File size: 55,047 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T06:06:55.381914Z"
},
"title": "Keynote talk: Using language to study emotional contagion",
"authors": [
{
"first": "Lyle",
"middle": [],
"last": "Ungar",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of Pennsylvania",
"location": {}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "The words people use not only reveal their happiness, anger, depression, and empathy toward others; they also influence the people they communicate with, changing their moods and language. Language thus drives emotional contagion and allows us to measure it. We present case studies in which people experience different amounts of emotional contagion based on two factors: 1) Their empathy style: The words people use on Facebook, when correlated with their scores on empathy-measuring questionnaires, reveal empathy-driven emotional contagion. 2) Their level of depression: SMS messages from cell phones show that although depressed people use more sad, negative, and angry language, the texts they receive only show more anger than texts to non-depressed people, suggesting that anger may be more contagious than sadness. v",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "The words people use not only reveal their happiness, anger, depression, and empathy toward others; they also influence the people they communicate with, changing their moods and language. Language thus drives emotional contagion and allows us to measure it. We present case studies in which people experience different amounts of emotional contagion based on two factors: 1) Their empathy style: The words people use on Facebook, when correlated with their scores on empathy-measuring questionnaires, reveal empathy-driven emotional contagion. 2) Their level of depression: SMS messages from cell phones show that although depressed people use more sad, negative, and angry language, the texts they receive only show more anger than texts to non-depressed people, suggesting that anger may be more contagious than sadness. v",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "After the tenth edition of WASSA in 2019, which came only seven months after WASSA 2018, it was decided to take a one-year break from organising the workshop to give the community some time to breathe. . . Little did we know what COVID-19 had in mind. 2020 has been a year full of sentiment and emotion, to say the least. The pandemic has dominated the news headlines all around the world and evoked a variety of emotions amongst the general public. Understanding these emotions not only provides insights into the way the public responds to the COVID-19 pandemic in itself and to the media coverage of the disease, but might help to encourage health promotion measures.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "Research in automatic subjectivity and sentiment analysis remains a popular research task in the field of computational linguistics with a great application potential. Over the years the problem of dealing with affect in text has evolved, making it a very challenging research area with many research questions that still need to be answered and often requiring interdisciplinary approaches.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "The aim of the Eleventh Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (WASSA 2021) was to continue the line of the previous editions and bring together researchers working on Subjectivity, Sentiment Analysis, Emotion Detection and Classification and their applications to other NLP or real-world tasks (e.g. public health messaging, fake news, media impact analysis) and researchers working on interdisciplinary aspects of affect computation from text. We also welcomed submissions that specifically tackled sentiment or emotion detection and classification in the context of the COVID-19 pandemic.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "Though the timing was rather tight, we decided to also organise a shared task on Predicting Empathy and Emotion in Reaction to News Stories (https://competitions.codalab.org/competitions/28713). This task aimed at developing models which can predict empathy (Track I) and emotion (Track II) based on essays written in reaction to news articles which reported on harm caused to a person, a group, or other situations. Five teams participated in the shared task, with three teams submitting predictions for both tracks. For track I, empathy prediction, four teams submitted a system and the best result obtained was an average Pearson correlation of 0.545. For track II, emotion label prediction, four teams submitted a system and the best result was a macro F-1 of 55.3%.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "For the main workshop, we accepted 15 papers as long and another 9 as short papers, leading to a total of 24/32 accepted papers (acceptance rate of 75%). For the shared task we received 6 system description paper submissions, out of which we accepted 5. Thus, in total 29 papers will be presented at the workshop, together with the additional contribution from our invited speaker Lyle Ungar, professor of Computer and Information Science at the University of Pennsylvania.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "Accepted papers deal with topics including implicit and explicit sentiment analysis, emotion detection or classification and the detection of hate speech, stance or sarcasm. A large number of papers deal with languages other than English, including multilingual approaches but also work conducted on Italian, Dutch, code-mixed Hindi-English and even less-resourced languages such as Sindhi, Marathi and Arabizi. The dominance of COVID-19 in the headlines did not translate to a high number of COVIDrelated papers, but we gladly included one paper scrutinising resistance to COVID-19 directives.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "This year we also asked the reviewers for recommendations for a best paper award and are thrilled to announce that the paper \"Lightweight Models for Multimodal Sequential Data\" by Soumya Sourav and Jessica Ouyang wins this year's award.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
},
{
"text": "We would like to thank the EACL 2021 Organizers and Workshop Chairs for their help and support at the different stages of the workshop organisation process. We are also especially grateful to the Program Committee members for the time and effort spent to thoroughly review and assess the papers. Finally, we would like to extend our thanks to our invited speaker -Prof. Lyle Ungar -for accepting the invitation to deliver the keynote talk. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": null
}
],
"back_matter": [
{
"text": " Monday, April 19, 2021 (continued) Me, myself, and ire: Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan, Seongjin Park, Meghavarshini Krishnaswamy ",
"cite_spans": [
{
"start": 1,
"end": 35,
"text": "Monday, April 19, 2021 (continued)",
"ref_id": null
},
{
"start": 189,
"end": 201,
"text": "Krishnaswamy",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "annex",
"sec_num": null
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "of Contents ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang",
"authors": [
{
"first": "Sean",
"middle": [],
"last": "Macavaney",
"suffix": ""
},
{
"first": "Eugene",
"middle": [],
"last": "Yang",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Nazli Goharian",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "of Contents ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang, Sean MacAvaney, Eugene Yang and Nazli Goharian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz",
"authors": [
{
"first": "Yu",
"middle": [],
"last": "Qiao",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Daniel Wiechmann",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra . . . . . . . . . . . . . . . . . . . . . . . . . . 25",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Explainable Detection of Sarcasm in Social Media Ramya Akula and",
"authors": [
{
"first": ".",
"middle": [
". ."
],
"last": "Ivan Garibay",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Explainable Detection of Sarcasm in Social Media Ramya Akula and Ivan Garibay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled Enrica Troiano",
"authors": [
{
"first": "Sebastian",
"middle": [],
"last": "Pad\u00f3",
"suffix": ""
},
{
"first": "Roman",
"middle": [],
"last": "Klinger",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emotion Ratings: How Intensity, Annotation Confidence and Agreements are Entangled Enrica Troiano, Sebastian Pad\u00f3 and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis",
"authors": [
{
"first": "Federico",
"middle": [],
"last": "Bianchi",
"suffix": ""
},
{
"first": "Daniel",
"middle": [],
"last": "Hardt",
"suffix": ""
},
{
"first": "Dirk",
"middle": [],
"last": "Hovy",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . . . . . 62",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "92 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe",
"authors": [
{
"first": "Valentin",
"middle": [],
"last": "Orphee De Clercq",
"suffix": ""
},
{
"first": "Sven",
"middle": [],
"last": "Barriere",
"suffix": ""
},
{
"first": "Jo\u00e3o",
"middle": [],
"last": "Buechel",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Sedoc",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Balahur",
"suffix": ""
}
],
"year": null,
"venue": "WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi, Orphee De Clercq, Valentin Barriere, Sven Buechel, Jo\u00e3o Sedoc and Alexandra Balahur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe . . . . . . . . . . . . . . . . . 105",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classification and Empathy Prediction Jay Mundra",
"authors": [
{
"first": "Sagnik",
"middle": [],
"last": "Wassa@iitk ; Rohan Gupta",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Mukherjee",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "WASSA@IITK at WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classifi- cation and Empathy Prediction Jay Mundra, Rohan Gupta and Sagnik Mukherjee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pacing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pacing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Lightweight Models for Multimodal Sequential Data Soumya Sourav and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lightweight Models for Multimodal Sequential Data Soumya Sourav and Jessica Ouyang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detec- tion Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans . . . . . . . . . . . . . . . . . . . . . . . . . . . 149",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann",
"authors": [
{
"first": "Enrica",
"middle": [],
"last": "Troiano",
"suffix": ""
},
{
"first": "Roman",
"middle": [],
"last": "Klinger",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara",
"authors": [
{
"first": "Roman",
"middle": [],
"last": "Grimminger",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Klinger",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter corpus. Costanza Conforti",
"authors": [
{
"first": "Jakob",
"middle": [],
"last": "Berndt",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Taher Pilehvar",
"suffix": ""
},
{
"first": "Chryssi",
"middle": [],
"last": "Giannitsarou",
"suffix": ""
},
{
"first": "Flavio",
"middle": [],
"last": "Toxvaerd",
"suffix": ""
},
{
"first": "Nigel",
"middle": [],
"last": "Collier",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter cor- pus. Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Tox- vaerd and Nigel Collier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Language",
"authors": [
{
"first": "Jay",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "Saifullah",
"middle": [],
"last": "Tumrani",
"suffix": ""
},
{
"first": "Zenglin",
"middle": [
". . . . ."
],
"last": "Xu",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Language: Sindhi Wazir Ali, Naveed Ali, Yong Dai, Jay Kumar, Saifullah Tumrani and Zenglin Xu . . . . . . . . . . . . 188",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi . . . 213",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "221 ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine",
"authors": [
{
"first": "Jo\u00e3o",
"middle": [],
"last": "Edmonds",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Sedoc",
"suffix": ""
}
],
"year": null,
"venue": "Multi-Emotion Classification for Song Lyrics Darren",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Multi-Emotion Classification for Song Lyrics Darren Edmonds and Jo\u00e3o Sedoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine . . . . . . . . . . . . . . . . . . . . . . 236",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan",
"authors": [
{
"first": "",
"middle": [],
"last": "Me",
"suffix": ""
},
{
"first": "Meghavarshini",
"middle": [],
"last": "Seongjin Park",
"suffix": ""
},
{
"first": "Rebecca",
"middle": [],
"last": "Krishnaswamy",
"suffix": ""
},
{
"first": "",
"middle": [
". . . . . . . . . ."
],
"last": "Sharp",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Me, myself, and ire: Effects of automatic transcription quality on emotion, sarcasm, and personality detection John Culnan, Seongjin Park, Meghavarshini Krishnaswamy and Rebecca Sharp . . . . . . . . . . . . . . 250",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Combining Transformers and Affect Lexica for Dutch Emotion Detection Luna De Bruyne, Orphee De Clercq and Veronique Hoste",
"authors": [
{
"first": "Emotional",
"middle": [],
"last": "Robbert",
"suffix": ""
},
{
"first": "Insensitive",
"middle": [],
"last": "Bertje",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Emotional RobBERT and Insensitive BERTje: Combining Transformers and Affect Lexica for Dutch Emotion Detection Luna De Bruyne, Orphee De Clercq and Veronique Hoste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "EmpNa at WASSA 2021: A Lightweight Model for the Prediction of Empathy, Distress and Emotions from Reactions to News Stories Giuseppe Vettigli and Antonio Sorgente",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "EmpNa at WASSA 2021: A Lightweight Model for the Prediction of Empathy, Distress and Emotions from Reactions to News Stories Giuseppe Vettigli and Antonio Sorgente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Does BERT Feel Sad When You Cry? Tommaso Fornaciari",
"authors": [
{
"first": "@ Wassa ; Federico",
"middle": [],
"last": "Milanlp",
"suffix": ""
},
{
"first": "Debora",
"middle": [],
"last": "Bianchi",
"suffix": ""
},
{
"first": "Dirk",
"middle": [],
"last": "Nozza",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "Hovy",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "MilaNLP @ WASSA: Does BERT Feel Sad When You Cry? Tommaso Fornaciari, Federico Bianchi, Debora Nozza and Dirk Hovy . . . . . . . . . . . . . . . . . . . . . . 269",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models Yash Butala",
"authors": [
{
"first": "Kanishk",
"middle": [],
"last": "Singh",
"suffix": ""
},
{
"first": "Adarsh",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "Shrey",
"middle": [],
"last": "Shrivastava",
"suffix": ""
},
{
"first": ".",
"middle": [
"."
],
"last": "",
"suffix": ""
}
],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Team Phoenix at WASSA 2021: Emotion Analysis on News Stories with Pre-Trained Language Models Yash Butala, Kanishk Singh, Adarsh Kumar and Shrey Shrivastava . . . . . . . . . . . . . . . . . . . . . . . . . 274",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "05 Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann 10:05-10:30 Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza",
"authors": [
{
"first": "",
"middle": [],
"last": "Monday",
"suffix": ""
}
],
"year": 2021,
"venue": "Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3",
"volume": "9",
"issue": "",
"pages": "20--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Monday, April 19, 2021 9:00-9:15 Opening of the WASSA workshop Orph\u00e9e De Clercq 9:15-11:00 ORAL SESSION 1 9:15-9:40 ToxCCIn: Toxic Content Classification with Interpretability Tong Xiang, Sean MacAvaney, Eugene Yang and Nazli Goharian 9:40-10:05 Language that Captivates the Audience: Predicting Affective Ratings of TED Talks in a Multi-Label Classification Task Elma Kerz, Yu Qiao and Daniel Wiechmann 10:05-10:30 Partisanship and Fear are Associated with Resistance to COVID-19 Directives Mike Lindow, David DeFranza, Arul Mishra and Himanshu Mishra 10:30-10:45 Explainable Detection of Sarcasm in Social Media Ramya Akula and Ivan Garibay 10:45-11:00 Emotion Ratings: How Intensity, Annotation Confidence and Agreements are En- tangled Enrica Troiano, Sebastian Pad\u00f3 and Roman Klinger 11:00-11:30 Coffee break 11:30-12:50 ORAL SESSION 2 11:30-11:55 Disentangling Document Topic and Author Gender in Multiple Languages: Lessons for Adversarial Debiasing Erenay Dayanik and Sebastian Pad\u00f3 11:55-12:20 Universal Joy A Data Set and Results for Classifying Emotions Across Languages Sotiris Lamprinidis, Federico Bianchi, Daniel Hardt and Dirk Hovy 12:20-12:35 FEEL-IT: Emotion and Sentiment Classification for the Italian Language Federico Bianchi, Debora Nozza and Dirk Hovy",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": ":45 POSTER SESSION Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elections on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger Synthetic Examples Improve Cross-Target Generalization: A Study on Stance Detection on a Twitter corpus",
"authors": [
{
"first": "Valentin",
"middle": [],
"last": "Monday ; Orphee De Clercq",
"suffix": ""
},
{
"first": "Sven",
"middle": [],
"last": "Barriere",
"suffix": ""
},
{
"first": "Jo\u00e3o",
"middle": [],
"last": "Buechel",
"suffix": ""
},
{
"first": "Alexandra",
"middle": [],
"last": "Sedoc",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Balahur",
"suffix": ""
}
],
"year": 2021,
"venue": "Saifullah Tumrani and Zenglin Xu Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Raviraj Joshi Multi-Emotion",
"volume": "12",
"issue": "",
"pages": "35--52",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Monday, April 19, 2021 (continued) 12:35-12:50 An End-to-End Network for Emotion-Cause Pair Extraction Aaditya Singh, Shreeshail Hingane, Saim Wani and Ashutosh Modi 12:50-13:45 Lunch break 13:45-14:30 SHARED TASK SESSION 13:45-14:00 WASSA 2021 Shared Task: Predicting Empathy and Emotion in Reaction to News Stories Shabnam Tafreshi, Orphee De Clercq, Valentin Barriere, Sven Buechel, Jo\u00e3o Sedoc and Alexandra Balahur 14:00-14:15 PVG at WASSA 2021: A Multi-Input, Multi-Task, Transformer-Based Architecture for Empathy and Distress Prediction Atharva Kulkarni, Sunanda Somwase, Shivam Rajput and Manisha Marathe 14:15-14:30 WASSA@IITK at WASSA 2021: Multi-task Learning and Transformer Finetuning for Emotion Classification and Empathy Prediction Jay Mundra, Rohan Gupta and Sagnik Mukherjee 14:30-15:30 INVITED TALK: Using language to study emotional contagion Lyle Ungar 15:30-15:45 Coffee break 15:45-16:35 ORAL SESSION 3 15:45-16:10 Analyzing Curriculum Learning for Sentiment Analysis along Task Difficulty, Pac- ing and Visualization Axes Anvesh Rao Vijjini, Kaveri Anuranjana and Radhika Mamidi 16:10-16:35 Lightweight Models for Multimodal Sequential Data Soumya Sourav and Jessica Ouyang Monday, April 19, 2021 (continued) 16:35-17:45 POSTER SESSION Exploring Implicit Sentiment Evoked by Fine-grained News Events Cynthia Van Hee, Orphee De Clercq and Veronique Hoste Exploring Stylometric and Emotion-Based Features for Multilingual Cross-Domain Hate Speech Detection Ilia Markov, Nikola Ljube\u0161i\u0107, Darja Fi\u0161er and Walter Daelemans Emotion-Aware, Emotion-Agnostic, or Automatic: Corpus Creation Strategies to Obtain Cognitive Event Appraisal Annotations Jan Hofmann, Enrica Troiano and Roman Klinger Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020 US Elec- tions on the Basis of Offensive Speech and Stance Detection Lara Grimminger and Roman Klinger Synthetic Examples Improve Cross-Target Generalization: A Study on Stance De- tection on a Twitter corpus. Costanza Conforti, Jakob Berndt, Mohammad Taher Pilehvar, Chryssi Giannitsarou, Flavio Toxvaerd and Nigel Collier Creating and Evaluating Resources for Sentiment Analysis in the Low-resource Lan- guage: Sindhi Wazir Ali, Naveed Ali, Yong Dai, Jay Kumar, Saifullah Tumrani and Zenglin Xu Towards Emotion Recognition in Hindi-English Code-Mixed Data: A Transformer Based Approach Anshul Wadhawan and Akshita Aggarwal Nearest neighbour approaches for Emotion Detection in Tweets Olha Kaminska, Chris Cornelis and Veronique Hoste L3CubeMahaSent: A Marathi Tweet-based Sentiment Analysis Dataset Atharva Kulkarni, Meet Mandhane, Manali Likhitkar, Gayatri Kshirsagar and Ravi- raj Joshi Multi-Emotion Classification for Song Lyrics Darren Edmonds and Jo\u00e3o Sedoc ONE: Toward ONE model, ONE algorithm, ONE corpus dedicated to sentiment analysis of Arabic/Arabizi and its dialects Imane Guellil, Faical Azouaou, Fodil Benali and Hachani Ala-Eddine",
"links": null
}
},
"ref_entries": {
"TABREF0": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>Viktor Pekar -</td><td>Organizers</td></tr><tr><td>Organizers</td><td/></tr><tr><td colspan=\"2\">Orph\u00e9e de Clercq -Ghent University, Belgium Orph\u00e9e De Clercq, Alexandra Balahur, Jo\u00e3o Sedoc, Valentin Barriere, Shabnam Tafreshi, Sven Buechel Alexandra Balahur -European Commission Joint Research Centre and Veronique Hoste Jo\u00e3o Sedoc -New York University, U.S.A</td></tr><tr><td colspan=\"2\">Valentin Barriere -European Commission Joint Research Centre WASSA 2021 Chairs Shabnam Trafreshi -Georgetown University & IBM, U.S.A.</td></tr><tr><td colspan=\"2\">Sven Buechel -Friedrich Schiller University Jena, Germany</td></tr><tr><td colspan=\"2\">Veronique Hoste -Ghent University, Belgium</td></tr><tr><td>Program Committee</td><td/></tr><tr><td colspan=\"2\">Liesbeth Allein -European Commission Joint Research Centre</td></tr><tr><td colspan=\"2\">Jeremy Barnes -University Pompeu Fabra, Spain</td></tr><tr><td colspan=\"2\">Sabine Bergler -Concordia University, Canada</td></tr><tr><td colspan=\"2\">Cristina Bosco -University of Torino, Italy</td></tr><tr><td>Nicoletta Calzolari -CNR Pisa, Italy</td><td/></tr><tr><td colspan=\"2\">Erik Cambria -Nanyang Technological University, Singapore</td></tr><tr><td colspan=\"2\">Sergio Consoli -European Commission Joint Research Centre</td></tr><tr><td>Montse Cuadros -Vicomtech, Spain</td><td/></tr><tr><td colspan=\"2\">Luna De Bruyne -Ghent University, Belgium</td></tr><tr><td>Lingjia Deng -Bloomberg, U.S.A.</td><td/></tr><tr><td colspan=\"2\">Antske Fokkens -VU Amsterdam, The Netherlands</td></tr><tr><td>Michael Gamon -Microsoft, U.S.A.</td><td/></tr><tr><td colspan=\"2\">Lorenzo Gatti -University of Twente, The Netherlands</td></tr><tr><td colspan=\"2\">Matthias Hartung -Semalytix GmbH, Germany</td></tr><tr><td colspan=\"2\">Dirk Hovy -Bocconi University, Italy</td></tr><tr><td colspan=\"2\">Stefano Maria Iacus -European Commission Joint Research Centre</td></tr><tr><td colspan=\"2\">Carlos A. Iglesias -Universidad Polit\u00e9cnica de Madrid, Spain</td></tr><tr><td colspan=\"2\">Ruben Izquierdo Bevia -Nuance, Spain</td></tr><tr><td colspan=\"2\">Gilles Jacobs -Ghent University, Belgium</td></tr><tr><td>Aditya Joshi -Notiv, Australia</td><td/></tr><tr><td colspan=\"2\">Evgeny Kim -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Manfred Klenner -University of Zuerich, Switzerland</td></tr><tr><td colspan=\"2\">Roman Klinger -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Emiel Krahmer -Tilburg University, The Netherlands</td></tr><tr><td colspan=\"2\">Mayank Kulkarni -Bloomberg, U.S.A.</td></tr><tr><td colspan=\"2\">Els Lefever -Ghent University, Belgium</td></tr><tr><td colspan=\"2\">Edison Marrese-Taylor -University of Tokyo, Japan</td></tr><tr><td colspan=\"2\">Saif M. Mohammad -National Research Council Canada, Canada</td></tr><tr><td colspan=\"2\">Karo Moilanen -University of Oxford, U.K.</td></tr><tr><td>Guenter Neumann -DFKI, Germany</td><td/></tr><tr><td colspan=\"2\">Malvina Nissim -University of Groningen, The Netherlands</td></tr><tr><td colspan=\"2\">Laura Ana Maria Oberl\u00e4nder -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Constantin Orasan -University of Surrey, U.K.</td></tr><tr><td colspan=\"2\">Sean Papay -University of Stuttgart, Germany</td></tr><tr><td colspan=\"2\">Viviana Patti -University of Torino, Italy</td></tr></table>",
"num": null,
"text": "University of Wolverhampton, U.K. Jose Manuel Perea-Ortega -University of Extremadura, Spain Barbara Plank -IT University of Copenhagen, Denmark Daniel Preotiuc-Pietro -Bloomberg, U.S.A. Paolo Rosso -Technical University of Valencia, Spain Pranaydeep Singh -Ghent University, Belgium Josef Steinberger -West Bohemia University Prague, The Czech Republic Carlo Strapparava -Fondazione Bruno Kessler, Italy Mike Thelwall -University of Wolverhampton, U.K Dan Tufis -RACAI, Romania Cynthia Van Hee -Ghent University, Belgium Tony Veale -University College Dublin, Ireland Charles Welch -University of Michigan, U.S.A Michael Wiegand -Saarland University, Germany Taras Zagibalov -Brantwatch, U.K."
}
}
}
} |