File size: 56,151 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
{
    "paper_id": "2020",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T12:13:57.773056Z"
    },
    "title": "Applying Graph Neural Networks for Vietnamese Dependency Parsing",
    "authors": [
        {
            "first": "Nguyen",
            "middle": [],
            "last": "Duc",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Thien",
            "middle": [],
            "last": "Nguyen",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Thi",
            "middle": [
                "Thu"
            ],
            "last": "Trang",
            "suffix": "",
            "affiliation": {},
            "email": "trangntt@soict.hust.edu.vn"
        },
        {
            "first": "Truong",
            "middle": [],
            "last": "Dang Quan\u01f5",
            "suffix": "",
            "affiliation": {},
            "email": "dangquangtruong98@gmail.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper presents a state-of-the-art model to solve the Vietnamese dependency parsing task (HA My Linh, 2020) in VLSP 2020 1 Evaluation Campaign. In this model, the Bidirectional Long Short-Term Memory (BiLSTM) network is used to extract the contextual information, while the graph neural network captures high-order information. Some preprocessing for Vietnamese raw texts are included for the training, such as word segmentation, part-of-speech (POS) tagging for the model. We modified the network with suitable word embedding mechanisms, i.e., fastText, to represent the semantic information of words more accurately. Therefore, Vietnamese words that are marked as unknown tokens now can have the right embedding; thus, they will be well modeled in dependency parsing. Experiments on the raw text dataset show that the model achieved an average of 72.85% of unlabeled attachment score (UAS) and 64.35% of labeled attachment score (LAS). With the Segmentation and POS tagging dataset, we achieved a higher average of 81.71% (UAS) and 73.19% (LAS).",
    "pdf_parse": {
        "paper_id": "2020",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper presents a state-of-the-art model to solve the Vietnamese dependency parsing task (HA My Linh, 2020) in VLSP 2020 1 Evaluation Campaign. In this model, the Bidirectional Long Short-Term Memory (BiLSTM) network is used to extract the contextual information, while the graph neural network captures high-order information. Some preprocessing for Vietnamese raw texts are included for the training, such as word segmentation, part-of-speech (POS) tagging for the model. We modified the network with suitable word embedding mechanisms, i.e., fastText, to represent the semantic information of words more accurately. Therefore, Vietnamese words that are marked as unknown tokens now can have the right embedding; thus, they will be well modeled in dependency parsing. Experiments on the raw text dataset show that the model achieved an average of 72.85% of unlabeled attachment score (UAS) and 64.35% of labeled attachment score (LAS). With the Segmentation and POS tagging dataset, we achieved a higher average of 81.71% (UAS) and 73.19% (LAS).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "In recent years, dependency parsing is a fascinating research topic and has a large number of applications in natural language processing. This task is to automatically identify the relationship between words in a sentence and label the relationship between the head and the dependency word, and thus, establish the grammatical structure of the sentence. Traditional graph-based dependency parsing only extracts the parent-child relationship and ignores deeper relationships. Hence, we decided to experiment with the idea of extracting deeper relation-ships of the neighbor nodes, which is extensively covered in the paper Ji et al. (2019) .",
                "cite_spans": [
                    {
                        "start": 623,
                        "end": 639,
                        "text": "Ji et al. (2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "This state-of-the-art model achieved good performance due to its ability to represent incorrect Out-Of-Vocabulary (OOV) words in the input layer for Vietnamese. Normally, words that are not found in the vocabulary will be marked as unknown tokens before feeding to the embedding layer. This caused the model to embed OOV words incorrectly; therefore, it created the loss of information in calculating attention distribution. In this paper, we modified the pre-trained layer of word embedding for the graph neural networks with a more suitable embedding mechanism for Vietnamese, which solved the issue well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The rest of this paper is organized as follows: Section 2 presents the architecture and its components of graph neural networks. The experiments are shown in Section 3. Finally, Section 4 concludes the paper and gives some perspectives for the work.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Normally, Graph-based dependency parser search through the space of possible trees for a given sentence encoded as directed graphs and use methods from graph theory (Maximum Spanning Tree or greedy algorithm) for the optimal solutions. However, in the Graph Neural Network (GNN) model, the dependency parser utilizes the neural network to assign a weight to each edge, then construct a MST from the edge weight (Dozat et al., 2017) . For maximum accuracy, we need to analyze the surface form and the deep structure of the graph. There are three main components in the model: Encoder extracts the surface form and the contextual information and turns them into the nodes (words) representations for the next components; The graph attention network (a subset of GNN, using the structure from Veli\u010dkovi\u0107 et al. (2017) ) layers then extract the deep structure and high-order information to illustrate the head-dependent relationships of the nodes; the final component is the decoder, used to create the dependency tree from the output of the GNN. We will discuss the details in the following sections.",
                "cite_spans": [
                    {
                        "start": 411,
                        "end": 431,
                        "text": "(Dozat et al., 2017)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 790,
                        "end": 814,
                        "text": "Veli\u010dkovi\u0107 et al. (2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "2"
            },
            {
                "text": "First, we used the VNCoreNLP -suggested by Vu et al. (2018) -to segment and perform the POS tagging on the raw text. VNCoreNLP used a transformation rule-based learning model for the segmentation of the Vietnamese document, thus, obtained faster and better accuracy than all previous segmentation tools, as the model accounted for the fact that Vietnamese words are created from syllables including the space character (Nguyen et al., 2017) . The VNCoreNLP performed the task of labeling words with POS tag Vu et al. (2018) via MarMot (a CRF framework), state of the art POS and morphological tagger (M\u00fcller et al., 2013) Word embedding is the most popular representation method for words in a document because it captures the context of words, semantic and syntactic similarity, relation with other words, etc. Using word embedding makes it easier to represent words with less memory than using a one-hot vector while also showing the relationship between words.",
                "cite_spans": [
                    {
                        "start": 43,
                        "end": 59,
                        "text": "Vu et al. (2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 419,
                        "end": 440,
                        "text": "(Nguyen et al., 2017)",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 507,
                        "end": 523,
                        "text": "Vu et al. (2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 600,
                        "end": 621,
                        "text": "(M\u00fcller et al., 2013)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-processing",
                "sec_num": "2.1"
            },
            {
                "text": "With a huge training corpus (e.g., a total of 100 billion words with a 3-million-word vocab in Google News), the pre-trained model can cover much more context for word embedding than the auto-updating mechanism of the word embedding in the end-to-end abstractive summarization model with its training corpus (e.g., a total of 240 million words with a 50k-word vocab in Daily Mail/CNN) (Anh and Trang, 2019).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-processing",
                "sec_num": "2.1"
            },
            {
                "text": "In this paper, we adopted a suitable pre-trained model for Vietnamese with 300-dimensional word embeddings, i.e., fastText from Facebook , for the word embedding layer. The fastText trained on the Wikipedia dataset with character n-grams of length 5 by CBOW 2 method. fast-Text is more suitable in our case as when the GNN model meets unknown vocab, the fastText generates an embedding of the vocab with value 0, resulting in error reductions; meanwhile, the Word2Vec and the GloVe does not do that. This method enables fastText to handle OOV 3 words by constructing the vector for OOV words from its characters. Both GloVe and Word2Vec are unable to do so.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Pre-processing",
                "sec_num": "2.1"
            },
            {
                "text": "According to Kiperwasser and Goldberg (2016) , we can apply BiLSTM model to create the dependency tree as illustrated in Figure [ 1] Firstly, each word is embedded using a vector combined from three different vectors: randomly initialized word embedding, pre-trained word embedding, and partof-speech embedding.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 44,
                        "text": "Kiperwasser and Goldberg (2016)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 121,
                        "end": 129,
                        "text": "Figure [",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "x i = e(w i ) \u2295 e (w i ) \u2295 e(pos i )",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "As a result, the x i illustrated the sentence of the word i in [2] . Given the position i of the word, the BiLSTM model can compute state vectors \u2212 \u2192 c i and \u2190 \u2212 c i where the \u2212 \u2192 c i is draw from the start of the sentence to the position i and \u2190 \u2212 c i is from the end of the sentence to i.",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 66,
                        "text": "[2]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u2212 \u2192 c i = \u2212\u2212\u2212\u2212\u2212\u2212\u2212\u2192 LST M (x i ) \u2295 \u2190\u2212\u2212\u2212\u2212\u2212\u2212\u2212 LST M (x i )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "The two vectors \u2212 \u2192 c i and \u2190 \u2212 c i then concatenate to become the context-dependent representation of the word i. Thus we can use multilayers perceptron (MLP) to define two-node representations of the word i the probability of being the head role vector and probability of being the dependent role vector (Dozat et al., 2017) :",
                "cite_spans": [
                    {
                        "start": 306,
                        "end": 326,
                        "text": "(Dozat et al., 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h i = M LP h (c i ), d i = M LP d (c i )",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "The score function is a SoftMax function, where the representations of the word i and j is the input, therefore complementing the analysis of the surface form of the segmented sentence. As a result, the output of the BiLSTM component is a complete weight graph model. (Dozat et al., 2017) ",
                "cite_spans": [
                    {
                        "start": 268,
                        "end": 288,
                        "text": "(Dozat et al., 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "\u03c3(i, j) = Softmax i (h T j Ad j + b T 1 h j + b T 2 h j ) (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Encoder",
                "sec_num": "2.2"
            },
            {
                "text": "In the implementation, the GNN component can utilize at most three layers, each layer consists of 4 graph neural network units as illustrated in Figure [1] -where the representation of the vectors is calculated from the same representation in the previous layer using this formula where g is the LeakyReLU function, t is the layer, v i is the vector representation of i, and a ij is the edge weight of ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 145,
                        "end": 155,
                        "text": "Figure [1]",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "v t i = g \uf8eb \uf8ed W j\u2208N (i) \u03b1 t ij v t\u22121 j + Bv t\u22121 i \uf8f6 \uf8f8",
                        "eq_num": "(5)"
                    }
                ],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "We can apply the formula [5] to analyze the high order information of the nodes which is represented in three ways: grandparents, grandchildren, and siblings ( Figure [2] ) (Eisner, 1997) .",
                "cite_spans": [
                    {
                        "start": 173,
                        "end": 187,
                        "text": "(Eisner, 1997)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 160,
                        "end": 170,
                        "text": "Figure [2]",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "Specifically, the head representation of node i should attend to the neighbors' representation as they are the parents of the i. Therefore the model can calculate h i from the h j of the previous layer t \u2212 1 using the formula [5]:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 h t i = g W 1 j\u2208N (i) \u03b1 t ji h t\u22121 j + B 1 h t\u22121 i d t i = g W 2 j\u2208N (i) \u03b1 t ij d t\u22121 j + B 2 d t\u22121 i",
                        "eq_num": "("
                    }
                ],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "6) The dependent node d i 's computation operation is the same as the head node's one i. Thus the equation [6] can assist to analyse the order of the relationship of grandparents and grandchild.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "To examine the sibling relationships, the head representation of the node i check the neighborhood where they are dependent on node i. Thus the formula will update the h i in the following way: and siblings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 h t i = g W 1 j\u2208N (i) \u03b1 t ji d t\u22121 j + B 1 h t\u22121 i d t i = g W 2 j\u2208N (i) \u03b1 t ij h t\u22121 j + B 2 d t\u22121 i",
                        "eq_num": "(7)"
                    }
                ],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\uf8f1 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f2 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f4 \uf8f3 h t i = g(W 1 j\u2208N (i) (\u03b1 t ji h t\u22121 j + \u03b1 t ji d t\u22121 j ) +B 1 h t\u22121 i ) d t i = g(W 2 j\u2208N (i) (\u03b1 t ij h t\u22121 i + \u03b1 t ji d t\u22121 j ) +B 2 d t\u22121 i )",
                        "eq_num": "(8)"
                    }
                ],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "As the equations [8] illustrated, the edge weight a ij is the decisive element responsible for the update of the relationship information. The edge weight is figured with the following formula:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b1 t ij = \uf8f1 \uf8f2 \uf8f3 Softmax i (h T i Ad j + b T 1 h i + b T 2 d j ) i \u2208 N t k (j) 0, otherwise",
                        "eq_num": "(9)"
                    }
                ],
                "section": "GNN Layers",
                "sec_num": "2.3"
            },
            {
                "text": "After the high-order information is extracted from the GNN and enhanced the nodes representations, the node representation will be used to build the dependency tree via Biaffine parser (the setting is identical to Dozat et al. (2017)) 3 Experiments",
                "cite_spans": [
                    {
                        "start": 214,
                        "end": 234,
                        "text": "Dozat et al. (2017))",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Decoder",
                "sec_num": "2.4"
            },
            {
                "text": "The VLSP provided the datasets and separated them into training datasets and raw text datasets. The data for training was further divided into two packages: the first package consists of 5070 sentences, with a large domain from the social media comments on restaurants and hotels (100 sentences), to the story of the Little Prince (1570 sentences) and the VietTreeBank -VTB (3400 sentences); the second package includes 3000 sentences with diverse origins.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3.1"
            },
            {
                "text": "The raw text data for prediction includes the two packages above, and 20 raw text files crawled from VnExpress news articles. The VTB files and the files with index 1,3,4,7,8,10,14 were accurately tokenized and labeled.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3.1"
            },
            {
                "text": "The graph-based dependency parsing neural network model has one important characteristic: the raw text dataset's sentences have to be tokenized for the training to be carried out successfully. Therefore the VNCoreNLP -an NLP pipeline used for POS tagging, named entity recognition and dependency parsing is useful here in this case [4] . This tool is capable of providing highly accurate annotation for the input sentences, therefore improving the score of the training model.",
                "cite_spans": [
                    {
                        "start": 332,
                        "end": 335,
                        "text": "[4]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "3.1"
            },
            {
                "text": "The training operation consists of two methods: First, we have to decode the output of the final layer of the GNN component (denoted by)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03b1 t ij = \u03c3 t (i, j) = P t (i|j)",
                        "eq_num": "(10)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "which are the tree structures (computed by P (i|j)) and the dependency edge labels (measured by P (r|i, j), which indicated the probability a tree (i, j) holds a dependency relation r, using another MLP from biaffine parser (Dozat et al., 2017) , the loss function of the classifier is computed with the equation:",
                "cite_spans": [
                    {
                        "start": 224,
                        "end": 244,
                        "text": "(Dozat et al., 2017)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L 0 = \u2212 1 n (i,j,r)\u2208T (logP \u03c4 (i|j) + logP (r|i, j))",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "Second, the model can supervise on P t (i|j) from each layer of the GNN component, therefore the layer-wise loss will be computed with the equation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L = \u03c4 t=1 L t = \u03c4 t=1 \u2212 1 n (i,j,r)\u2208T logP (r|i, j)",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "The main objective is to minimize the loss of combination of them:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L = \u03bb 1 L 0 + \u03bb 2 L",
                        "eq_num": "(13)"
                    }
                ],
                "section": "Training",
                "sec_num": "3.2"
            },
            {
                "text": "We have implemented and operated the model on the AWS Server (AWS Deep Learning AMI (Ubuntu 18.04) Version 34.0 installed in the EC2 Instance p3.2xlarge -GPU NVIDIA Tesla v100 16 GB, Memory 61 GB, SSD 100 GB, CPU 8 Virtual Cores) successfully. The hyperparameters configuration in Table [ 1] has slight modifications. For the word embedding, we used fastText with Vietnamese data as the primary pre-trained model, which has 300 dimensions instead of 100 dimensions of GloVe that Ji et al. (2019) used. Then, we concatenate the pre-trained word embedding with 200-dimension randomly initialize word embedding and 100-dimension part-ofspeech embedding. Randomly embedding vectors obtained from binomial distribution. The training operation took approximately one hour.",
                "cite_spans": [
                    {
                        "start": 479,
                        "end": 495,
                        "text": "Ji et al. (2019)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 281,
                        "end": 288,
                        "text": "Table [",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "The main evaluators for the dependency parsing problem are LAS and UAS. The results are coming from the script evaluator 2018. For the labeled data, the highest UAS is 81.89% from the VTB package, meanwhile the package Test VNExpress 14 achieved the highest LAS 73.57%. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "3.3"
            },
            {
                "text": "To conclude, our experiment on using the graph neural network for graph-based dependency parsing suggests that understanding the deep structure of the representations of words via nodes' message passing improved a slightly better accuracy and efficiency than other traditional graph-based dependency parsers. In future works, we are planning to improve the performance of the model by applying Conditional Random Fields in the labeling process for the nodes before extracting the high-order information via graph neural network.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "4"
            },
            {
                "text": "Continuous Bag of Words 3 Out-of-vocabulary",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The authors wish to thank VLSP organizers for their reviews and encouragement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Abstractive text summarization using pointergenerator networks with pre-trained word embedding",
                "authors": [],
                "year": 2019,
                "venue": "Proceedings of the Tenth International Symposium on Information and Communication Technology",
                "volume": "",
                "issue": "",
                "pages": "473--478",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dang Trung Anh and Nguyen Thi Thu Trang. 2019. Abstractive text summarization using pointer- generator networks with pre-trained word embed- ding. In Proceedings of the Tenth International Sym- posium on Information and Communication Technol- ogy, pages 473-478.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Enriching word vectors with subword information",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.04606"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vec- tors with subword information. arXiv preprint arXiv:1607.04606.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Stanford's graph-based neural dependency parser at the CoNLL 2017 shared task",
                "authors": [
                    {
                        "first": "Timothy",
                        "middle": [],
                        "last": "Dozat",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies",
                "volume": "",
                "issue": "",
                "pages": "20--30",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/K17-3002"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Timothy Dozat, Peng Qi, and Christopher D. Manning. 2017. Stanford's graph-based neural dependency parser at the CoNLL 2017 shared task. In Proceed- ings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, pages 20-30, Vancouver, Canada. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Three new probabilistic models for dependency parsing: An exploration",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Eisner",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jason Eisner. 1997. Three new probabilistic models for dependency parsing: An exploration. arXiv preprint cmp-lg/9706003.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Vlsp 2020 shared task: Universal dependency parsing for vietnamese",
                "authors": [
                    {
                        "first": "Luong Nguyen Thi Luong Phan Thi Hue Le",
                        "middle": [],
                        "last": "Vu Xuan",
                        "suffix": ""
                    },
                    {
                        "first": "Ha My",
                        "middle": [],
                        "last": "Van Cuong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Linh",
                        "suffix": ""
                    },
                    {
                        "first": "Minh",
                        "middle": [],
                        "last": "Nguyen Thi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Huyen",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of The seventh international workshop on Vietnamese Language and Speech Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "VU Xuan Luong NGUYEN Thi Luong PHAN Thi Hue LE Van Cuong HA My Linh, NGUYEN Thi Minh Huyen. 2020. Vlsp 2020 shared task: Uni- versal dependency parsing for vietnamese. In Pro- ceedings of The seventh international workshop on Vietnamese Language and Speech Processing (VLSP 2020), Hanoi, Vietnam.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Graph-based dependency parsing with graph neural networks",
                "authors": [
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Ji",
                        "suffix": ""
                    },
                    {
                        "first": "Yuanbin",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Man",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "2475--2485",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-based dependency parsing with graph neural networks. In Proceedings of the 57th Annual Meeting of the Asso- ciation for Computational Linguistics, pages 2475- 2485.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Bag of tricks for efficient text classification",
                "authors": [
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1607.01759"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Simple and accurate dependency parsing using bidirectional lstm feature representations",
                "authors": [
                    {
                        "first": "Eliyahu",
                        "middle": [],
                        "last": "Kiperwasser",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "313--327",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim- ple and accurate dependency parsing using bidirec- tional lstm feature representations. Transactions of the Association for Computational Linguistics, 4:313-327.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Efficient higher-order crfs for morphological tagging",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "M\u00fcller",
                        "suffix": ""
                    },
                    {
                        "first": "Helmut",
                        "middle": [],
                        "last": "Schmid",
                        "suffix": ""
                    },
                    {
                        "first": "Hinrich",
                        "middle": [],
                        "last": "Sch\u00fctze",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "322--332",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Thomas M\u00fcller, Helmut Schmid, and Hinrich Sch\u00fctze. 2013. Efficient higher-order crfs for morphological tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 322-332.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "A fast and accurate vietnamese word segmenter",
                "authors": [
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dat Quoc Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Thanh",
                        "middle": [],
                        "last": "Dai Quoc Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Vu",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dras",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Dat Quoc Nguyen, Dai Quoc Nguyen, Thanh Vu, Mark Dras, and Mark Johnson. 2017. A fast and accurate vietnamese word segmenter. CoRR, abs/1709.06307.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Graph attention networks",
                "authors": [
                    {
                        "first": "Petar",
                        "middle": [],
                        "last": "Veli\u010dkovi\u0107",
                        "suffix": ""
                    },
                    {
                        "first": "Guillem",
                        "middle": [],
                        "last": "Cucurull",
                        "suffix": ""
                    },
                    {
                        "first": "Arantxa",
                        "middle": [],
                        "last": "Casanova",
                        "suffix": ""
                    },
                    {
                        "first": "Adriana",
                        "middle": [],
                        "last": "Romero",
                        "suffix": ""
                    },
                    {
                        "first": "Pietro",
                        "middle": [],
                        "last": "Lio",
                        "suffix": ""
                    },
                    {
                        "first": "Yoshua",
                        "middle": [],
                        "last": "Bengio",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1710.10903"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Petar Veli\u010dkovi\u0107, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint arXiv:1710.10903.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "VnCoreNLP: A Vietnamese natural language processing toolkit",
                "authors": [
                    {
                        "first": "Thanh",
                        "middle": [],
                        "last": "Vu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Dat Quoc Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dai Quoc Nguyen",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Dras",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Johnson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "56--60",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N18-5012"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thanh Vu, Dat Quoc Nguyen, Dai Quoc Nguyen, Mark Dras, and Mark Johnson. 2018. VnCoreNLP: A Vietnamese natural language processing toolkit. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa- tional Linguistics: Demonstrations, pages 56-60, New Orleans, Louisiana. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Graph-based dependency parsing with bidirectional LSTM",
                "authors": [
                    {
                        "first": "Wenhui",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Baobao",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics",
                "volume": "1",
                "issue": "",
                "pages": "2306--2315",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/P16-1218"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wenhui Wang and Baobao Chang. 2016. Graph-based dependency parsing with bidirectional LSTM. In Proceedings of the 54th Annual Meeting of the As- sociation for Computational Linguistics (Volume 1: Long Papers), pages 2306-2315, Berlin, Germany. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "type_str": "figure",
                "text": "The architecture of Graph Neural Networks",
                "uris": null
            },
            "FIGREF1": {
                "num": null,
                "type_str": "figure",
                "text": "Relations between nodes v i and v j (i and j are forming the neighborhood)(Wang and Chang, 2016):",
                "uris": null
            },
            "TABREF1": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Hyper-parameter.",
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "content": "<table><tr><td>Dataset</td><td>UAS LAS</td></tr><tr><td colspan=\"2\">Test from VTB 73.18 64.66</td></tr><tr><td>VNExpress 1</td><td>68.77 58.75</td></tr><tr><td>VNExpress 3</td><td>74.10 65.81</td></tr><tr><td>VNExpress 7</td><td>61.67 55.56</td></tr><tr><td>VNExpress 8</td><td>68.96 61.43</td></tr><tr><td colspan=\"2\">VNExpress 10 73.19 64.13</td></tr><tr><td>VNExpress 14</td><td>68.4 60.72</td></tr><tr><td>Total</td><td>72.85 64.35</td></tr></table>",
                "html": null,
                "text": "Test on labeled datasets.",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "Test on raw-text datasets.",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "content": "<table/>",
                "html": null,
                "text": "] shows results from VLSP 2020 private tests for dependency parsing on labeled datasets, meanwhile raw-text datasets' results are shown onTable [3].",
                "num": null
            }
        }
    }
}