub- jectivity and sentiment analysis of modern stan- dard arabic and arabic microblogs. In Proceed- ings of the 4th workshop on computational approaches to subjectivity, sentiment and social media analysis, pages 55-64.",
                "links": null
            },
            "BIBREF41": {
                "ref_id": "b41",
                "title": "Astd: Arabic sentiment tweets dataset",
                "authors": [
                    {
                        "first": "Mahmoud",
                        "middle": [],
                        "last": "Nabil",
                        "suffix": ""
                    },
                    {
                        "first": "Mohamed",
                        "middle": [],
                        "last": "Aly",
                        "suffix": ""
                    },
                    {
                        "first": "Amir",
                        "middle": [],
                        "last": "Atiya",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2515--2519",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mahmoud Nabil, Mohamed Aly, and Amir Atiya. 2015. Astd: Arabic sentiment tweets dataset. In Proceedings of the 2015 Conference on Empirical Meth- ods in Natural Language Processing, pages 2515- 2519.",
                "links": null
            },
            "BIBREF42": {
                "ref_id": "b42",
                "title": "Twitter as a corpus for sentiment analysis and opinion mining",
                "authors": [
                    {
                        "first": "Alexander",
                        "middle": [],
                        "last": "Pak",
                        "suffix": ""
                    },
                    {
                        "first": "Patrick",
                        "middle": [],
                        "last": "Paroubek",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexander Pak and Patrick Paroubek. 2010. Twit- ter as a corpus for sentiment analysis and opinion mining.",
                "links": null
            },
            "BIBREF43": {
                "ref_id": "b43",
                "title": "Deep contextualized word representations",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matthew",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1802.05365"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contex- tualized word representations. arXiv preprint arXiv:1802.05365.",
                "links": null
            },
            "BIBREF44": {
                "ref_id": "b44",
                "title": "Sana: Sentiment analysis on newspapers comments in algeria",
                "authors": [
                    {
                        "first": "Hichem",
                        "middle": [],
                        "last": "Rahab",
                        "suffix": ""
                    },
                    {
                        "first": "Abdelhafid",
                        "middle": [],
                        "last": "Zitouni",
                        "suffix": ""
                    },
                    {
                        "first": "Mahieddine",
                        "middle": [],
                        "last": "Djoudi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hichem Rahab, Abdelhafid Zitouni, and Mahied- dine Djoudi. 2019. Sana: Sentiment analysis on newspapers comments in algeria. Journal of King Saud University-Computer and Information Sciences.",
                "links": null
            },
            "BIBREF45": {
                "ref_id": "b45",
                "title": "Sentiment after translation: A case-study on arabic social media posts",
                "authors": [
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Salameh",
                        "suffix": ""
                    },
                    {
                        "first": "Saif",
                        "middle": [],
                        "last": "Mohammad",
                        "suffix": ""
                    },
                    {
                        "first": "Svetlana",
                        "middle": [],
                        "last": "Kiritchenko",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies",
                "volume": "",
                "issue": "",
                "pages": "767--777",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mohammad Salameh, Saif Mohammad, and Svet- lana Kiritchenko. 2015. Sentiment after transla- tion: A case-study on arabic social media posts. In Proceedings of the 2015 conference of the North Amer- ican chapter of the association for computational lin- guistics: Human language technologies, pages 767- 777.",
                "links": null
            },
            "BIBREF46": {
                "ref_id": "b46",
                "title": "A simple but effective approach to improve arabizi-to-english statistical machine translation",
                "authors": [
                    {
                        "first": "Arianna",
                        "middle": [],
                        "last": "Marlies Van Der Wees",
                        "suffix": ""
                    },
                    {
                        "first": "Christof",
                        "middle": [],
                        "last": "Bisazza",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Monz",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2nd Workshop on Noisy User-generated Text (WNUT)",
                "volume": "",
                "issue": "",
                "pages": "43--50",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marlies van der Wees, Arianna Bisazza, and Christof Monz. 2016. A simple but effective approach to improve arabizi-to-english statistical machine translation. In Proceedings of the 2nd Work- shop on Noisy User-generated Text (WNUT), pages 43-50.",
                "links": null
            },
            "BIBREF47": {
                "ref_id": "b47",
                "title": "Sentireview: Sentiment analysis based on text and emoticons",
                "authors": [
                    {
                        "first": "Payal",
                        "middle": [],
                        "last": "Yadav",
                        "suffix": ""
                    },
                    {
                        "first": "Dhatri",
                        "middle": [],
                        "last": "Pandya",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Innovative Mechanisms for Industry Applications (ICIMIA",
                "volume": "",
                "issue": "",
                "pages": "467--472",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Payal Yadav and Dhatri Pandya. 2017. Sentire- view: Sentiment analysis based on text and emoti- cons. In Innovative Mechanisms for Industry Appli- cations (ICIMIA), 2017 International Conference on, pages 467-472. IEEE.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "Results of ASTD/QCRI/ArTwitter",
                "num": null
            },
            "TABREF0": {
                "content": "<table/>",
                "text": "Sentiment analysis of Arabic/ Arabizi messages Input: Eng lex : English lexicon, ArTest corp [] : List of Arabic sentiment corpora, ArabiziTest corp [] : List of Arabizi sentiment corpora, ArabiziTrTest corp [] : List of Arabizi transliterated sentiment corpora, Facebook Key : A key for accessing RestFB API Output:",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF2": {
                "content": "<table><tr><td colspan=\"2\">: Deep learning models architecture</td></tr><tr><td>80.99). However, the results obtained using</td><td>classifier (F1= 75.23). For deep learning</td></tr><tr><td>Word2vec model combined with shallow</td><td>classification, the combination of FastText,</td></tr><tr><td>classifiers outperform those obtained using</td><td>CBOW and CNN gives the best results for</td></tr><tr><td>FastText model combined with deep learning</td><td>the corpus Senti_Alg_test_trauto (F1-score=</td></tr><tr><td>classifiers. It can also be seen from this</td><td>69.78</td></tr><tr><td>Table that CBOW model results generally</td><td/></tr><tr><td>outperform the results returned by using the</td><td/></tr><tr><td>SG model. More details are presented (in the</td><td/></tr><tr><td>Appendices, section 7) in the Table 1)</td><td/></tr><tr><td>Results on the Arabizi side of Senti Alg</td><td/></tr><tr><td>(Senti Alg test Arabizi) obtained on the</td><td/></tr><tr><td>Arabizi side of Senti Alg, that we named</td><td/></tr><tr><td>Senti_Alg_test_Arabizi. However, as our</td><td/></tr><tr><td>language model and training corpus is in Ara-</td><td/></tr><tr><td>bic script, the corpus Senti_Alg_test_Arabizi</td><td/></tr><tr><td>was firstly transliterated. For showing the</td><td/></tr><tr><td>efficiency of our transliteration system, we</td><td/></tr><tr><td>transliterate this corpus in both ways, au-</td><td/></tr><tr><td>tomatically (for obtaining Senti_Alg_test_</td><td/></tr><tr><td>trauto) and manually (for obtaining Senti_</td><td/></tr><tr><td>Alg_test_trmanu). The best results for the</td><td/></tr><tr><td>corpus Senti_Alg_test_trauto were obtained</td><td/></tr><tr><td>using SG of Word2vec combined with SGD</td><td/></tr></table>",
                "text": "",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF3": {
                "content": "<table><tr><td>For</td></tr></table>",
                "text": "Results",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF4": {
                "content": "<table><tr><td>deep learning classification, the combination</td></tr><tr><td>of FastText, CBOW and LSTM gives the best</td></tr><tr><td>results (F1-score= 63.29). However, the results</td></tr><tr><td>obtained using Word2vec model combined</td></tr><tr><td>with shallow classifiers outperform those ob-</td></tr><tr><td>tained using FastText model combined with</td></tr><tr><td>deep learning classifiers. The CBOW model</td></tr><tr><td>results generally outperform the results re-</td></tr><tr><td>turned by using the SG model. More details</td></tr><tr><td>are presented (in the Appendices, section 7) in</td></tr><tr><td>the</td></tr></table>",
                "text": "Synthesis of the best obtained results",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF5": {
                "content": "<table><tr><td>into two parts: the first one</td></tr><tr><td>illustrates the sentiment classification results</td></tr><tr><td>obtained on TSAC test and the second one,</td></tr><tr><td>the results obtained on TSAC Test Tr. For the</td></tr><tr><td>experiments done on both corpora, it can be</td></tr><tr><td>seen that the best results were obtained using</td></tr></table>",
                "text": "",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF6": {
                "content": "<table><tr><td>the</td></tr></table>",
                "text": "",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF7": {
                "content": "<table><tr><td>matically, F1 was up to 73.69 (for TSAC Test)</td></tr><tr><td>and up to 75.24 (for TSAC Test TR). By us-</td></tr><tr><td>ing the manually reviewed corpus, F1 is up</td></tr><tr><td>to 75.61 (for TSAC Test) and up to 80.69</td></tr><tr><td>(for TSAC Tr</td></tr></table>",
                "text": "Synthesis of the best-obtained results on the manually reviewed corpus",
                "num": null,
                "type_str": "table",
                "html": null
            },
            "TABREF8": {
                "content": "<table><tr><td colspan=\"5\">or ELMO(Peters ML Algo Senti Alg test trauto Senti Alg test trmanu et al., 2018). Type ML Algo Arabic P R F1 GNB 93.50 74.80 83.11 LR 82.09 88.00 84.94 CBOW RF 85.07 75.20 79.83 SGD 85.28 90.40 87.77 LSVC 82.71 88.00 85.27 GNB 90.34 74.80 81.84 LR 85.10 86.80 85.94 SG RF 85.59 76.00 80.51 SGD 84.62 88.00 86.27 LSVC 85.32 86.00 85.66 CNN 80.03 80.00 79.99 CBOW MLP 81.04 81.00 80.99 LSTM 79.65 79.60 79.59 Bi-LSTM 79.92 79.60 79.54 CNN 78.44 78.20 78.15 MLP 79.63 79.60 79.59 SG LSTM 79.04 79.00 78.99 Bi-LSTM 76.84 76.80 76.79 Results on the Arabic side of Senti Alg (Senti Alg test Arabic) Model Word2vec FastText Figure 1: Model Type P R F1 P R F1 GNB 82.18 57.20 67.45 85.47 58.80 69.67 LR 69.81 74.00 71.84 75.00 76.80 75.89 CBOW RF 73.06 64.00 68.23 72.20 64.40 Model Type ML Algo SANA Alg P R F1 GNB 81.17 80.83 81.00 LR 76.23 70.83 73.43 CBOW RF 71.54 77.50 74.40 SGD 80.28 72.92 76.42 LSVC 74.44 69.17 71.71 Word2vec GNB 62.37 96.67 75.82 LR 79.09 72.50 75.65 SG RF 72.05 76.25 74.09 SGD 82.74 67.92 74.60 LSVC 78.80 71.25 74.84 CNN 62.26 62.30 62.28 CBOW MLP 59.65 60.00 59.64 LSTM 63.42 63.22 63.29 Bi-LSTM 62.08 62.07 60.29 FastText CNN 60.76 61.15 60.22 MLP 57.57 57.93 57.62 SG LSTM 60.37 60.23 60.29 Bi-LSTM 59.28 59.77 58.87 Figure 3: Results on SANA Alg Model Type ML Algo TSAC Test TSAC Test Tr P R F1 P R F1 GNB Type ML Algo TSAC Test TSAC Test Tr P R F1 P R F1 GNB 78.65 Model Type ML Algo Arabic P R F1 GNB 76.11 85.61 80.58 LR 71.93 75.31 73.58 CBOW RF 69.79 68.00 69.28 80.31 Model SGD 77.65 73.45 75.49 68.08 SGD 69.10 79.60 73.98 73.71 74.00 LSVC 70.90 74.66 72.73 73.85 LSVC 70.04 72.00 71.01 75.70 76.00 75.85 Word2vec</td></tr><tr><td colspan=\"2\">Word2vec</td><td/><td/></tr><tr><td/><td/><td/><td>GNB</td><td>66.33 92.59 77.29</td></tr><tr><td/><td/><td>GNB</td><td colspan=\"2\">79.50 63.60 70.67 85.41 63.20 LR 71.67 77.64 74.54</td><td>72.64</td></tr><tr><td/><td>SG CBOW</td><td>LR RF SG SGD LSVC CNN MLP CBOW</td><td colspan=\"2\">68.40 73.60 70.91 73.08 76.00 72.29 66.80 69.44 76.47 67.60 RF 71.09 67.12 69.05 69.49 82.00 75.23 75.10 77.20 SGD 71.12 82.58 76.42 69.08 72.40 70.70 72.76 74.80 LSVC 71.40 77.08 74.13 69.85 69.80 69.78 73.65 73.60 CNN 64.24 64.11 64.03 67.64 67.60 67.58 71.81 71.80 MLP 62.65 62.65 62.65</td><td>74.51 71.76 76.13 73.77 73.58 71.80</td></tr><tr><td/><td/><td>LSTM</td><td colspan=\"2\">68.69 68.60 68.56 70.01 70.00 LSTM 61.40 61.09 60.81</td><td>70.00</td></tr><tr><td/><td/><td colspan=\"3\">Bi-LSTM 68.95 68.80 68.74 71.93 71.40 Bi-LSTM 62.97 62.88 62.81</td><td>71.22</td></tr><tr><td>FastText</td><td>FastText</td><td/><td/></tr><tr><td/><td>SG</td><td colspan=\"3\">CNN MLP LSTM Bi-LSTM 68.84 68.80 68.78 70.60 70.60 68.52 68.20 68.06 73.29 72.60 68.25 68.20 68.18 71.37 71.20 CNN 63.30 63.27 63.26 69.42 69.40 69.39 72.60 72.60 MLP 60.83 60.81 60.78 SG LSTM 60.58 60.43 60.30 Bi-LSTM 60.48 60.41 60.34</td><td>72.40 71.14 72.60 70.60</td></tr><tr><td colspan=\"5\">Figure 2: Results on the Arabizi side of Senti Alg (Senti Alg test Arabizi) after translitera-</td></tr><tr><td>tion</td><td/><td/><td/></tr></table>",
                "text": "36.71 50.38 81.25 65.76 72.69 LR 61.38 88.82 72.60 70.06 77.35 73.53 CBOW RF 58.75 78.82 67.32 70.01 64.41 67.10 SGD 61.81 89.29 73.05 71.72 77.88 74.68 LSVC 61.38 87.88 72.28 70.27 76.76 73.38 Word2vec GNB 60.92 89.76 72.58 71.51 76.76 74.04 LR 75.45 41.76 53.77 72.37 76.41 74.33 SG RF 59.15 77.59 67.12 67.28 60.35 63.63 SGD 62.02 90.76 73.69 71.44 79.47 75.24 LSVC 75.09 38.82 51.18 72.48 75.76 74.09 CNN 59.69 56.62 52.88 63.84 63.32 62.98 CBOW MLP 58.86 55.97 52.06 62.65 62.50 62.39 LSTM 59.12 55.79 51.36 63.01 62.21 61.61 Bi-LSTM 57.36 55.29 51.93 62.08 61.91 61.78 FastText CNN 57.70 55.79 52.88 61.45 61.38 61.33 MLP 55.87 54.21 50.71 62.21 62.15 62.10 SG LSTM 56.33 42.4 50.11 61.09 60.85 60.65 Bi-LSTM 57.25 54.88 50.87 61.36 61.15 60.96 Figure 4: Results on TSAC Test by using Senti Alg as training 32.29 45.79 82.39 57.24 67.55 LR 65.08 89.47 75.35 84.76 84.76 84.76 CBOW RF 62.51 83.76 71.59 87.13 78.82 82.77 SGD 64.34 92.12 75.76 82.55 89.06 85.68 LSVC 85.70 42.65 56.95 84.65 87.29 85.95 Word2vec GNB 76.39 31.59 44.69 82.70 56.53 67.16 LR 65.66 89.88 75.89 87.26 87.41 87.33 SG RF 83.45 33.82 48.14 87.53 78.88 82.98 SGD 65.46 89.65 75.67 83.76 91.65 87.53 LSVC 88.10 43.53 58.27 86.64 88.12 87.37 CNN 75.53 66.50 63.25 89.94 89.65 89.63 CBOW MLP 75.29 67.21 64.36 90.81 90.76 90.76 LSTM 75.71 67.41 64.55 91.52 91.41 91.41 Bi-LSTM 77.53 67.44 64.16 91.66 91.21 91.18 FastText CNN 75.85 66.85 63.69 91.58 91.47 91.46 MLP 76.13 67.50 64.57 91.65 91.59 91.59 SG LSTM 75.78 66.91 63.80 90.85 90.71 90.70 Bi-LSTM 77.10 65.59 61.50 91.39 91.03 91.01Figure 5: Results on TSAC Test using TSAC train Tr",
                "num": null,
                "type_str": "table",
                "html": null
            }
        }
    }
}