File size: 55,047 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T06:06:55.381914Z"
    },
    "title": "Keynote talk: Using language to study emotional contagion",
    "authors": [
        {
            "first": "Lyle",
            "middle": [],
            "last": "Ungar",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pennsylvania",
                "location": {}
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The words people use not only reveal their happiness, anger, depression, and empathy toward others; they also influence the people they communicate with, changing their moods and language. Language thus drives emotional contagion and allows us to measure it. We present case studies in which people experience different amounts of emotional contagion based on two factors: 1) Their empathy style: The words people use on Facebook, when correlated with their scores on empathy-measuring questionnaires, reveal empathy-driven emotional contagion. 2) Their level of depression: SMS messages from cell phones show that although depressed people use more sad, negative, and angry language, the texts they receive only show more anger than texts to non-depressed people, suggesting that anger may be more contagious than sadness. v",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The words people use not only reveal their happiness, anger, depression, and empathy toward others; they also influence the people they communicate with, changing their moods and language. Language thus drives emotional contagion and allows us to measure it. We present case studies in which people experience different amounts of emotional contagion based on two factors: 1) Their empathy style: The words people use on Facebook, when correlated with their scores on empathy-measuring questionnaires, reveal empathy-driven emotional contagion. 2) Their level of depression: SMS messages from cell phones show that although depressed people use more sad, negative, and angry language, the texts they receive only show more anger than texts to non-depressed people, suggesting that anger may be more contagious than sadness. v",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "After the tenth edition of WASSA in 2019, which came only seven months after WASSA 2018, it was decided to take a one-year break from organising the workshop to give the community some time to breathe. . . Little did we know what COVID-19 had in mind. 2020 has been a year full of sentiment and emotion, to say the least. The pandemic has dominated the news headlines all around the world and evoked a variety of emotions amongst the general public. Understanding these emotions not only provides insights into the way the public responds to the COVID-19 pandemic in itself and to the media coverage of the disease, but might help to encourage health promotion measures.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "Research in automatic subjectivity and sentiment analysis remains a popular research task in the field of computational linguistics with a great application potential. Over the years the problem of dealing with affect in text has evolved, making it a very challenging research area with many research questions that still need to be answered and often requiring interdisciplinary approaches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "The aim of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA 2021) was to continue the line of the previous editions and bring together researchers working on Subjectivity, Sentiment Analysis, Emotion Detection and Classification and their applications to other NLP or real-world tasks (e.g. public health messaging, fake news, media impact analysis) and researchers working on interdisciplinary aspects of affect computation from text. We also welcomed submissions that specifically tackled sentiment or emotion detection and classification in the context of the COVID-19 pandemic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "Though the timing was rather tight, we decided to also organise a shared task on Predicting Empathy and Emotion in Reaction to News Stories (https://competitions.codalab.org/competitions/28713). This task aimed at developing models which can predict empathy (Track I) and emotion (Track II) based on essays written in reaction to news articles which reported on harm caused to a person, a group, or other situations. Five teams participated in the shared task, with three teams submitting predictions for both tracks. For track I, empathy prediction, four teams submitted a system and the best result obtained was an average Pearson correlation of 0.545. For track II, emotion label prediction, four teams submitted a system and the best result was a macro F-1 of 55.3%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "For the main workshop, we accepted 15 papers as long and another 9 as short papers, leading to a total of 24/32 accepted papers (acceptance rate of 75%). For the shared task we received 6 system description paper submissions, out of which we accepted 5. Thus, in total 29 papers will be presented at the workshop, together with the additional contribution from our invited speaker Lyle Ungar, professor of Computer and Information Science at the University of Pennsylvania.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "Accepted papers deal with topics including implicit and explicit sentiment analysis, emotion detection or classification and the detection of hate speech, stance or sarcasm. A large number of papers deal with languages other than English, including multilingual approaches but also work conducted on Italian, Dutch, code-mixed Hindi-English and even less-resourced languages such as Sindhi, Marathi and Arabizi. The dominance of COVID-19 in the headlines did not translate to a high number of COVIDrelated papers, but we gladly included one paper scrutinising resistance to COVID-19 directives.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "This year we also asked the reviewers for recommendations for a best paper award and are thrilled to announce that the paper \"Lightweight Models for Multimodal Sequential Data\" by Soumya Sourav and Jessica Ouyang wins this year's award.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            },
            {
                "text": "We would like to thank the EACL 2021 Organizers and Workshop Chairs for their help and support at the different stages of the workshop organisation process. We are also especially grateful to the Program Committee members for the time and effort spent to thoroughly review and assess the papers. Finally, we would like to extend our thanks to our invited speaker -Prof. Lyle Ungar -for accepting the invitation to deliver the keynote talk. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": " Monday, April 19, 2021 (continued) Me, myself, and ire: Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan, Seongjin Park, Meghavarshini Krishnaswamy ",
                "cite_spans": [
                    {
                        "start": 1,
                        "end": 35,
                        "text": "Monday, April 19, 2021 (continued)",
                        "ref_id": null
                    },
                    {
                        "start": 189,
                        "end": 201,
                        "text": "Krishnaswamy",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "annex",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "of Contents ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang",
                "authors": [
                    {
                        "first": "Sean",
                        "middle": [],
                        "last": "Macavaney",
                        "suffix": ""
                    },
                    {
                        "first": "Eugene",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Nazli Goharian",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "of Contents ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang, Sean MacAvaney, Eugene Yang and Nazli Goharian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz",
                "authors": [
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Qiao",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Daniel Wiechmann",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra . . . . . . . . . . . . . . . . . . . . . . . . . . 25",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Explainable Detection of Sarcasm in Social Media Ramya Akula and",
                "authors": [
                    {
                        "first": ".",
                        "middle": [
                            ". ."
                        ],
                        "last": "Ivan Garibay",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Explainable Detection of Sarcasm in Social Media Ramya Akula and Ivan Garibay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled Enrica Troiano",
                "authors": [
                    {
                        "first": "Sebastian",
                        "middle": [],
                        "last": "Pad\u00f3",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled Enrica Troiano, Sebastian Pad\u00f3 and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis",
                "authors": [
                    {
                        "first": "Federico",
                        "middle": [],
                        "last": "Bianchi",
                        "suffix": ""
                    },
                    {
                        "first": "Daniel",
                        "middle": [],
                        "last": "Hardt",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Hovy",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . . . . . 62",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "92 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Orphee De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Barriere",
                        "suffix": ""
                    },
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Sedoc",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Balahur",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi, Orphee De Clercq, Valentin Barriere, Sven Buechel, Jo\u00e3o Sedoc and Alexandra Balahur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe . . . . . . . . . . . . . . . . . 105",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classification and Empathy Prediction Jay Mundra",
                "authors": [
                    {
                        "first": "Sagnik",
                        "middle": [],
                        "last": "Wassa@iitk ; Rohan Gupta",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Mukherjee",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "WASSA@IITK at WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classifi- cation and Empathy Prediction Jay Mundra, Rohan Gupta and Sagnik Mukherjee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pacing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pacing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Lightweight Models for Multimodal Sequential Data Soumya Sourav and",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lightweight Models for Multimodal Sequential Data Soumya Sourav and Jessica Ouyang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detec- tion Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans . . . . . . . . . . . . . . . . . . . . . . . . . . . 149",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann",
                "authors": [
                    {
                        "first": "Enrica",
                        "middle": [],
                        "last": "Troiano",
                        "suffix": ""
                    },
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Klinger",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara",
                "authors": [
                    {
                        "first": "Roman",
                        "middle": [],
                        "last": "Grimminger",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Klinger",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter corpus. Costanza Conforti",
                "authors": [
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Berndt",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Taher Pilehvar",
                        "suffix": ""
                    },
                    {
                        "first": "Chryssi",
                        "middle": [],
                        "last": "Giannitsarou",
                        "suffix": ""
                    },
                    {
                        "first": "Flavio",
                        "middle": [],
                        "last": "Toxvaerd",
                        "suffix": ""
                    },
                    {
                        "first": "Nigel",
                        "middle": [],
                        "last": "Collier",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter cor- pus. Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Tox- vaerd and Nigel Collier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Language",
                "authors": [
                    {
                        "first": "Jay",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Saifullah",
                        "middle": [],
                        "last": "Tumrani",
                        "suffix": ""
                    },
                    {
                        "first": "Zenglin",
                        "middle": [
                            ". . . . ."
                        ],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Language: Sindhi Wazir Ali, Naveed Ali, Yong Dai, Jay Kumar, Saifullah Tumrani and Zenglin Xu . . . . . . . . . . . . 188",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi . . . 213",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "221 ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine",
                "authors": [
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Edmonds",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Sedoc",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "Multi-Emotion Classification for Song Lyrics Darren",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Multi-Emotion Classification for Song Lyrics Darren Edmonds and Jo\u00e3o Sedoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine . . . . . . . . . . . . . . . . . . . . . . 236",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Me",
                        "suffix": ""
                    },
                    {
                        "first": "Meghavarshini",
                        "middle": [],
                        "last": "Seongjin Park",
                        "suffix": ""
                    },
                    {
                        "first": "Rebecca",
                        "middle": [],
                        "last": "Krishnaswamy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [
                            ". . . . . . . . . ."
                        ],
                        "last": "Sharp",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Me, myself, and ire: Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan, Seongjin Park, Meghavarshini Krishnaswamy and Rebecca Sharp . . . . . . . . . . . . . . 250",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Combining Transformers and Affect Lexica for Dutch Emotion Detection Luna De Bruyne, Orphee De Clercq and Veronique Hoste",
                "authors": [
                    {
                        "first": "Emotional",
                        "middle": [],
                        "last": "Robbert",
                        "suffix": ""
                    },
                    {
                        "first": "Insensitive",
                        "middle": [],
                        "last": "Bertje",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Emotional RobBERT and Insensitive BERTje: Combining Transformers and Affect Lexica for Dutch Emotion Detection Luna De Bruyne, Orphee De Clercq and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "EmpNa at WASSA 2021: A Lightweight Model for the Prediction of Empathy, Distress and Emotions from Reactions to News Stories Giuseppe Vettigli and Antonio Sorgente",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "EmpNa at WASSA 2021: A Lightweight Model for the Prediction of Empathy, Distress and Emotions from Reactions to News Stories Giuseppe Vettigli and Antonio Sorgente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Does BERT Feel Sad When You Cry? Tommaso Fornaciari",
                "authors": [
                    {
                        "first": "@ Wassa ; Federico",
                        "middle": [],
                        "last": "Milanlp",
                        "suffix": ""
                    },
                    {
                        "first": "Debora",
                        "middle": [],
                        "last": "Bianchi",
                        "suffix": ""
                    },
                    {
                        "first": "Dirk",
                        "middle": [],
                        "last": "Nozza",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Hovy",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "MilaNLP @ WASSA: Does BERT Feel Sad When You Cry? Tommaso Fornaciari, Federico Bianchi, Debora Nozza and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . 269",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models Yash Butala",
                "authors": [
                    {
                        "first": "Kanishk",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    },
                    {
                        "first": "Adarsh",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "Shrey",
                        "middle": [],
                        "last": "Shrivastava",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Team Phoenix at WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models Yash Butala, Kanishk Singh, Adarsh Kumar and Shrey Shrivastava . . . . . . . . . . . . . . . . . . . . . . . . . 274",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "05 Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann 10:05-10:30 Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Monday",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3",
                "volume": "9",
                "issue": "",
                "pages": "20--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Monday, April 19, 2021 9:00-9:15 Opening of the WASSA workshop Orph\u00e9e De Clercq 9:15-11:00 ORAL SESSION 1 9:15-9:40 ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang, Sean MacAvaney, Eugene Yang and Nazli Goharian 9:40-10:05 Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann 10:05-10:30 Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra 10:30-10:45 Explainable Detection of Sarcasm in Social Media Ramya Akula and Ivan Garibay 10:45-11:00 Emotion Ratings: How Intensity, Annotation Confidence and Agreements are En- tangled Enrica Troiano, Sebastian Pad\u00f3 and Roman Klinger 11:00-11:30 Coffee break 11:30-12:50 ORAL SESSION 2 11:30-11:55 Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3 11:55-12:20 Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt and Dirk Hovy 12:20-12:35 FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and Dirk Hovy",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": ":45 POSTER SESSION Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter corpus",
                "authors": [
                    {
                        "first": "Valentin",
                        "middle": [],
                        "last": "Monday ; Orphee De Clercq",
                        "suffix": ""
                    },
                    {
                        "first": "Sven",
                        "middle": [],
                        "last": "Barriere",
                        "suffix": ""
                    },
                    {
                        "first": "Jo\u00e3o",
                        "middle": [],
                        "last": "Buechel",
                        "suffix": ""
                    },
                    {
                        "first": "Alexandra",
                        "middle": [],
                        "last": "Sedoc",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Balahur",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Saifullah Tumrani and Zenglin Xu Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi Multi-Emotion",
                "volume": "12",
                "issue": "",
                "pages": "35--52",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Monday, April 19, 2021 (continued) 12:35-12:50 An End-to-End Network for Emotion-Cause Pair Extraction Aaditya Singh, Shreeshail Hingane, Saim Wani and Ashutosh Modi 12:50-13:45 Lunch break 13:45-14:30 SHARED TASK SESSION 13:45-14:00 WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi, Orphee De Clercq, Valentin Barriere, Sven Buechel, Jo\u00e3o Sedoc and Alexandra Balahur 14:00-14:15 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe 14:15-14:30 WASSA@IITK at WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classification and Empathy Prediction Jay Mundra, Rohan Gupta and Sagnik Mukherjee 14:30-15:30 INVITED TALK: Using language to study emotional contagion Lyle Ungar 15:30-15:45 Coffee break 15:45-16:35 ORAL SESSION 3 15:45-16:10 Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pac- ing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi 16:10-16:35 Lightweight Models for Multimodal Sequential Data Soumya Sourav and Jessica Ouyang Monday, April 19, 2021 (continued) 16:35-17:45 POSTER SESSION Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elec- tions on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger Synthetic Examples Improve Cross-Target Generalization: A Study on Stance De- tection on a Twitter corpus. Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Toxvaerd and Nigel Collier Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Lan- guage: Sindhi Wazir Ali, Naveed Ali, Yong Dai, Jay Kumar, Saifullah Tumrani and Zenglin Xu Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Ravi- raj Joshi Multi-Emotion Classification for Song Lyrics Darren Edmonds and Jo\u00e3o Sedoc ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Viktor Pekar -</td><td>Organizers</td></tr><tr><td>Organizers</td><td/></tr><tr><td colspan=\"2\">Orph\u00e9e de Clercq -Ghent University, Belgium Orph\u00e9e De Clercq, Alexandra Balahur, Jo\u00e3o Sedoc, Valentin Barriere, Shabnam Tafreshi, Sven Buechel Alexandra Balahur -European Commission Joint Research Centre and Veronique Hoste Jo\u00e3o Sedoc -New York University, U.S.A</td></tr><tr><td colspan=\"2\">Valentin Barriere -European Commission Joint Research Centre WASSA 2021 Chairs Shabnam Trafreshi -Georgetown University &amp; IBM, U.S.A.</td></tr><tr><td colspan=\"2\">Sven Buechel -Friedrich Schiller University Jena, Germany</td></tr><tr><td colspan=\"2\">Veronique Hoste -Ghent University, Belgium</td></tr><tr><td>Program Committee</td><td/></tr><tr><td colspan=\"2\">Liesbeth Allein -European Commission Joint Research Centre</td></tr><tr><td colspan=\"2\">Jeremy Barnes -University Pompeu Fabra, Spain</td></tr><tr><td colspan=\"2\">Sabine Bergler -Concordia University, Canada</td></tr><tr><td colspan=\"2\">Cristina Bosco -University of Torino, Italy</td></tr><tr><td>Nicoletta Calzolari -CNR Pisa, Italy</td><td/></tr><tr><td colspan=\"2\">Erik Cambria -Nanyang Technological University, Singapore</td></tr><tr><td colspan=\"2\">Sergio Consoli -European Commission Joint Research Centre</td></tr><tr><td>Montse Cuadros -Vicomtech, Spain</td><td/></tr><tr><td colspan=\"2\">Luna De Bruyne -Ghent University, Belgium</td></tr><tr><td>Lingjia Deng -Bloomberg, U.S.A.</td><td/></tr><tr><td colspan=\"2\">Antske Fokkens -VU Amsterdam, The Netherlands</td></tr><tr><td>Michael Gamon -Microsoft, U.S.A.</td><td/></tr><tr><td colspan=\"2\">Lorenzo Gatti -University of Twente, The Netherlands</td></tr><tr><td colspan=\"2\">Matthias Hartung -Semalytix GmbH, Germany</td></tr><tr><td colspan=\"2\">Dirk Hovy -Bocconi University, Italy</td></tr><tr><td colspan=\"2\">Stefano Maria Iacus -European Commission Joint Research Centre</td></tr><tr><td colspan=\"2\">Carlos A. Iglesias -Universidad Polit\u00e9cnica de Madrid, Spain</td></tr><tr><td colspan=\"2\">Ruben Izquierdo Bevia -Nuance, Spain</td></tr><tr><td colspan=\"2\">Gilles Jacobs -Ghent University, Belgium</td></tr><tr><td>Aditya Joshi -Notiv, Australia</td><td/></tr><tr><td colspan=\"2\">Evgeny Kim -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Manfred Klenner -University of Zuerich, Switzerland</td></tr><tr><td colspan=\"2\">Roman Klinger -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Emiel Krahmer -Tilburg University, The Netherlands</td></tr><tr><td colspan=\"2\">Mayank Kulkarni -Bloomberg, U.S.A.</td></tr><tr><td colspan=\"2\">Els Lefever -Ghent University, Belgium</td></tr><tr><td colspan=\"2\">Edison Marrese-Taylor -University of Tokyo, Japan</td></tr><tr><td colspan=\"2\">Saif M. Mohammad -National Research Council Canada, Canada</td></tr><tr><td colspan=\"2\">Karo Moilanen -University of Oxford, U.K.</td></tr><tr><td>Guenter Neumann -DFKI, Germany</td><td/></tr><tr><td colspan=\"2\">Malvina Nissim -University of Groningen, The Netherlands</td></tr><tr><td colspan=\"2\">Laura Ana Maria Oberl\u00e4nder -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Constantin Orasan -University of Surrey, U.K.</td></tr><tr><td colspan=\"2\">Sean Papay -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Viviana Patti -University of Torino, Italy</td></tr></table>",
                "num": null,
                "text": "University of Wolverhampton, U.K. Jose Manuel Perea-Ortega -University of Extremadura, Spain Barbara Plank -IT University of Copenhagen, Denmark Daniel Preotiuc-Pietro -Bloomberg, U.S.A. Paolo Rosso -Technical University of Valencia, Spain Pranaydeep Singh -Ghent University, Belgium Josef Steinberger -West Bohemia University Prague, The Czech Republic Carlo Strapparava -Fondazione Bruno Kessler, Italy Mike Thelwall -University of Wolverhampton, U.K Dan Tufis -RACAI, Romania Cynthia Van Hee -Ghent University, Belgium Tony Veale -University College Dublin, Ireland Charles Welch -University of Michigan, U.S.A Michael Wiegand -Saarland University, Germany Taras Zagibalov -Brantwatch, U.K."
            }
        }
    }
}