File size: 62,893 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
{
    "paper_id": "O15-1002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:09:59.517020Z"
    },
    "title": "Exploring Word Embedding and Concept Information for Language Model Adaptation in Mandarin Large Vocabulary Continuous Speech Recognition",
    "authors": [
        {
            "first": "Ssu-Cheng",
            "middle": [],
            "last": "\u9673\u601d\u6f84",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Hsiao-Tsung",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {},
            "email": "kychen@iis.sinica.edu.tw"
        },
        {
            "first": "Berlin",
            "middle": [],
            "last": "Hung",
            "suffix": "",
            "affiliation": {},
            "email": "berlin@ntnu.edu.tw"
        },
        {
            "first": "",
            "middle": [],
            "last": "Chen",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Kuan-Yu",
            "middle": [],
            "last": "\u9673\u51a0\u5b87",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "\u6548\u7528\u3002",
            "middle": [],
            "last": "\u5be6\u9a57\u7d50\u679c\u986f\u793a\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u8a9e\u8a00\u6a21\u578b\u8abf\u9069\u65b9\u6cd5\u76f8\u8f03\u65bc\u7576\u4eca\u6700\u597d\u65b9\u6cd5\u6709\u8f03\u4f73\u7684",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "\u95dc\u9375\u8a5e\uff1a\u8a9e\u97f3\u8fa8\u8b58\u3001\u8a9e\u8a00\u6a21\u578b\u3001\u8a5e\u5411\u91cf\u8868\u793a\u3001\u6982\u5ff5\u6a21\u578b",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Research on deep learning has experienced a surge of interest in recent years. Alongside the rapid development of deep learning related technologies, various",
    "pdf_parse": {
        "paper_id": "O15-1002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Research on deep learning has experienced a surge of interest in recent years. Alongside the rapid development of deep learning related technologies, various",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "distributed representation methods have been proposed to embed the words of a vocabulary as vectors in a lower-dimensional space. Based on the distributed representations, it is anticipated to discover the semantic relationship between any pair of words via some kind of similarity computation of the associated word vectors. With the above background, this article explores a novel use of distributed representations of words for language modeling (LM) in speech recognition. Firstly, word vectors are employed to represent the words in the search history and the upcoming words during the speech recognition process, so as to dynamically adapt the language model on top of such vector representations. Second, we extend the recently proposed concept language model (CLM) by conduct relevant training data selection in the sentence level instead of the document level. By doing so, the concept classes of CLM can be more accurately estimated while simultaneously eliminating redundant or irrelevant information. On the other hand, since the resulting concept classes need to be dynamically selected and linearly combined to form the CLM model during the speech recognition process, we determine the relatedness of each concept class to the test utterance based the word representations derived with either the continue bag-of-words model (CBOW) or the skip-gram model (Skip-gram). Finally, we also combine the above LM methods for better speech recognition performance. Extensive experiments carried out on the MATBN (Mandarin Across Taiwan Broadcast News) corpus demonstrate the utility of our proposed LM methods in relation to several well-practiced baselines. [3, 4] ",
                "cite_spans": [
                    {
                        "start": 1665,
                        "end": 1668,
                        "text": "[3,",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1669,
                        "end": 1671,
                        "text": "4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u3002N \u9023(N-gram)\u8a9e\u8a00\u6a21\u578b\u70ba\u8a9e\u97f3\u8fa8\u8b58\u4e4b\u4e2d\u6700\u70ba\u5e38\u898b\u7684\u7d71\u8a08\u5f0f\u8a9e\u8a00\u6a21\u578b\uff0c\u7528\u4f86\u4f30\u6e2c\u6bcf\u4e00 \u500b\u5f85\u9810\u6e2c\u8a5e\u5f59\u5728\u5176\u5148\u524d\u7dca\u9130\u7684 N-1 \u500b\u8a5e\u5f59\u5df2\u77e5\u7684\u60c5\u6cc1\u4e0b\u51fa\u73fe\u7684\u689d\u4ef6\u6a5f\u7387\uff1b\u5047\u8a2d\u6bcf \u4e00\u500b\u8a5e\u5f59\u51fa\u73fe\u7684\u6a5f\u7387\u50c5\u8207\u5b83\u7dca\u9130\u7684\u524d N-1 \u500b\u8a5e\u5f59\u76f8\u95dc\uff0c\u53ef\u4ee5\u900f\u904e\u591a\u9805\u5f0f\u5206\u5e03 (Multinomial Distribution)\u4f86\u8868\u793a\u3002\u7136\u800c N \u9023\u8a9e\u8a00\u6a21\u578b\u50c5\u80fd\u64f7\u53d6\u77ed\u8ddd\u96e2\u7684\u8a5e\u5f59\u898f\u5247 \u8cc7\u8a0a\uff0c\u800c\u7121\u6cd5\u8003\u616e\u9577\u8ddd\u96e2\u7684\u8a9e\u53e5\u6216\u7bc7\u7ae0\u8cc7\u8a0a\uff1b\u7576\u8a5e\u5e8f\u5217\u8d8a\u9577\u6642\u53c3\u6578\u91cf\u8d8a\u591a\uff0c\u4f7f\u5f97 N \u9023\u8a9e\u8a00\u6a21\u578b\u6703\u6709\u7dad\u5ea6\u8a5b\u5492\u7684\u554f\u984c\u3002\u53e6\u4e00\u65b9\u9762\uff0cN \u9023\u8a9e\u8a00\u6a21\u578b\u4ea6\u5bb9\u6613\u9762\u81e8\u8a13\u7df4\u8a9e \u6599\u8207\u6e2c\u8a66\u8a9e\u6599\u4e0d\u5339\u914d(Mismatch)\u800c\u9020\u6210\u4f30\u6e2c\u8aa4\u5dee\u3002\u6709\u9451\u65bc\u6b64\uff0c\u8fd1\u5341\u5e7e\u5e74\u4f86\u8a31\u591a\u52d5 \u614b\u8a9e\u8a00\u6a21\u578b\u8abf\u9069\u6280\u8853\u88ab\u63d0\u51fa\uff0c\u7528\u4ee5\u767c\u5c55\u6709\u6548\u7684\u8a9e\u8a00\u6a21\u578b\u8f14\u52a9\u4e26\u5f4c\u88dc\u50b3\u7d71 N \u9023 (N-gram)\u8a9e\u8a00\u6a21\u578b\u4e0d\u8db3\u4e4b\u8655\u3002\u5e38\u898b\u7684\u6709\u5feb\u53d6\u6a21\u578b(Cache Model)[5]\uff0c\u4ee5\u53ca\u5728\u8cc7\u8a0a\u6aa2 \u7d22 \u9818 \u57df \u7684 \u4e3b \u984c \u6a21 \u578b (Topic Model)[6] \u7b49 \u3002 \u5176 \u4e2d \u53c8 \u4ee5 \u6a5f \u7387 \u5f0f \u6f5b \u85cf \u8a9e \u610f \u5206 \u6790 (Probabilistic Latent Semantic",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u505a\u70ba\u8a5e\u7684\u8868\u793a\u6cd5\uff0c\u662f\u900f\u904e\u524d\u994b\u5f0f\u985e\u795e\u7d93\u7db2\u8def(Feed-Forward Neural Network)\u8a13\u7df4\u800c \u6210\u3002\u9019\u7a2e\u5411\u91cf\u8868\u793a\u662f\u5c07\u8a5e\u8868\u793a\u6210\u4e00\u500b\u8f03\u4f4e\u7dad\u5ea6\u7684\u5be6\u6578\u5411\u91cf\u3002\u6bcf\u500b\u8a5e\u5f59\u4e4b\u9593\u7684\u95dc\u4fc2 \u53ef\u4ee5\u5229\u7528\u9918\u5f26\u6216\u662f\u6b50\u5f0f\u8ddd\u96e2\u8a08\u7b97\u627e\u51fa\u5169\u500b\u8a5e\u5411\u91cf\u9593\u7684\u8a9e\u610f\u76f8\u4f3c\u5ea6\uff0c\u6211\u5011\u5c07\u9019\u4e9b\u8a5e \u5411\u91cf\u7a31\u70ba\u8a5e\u8868\u793a\u6cd5(Word Representation or Embedding)\u3002 \u6709\u9451\u65bc\u4f7f\u7528\u50b3\u7d71\u985e\u795e\u7d93\u7db2\u8def\u8a9e\u8a00\u6a21\u578b\u4f86\u8a13\u7df4\u8a5e\u5411\u91cf\u6703\u9020\u6210\u8a13\u7df4\u6642\u9593\u904e\u9577\uff0c Tomas Mikolov \u7b49\u4eba[10] \u65bc\u662f\u63d0\u51fa\u6240 \u8b02 \u7684 \u9023 \u7e8c \u578b \u8a5e \u888b \u6a21 \u578b (Continuous Bag-of-Words Model, CBOW)\u8207\u8df3\u8e8d\u5f0f\u6a21\u578b(Skip-Gram Model, SG)\uff0c\u9019\u5169\u7a2e\u6a21\u578b \u4f7f\u7528\u968e\u5c64\u8edf\u5f0f\u6700\u5927\u5316(Hierarchical Soft-max, HS)[10] \u4ee5 \u53ca \u8ca0 \u4f8b \u63a1 \u6a23 (Negative Sampling, NS) [11]\u65b9\u6cd5\u4f86\u63d0\u9ad8\u8a13\u7df4\u7684\u901f\u5ea6\u4e26\u6539\u5584\u8a13\u7df4\u5f8c\u8a5e\u5411\u91cf\u7684\u8868\u793a\u80fd\u529b\u3002 \u5716\u4e00\u3001\u9023\u7e8c\u578b\u8a5e\u888b\u6a21\u578b\u793a\u610f\u5716 (\u4e00)\u3001\u9023\u7e8c\u578b\u6a21\u578b \u9023\u7e8c\u578b\u8a5e\u888b\u6a21\u578b(CBOW)\u8207\u524d\u994b\u5f0f\u985e\u795e\u7d93\u7db2\u8def\u985e\u4f3c\uff0c\u4e0d\u540c\u4e4b\u8655\u5728\u65bc\u9023\u7e8c\u578b\u8a5e\u888b\u6a21 \u578b\u5c07\u975e\u7dda\u6027\u96b1\u85cf\u5c64(Non-Linear Hidden Layer)\u79fb\u9664\uff0c\u4e26\u4e14\u5728\u8f38\u5165\u5c64\u7684\u6240\u6709\u55ae\u8a5e\u7686\u5171 \u4eab\u96b1\u85cf\u5c64\u3002\u5982\u5716\u4e00\u6240\u793a\uff0c\u6b64\u6a21\u578b\u5305\u542b\u4e09\u5c64\uff0c\u5206\u5225\u70ba\u8f38\u5165\u5c64\u3001\u6295\u5f71\u5c64\u3001\u8f38\u51fa\u5c64\u3002\u5df2 \u77e5\u7576\u524d\u8a5e w t \u7684\u4e0a\u4e0b\u6587w t-2 ,w t-1 ,w t+1 ,w t+2 \u7684\u60c5\u6cc1\u4e0b\u9810\u6e2c\u7576\u524d\u8a5ew t \u51fa\u73fe\u7684\u6a5f\u7387\u3002\u5728\u6b64 \u76ee\u6a19\u51fd\u6578\u70ba\u6700\u5927\u5316\u8a13\u7df4\u8a9e\u6599\u5eab\u4e2d\u6240\u6709\u8a5e\u5f59\u5e73\u5747\u7684\u767c\u751f\u6a5f\u7387: 1 T \u2211 log P(w t |w t-k ,\u2026,w t+k ) T-k t=k",
                        "eq_num": "(1)"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u5176\u689d\u4ef6\u6a5f\u7387\u53ef\u4ee5\u900f\u904e Softmax \u51fd\u6578\u8f49\u63db\u70ba: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P(w t |w t-k ,\u2026,w t+k )= e \u2211 e y i i (2) \u5176\u4e2d y ={y 1 ,\u2026, y v }\uff0c\u800c y \u4e2d\u7684\u6bcf\u500b y i \u70ba\u5c0d\u65bc\u6bcf\u4e00\u500b\u8a5e w i \u9084\u672a\u7d93\u904e\u6b63\u898f\u5316\u7684 log \u6a5f \u7387\u503c\uff0c\u8a08\u7b97\u5982\u4e0b\u5f0f: y=b+Uh(w t-k ,\u2026,w t+k ,X) (3) \u5176\u4e2dU\u3001b\u70ba Softmax \u7684\u53c3\u6578\uff0ch \u662f\u5f9e\u77e9\u9663 X \u4e2d\u7684\u8a5e\u5411\u91cf(w t-k \u20d7\u20d7\u20d7\u20d7\u20d7\u20d7 ,\u2026,w t+k \u20d7\u20d7\u20d7\u20d7\u20d7\u20d7\u20d7 )\u52a0\u7e3d\u5e73\u5747\uff0cX\u70ba \u6839\u64da\u6bcf\u500b\u8a5ew i \u7684\u5411\u91cf\u6240\u7d44\u6210\u7684\u77e9\u9663\u3002 (\u4e8c)\u3001\u8df3\u8e8d\u5f0f\u6a21\u578b \u8df3\u8e8d\u5f0f\u6a21\u578b(Skip-gram)\u8207\u9023\u7e8c\u578b\u8a5e\u888b\u6a21\u578b(CBOW)\u76f8\u53cd\uff0c\u4f7f\u7528\u7576\u524d\u7684\u8a5e\u4f86\u9810\u6e2c\u5468 \u570d\u7684\u8a5e\u3002\u5728\u5df2\u77e5\u7576\u524d\u8a5e w t \u7684\u60c5\u6cc1\u4e0b\uff0c\u9810\u6e2c\u5176\u4e0a\u4e0b\u6587 w t-2 ,w t-1 ,w t+1 ,w t+2 \u7684\u6a5f\u7387\u3002\u7d66 \u5b9a\u4e00\u6bb5\u8a5e\u5e8f\u5217 w 1 ,w 2 ,w 3 ,\u2026,w t \uff0c\u5728\u6b64\u6700\u5927\u5316\u76ee\u6a19\u51fd\u6578: 1 T \u2211 \u2211 log P(w t+k |w t ) -c\u2264k\u2264c,k\u22600 T t=1",
                        "eq_num": "(4)"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "( | ) = \u2211 ( | ) \u2208 (5) \u5728\u6b64\u52a0\u5165\u53c3\u6578 \u03b1 j \uff0c\u4e26\u4e14\u5047\u8a2d\u53c3\u6578 1 , 2 , \u2026 , \u52a0\u7e3d\u70ba 1\uff0c\u4f7f\u5f97\u8ddd\u96e2\u8a5e \u8d8a\u8fd1\u7684\u8a5e \u7d66\u4e88\u8f03\u5927\u6b0a\u91cd\uff0c\u4ea6\u5373\u5728\u6b77\u53f2\u8a5e\u5e8f\u5217\u4e2d\u8d8a\u9760\u8fd1\u7576\u524d\u8a5e \u7684\u8a5e\u8d8a\u91cd\u8981\u3002 ( | )\u8868 \u793a\u5728\u7d66\u5b9a\u6b77\u53f2\u8a5e\u5e8f\u5217 H i \u4e2d\u8a5e \u4e0b\u9810\u6e2c\u7576\u524d\u8a5e \u7684\u6a5f\u7387\uff0c\u53ef\u4ee5\u7531(6)\u5f0f\u5f97\u5230: (w i |w m )= e w i \u20d7\u20d7\u20d7 \u2022 w m \u20d7\u20d7\u20d7\u20d7\u20d7\u20d7\u20d7 \u2211 e w i \u20d7\u20d7\u20d7 \u2022W \u20d7\u20d7\u20d7 W\u2208V (6) \u5176\u4e2d w i \u20d7\u20d7\u20d7\u20d7 \u70ba\u7576\u524d\u8a5e w i \u7684\u8a5e\u5411\u91cf\u8868\u793a\uff0c w m \u20d7\u20d7\u20d7\u20d7\u20d7\u20d7 \u70ba\u8a5e\u5716\u4e2d\u7684\u5019\u9078\u8a5e w m \u7684\u8a5e\u5411\u91cf\u8868\u793a\uff0c \u800c W \u70ba\u5c0d\u65bc\u8a5e w i \u7684\u6240\u6709\u5019\u9078\u8a5e\u96c6\u5408\uff0c\u6700\u5f8c\u900f\u904e Softmax",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "(8) \uf0e5 \uf0d5 \uf0e5 \uf0d5 \uf0e5 \uf0e5 \uf0ce \uf0a2 \uf03d \uf0a2 \uf0a2 \uf0ce \uf03d \uf0ce \uf0a2 \uf0ce \uf0a2 \uf0a2 \uf03d \uf0a2 \uf0a2 \uf03d C C C C C L l l C L l l i C i C i i i i i i W C P C h P W C P C h P C w P W C P C H P W C P C H w P W H w P 1 1 CLM ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | ( ) | , ( ) , | ( \uf0e5 \uf0d5 \uf0a2 \uf0a2 \uf0a2 \uf0e5 \uf0d5 \uf03d \uf0ce \uf0a2 \uf03d \uf0a2 \uf02d \uf0a2 \uf0a2 \uf0ce \uf03d \uf02d C C C L l l l C L l l l L i i i i i W C P C",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Two decades of statistical language modeling: Where do we go from here",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Rosenfeld",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of IEEE",
                "volume": "88",
                "issue": "",
                "pages": "1270--1278",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Rosenfeld, \"Two decades of statistical language modeling: Where do we go from here,\" Proceedings of IEEE, vol. 88, no. 8, 2000, pp. 1270-1278, 2000.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Statistical language model adaptation: review and perspectives",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Speech Communication",
                "volume": "42",
                "issue": "11",
                "pages": "93--108",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. R. Bellegarda, \"Statistical language model adaptation: review and perspectives,\" Speech Communication, vol. 42, no. 11, pp. 93-108, 2004.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Fundamental technologies in modern speech recognition",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Furui",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Gales",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Tokuda",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "IEEE Signal Processing Magazine",
                "volume": "29",
                "issue": "6",
                "pages": "16--17",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Furui, L. Deng, M. Gales, H. Ney and K. Tokuda, \"Fundamental technologies in modern speech recognition,\" IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 16-17, 2012",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Speech information processing: Theory and applications",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Shaughnessy",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Deng",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceedings of the IEEE",
                "volume": "101",
                "issue": "5",
                "pages": "1034--1037",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. O'Shaughnessy, L. Deng and H. Li, \"Speech information processing: Theory and applications,\" Proceedings of the IEEE, vol. 101, no. 5, pp 1034-1037, 2013.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Speech recognition and the frequency of recently used words: A modified Markov model for natural language",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Kuhn",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Proceedings of International Conference on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "348--350",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Kuhn, \"Speech recognition and the frequency of recently used words: A modified Markov model for natural language,\" in Proceedings of International Conference on Computational Linguistics, pp. 348-350, 1988.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Topic models",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    }
                ],
                "year": 2009,
                "venue": "Text Mining: Theory and Applications",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Blei and J. Lafferty, \"Topic models,\" in A. Srivastava and M. Sahami, (eds.), Text Mining: Theory and Applications, Taylor and Francis, 2009.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Probabilistic latent semantic indexing",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Hofmann",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proceeding of the ACM Special Interest Group on Information Retrieval",
                "volume": "",
                "issue": "",
                "pages": "50--57",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Hofmann, \"Probabilistic latent semantic indexing,\" in Proceeding of the ACM Special Interest Group on Information Retrieval, pp. 50-57, 1999.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Latent Dirichlet Allocation",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "M"
                        ],
                        "last": "Blei",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "I"
                        ],
                        "last": "Jordan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Journal of Machine Learning Research",
                "volume": "3",
                "issue": "",
                "pages": "993--1022",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. M. Blei, A. Y. Ng and M. I. Jordan, \"Latent Dirichlet Allocation,\" Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Learning distributed representations of concepts",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "Proceedings of the Eighth Annual Conference of the Cognitive Science Society",
                "volume": "",
                "issue": "",
                "pages": "1--12",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G.E. Hinton, \"Learning distributed representations of concepts,\" in Proceedings of the Eighth Annual Conference of the Cognitive Science Society, pages 1-12, Amherst 1986, 1986. Lawrence Erlbaum, Hillsdale.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Efficient estimation of word representations in vector space",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceeding of International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Mikolov, K. Chen, G. Corrado and J. Dean, \"Efficient estimation of word representations in vector space,\" in Proceeding of International Conference on Learning Representations, 2013.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Learning word embeddings efficiently with noise-contrastive estimation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mnih",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Kavukcuoglu",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Proceeding of Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "2265--2273",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Mnih and K. Kavukcuoglu, \"Learning word embeddings efficiently with noise-contrastive estimation,\" in Proceeding of Advances in Neural Information Processing Systems, pp. 2265-2273, 2013.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Statistical language models for information retrieval: A critical review",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "X"
                        ],
                        "last": "Zhai",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "137--213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. X. Zhai, \"Statistical language models for information retrieval: A critical review,\" Foundations and Trends in Information Retrieval, nol. 2, no. 3, 137- 213, 2008.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Lightly supervised and data-driven approaches to Mandarin broadcast news transcription",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "W.-H",
                        "middle": [],
                        "last": "Tsai",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "777--780",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen, J.-W. Kuo and W.-H. Tsai, \"Lightly supervised and data-driven approaches to Mandarin broadcast news transcription,\" in Proceedings of the IEEE International Conference on Acoustics, Speech, Signal Processing, 777- 780, 2004.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "MATBN: a Mandarin Chinese broadcast news corpus",
                "authors": [
                    {
                        "first": "H.-M",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J.-W",
                        "middle": [],
                        "last": "Kuo",
                        "suffix": ""
                    },
                    {
                        "first": "S.-S",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "International Journal of Computational Linguistics & Chinese Language Processing",
                "volume": "10",
                "issue": "1",
                "pages": "219--235",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H.-M. Wang, B. Chen, J.-W. Kuo and S.-S. Cheng, \"MATBN: a Mandarin Chinese broadcast news corpus,\" International Journal of Computational Linguistics & Chinese Language Processing, vol. 10, no. 1, 219-235, 2005.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Training data selection for improving discriminative training of acoustic models",
                "authors": [
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "F.-H",
                        "middle": [],
                        "last": "Chu",
                        "suffix": ""
                    },
                    {
                        "first": "S.-H",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "H.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Chen",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "Proceedings of IEEE workshop on Automatic Speech Recognition and Understanding",
                "volume": "",
                "issue": "",
                "pages": "284--289",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S.-H. Liu, F.-H. Chu, S.-H. Lin, H.-S. Lee and Chen, \"Training data selection for improving discriminative training of acoustic models,\" in Proceedings of IEEE workshop on Automatic Speech Recognition and Understanding, 284-289, 2007.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "SRI Language Modeling Toolkit",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stolcke, A. (2000). SRI Language Modeling Toolkit. Available at: http://www.speech.sri.com/projects/srilm/.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A latent semantic analysis framework for large-span language modeling",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proceedings of European Conference on Speech Communication and Technology",
                "volume": "",
                "issue": "",
                "pages": "1451--1454",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. R. Bellegarda, \"A latent semantic analysis framework for large-span language modeling,\" in Proceedings of European Conference on Speech Communication and Technology, pp.1451-1454, 1997.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Relevance language modeling for speech recognition",
                "authors": [
                    {
                        "first": "K.-Y",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing",
                "volume": "",
                "issue": "",
                "pages": "5568--5571",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K.-Y. Chen and B. Chen, \"Relevance language modeling for speech recognition,\" in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 5568-5571, 2011.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Leveraging relevance cues for language modeling in speech recognition",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "K.-Y.",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Information Processing & Management",
                "volume": "49",
                "issue": "4",
                "pages": "807--816",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen and K.-Y. Chen, \"Leveraging relevance cues for language modeling in speech recognition,\" Information Processing & Management, Vol. 49, No 4, pp. 807-816, 2013.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Recurrent neural network based language model",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Karafi\u00e1t",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Burget",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "\u010cernock\u00fd",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Khudanpur",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the Annual Conference of the International Speech Communication Association",
                "volume": "",
                "issue": "",
                "pages": "1045--1048",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Mikolov, M. Karafi\u00e1t, L. Burget, J. \u010cernock\u00fd and S. Khudanpur, \"Recurrent neural network based language model,\" in Proceedings of the Annual Conference of the International Speech Communication Association, 1045-1048, 2010.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td>\u5716\u4e8c\u3001\u8df3\u8e8d\u5f0f\u6a21\u578b\u793a\u610f\u5716</td></tr><tr><td>(\u4e09)\u3001\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u61c9\u7528\u65bc\u8a5e\u5716\u641c\u5c0b</td></tr><tr><td>\u5728\u8a9e\u97f3\u8fa8\u8b58\u7684\u904e\u7a0b\u4e2d\uff0c\u6bcf\u500b\u97f3\u6846\u6703\u8a18\u9304\u8a9e\u8a00\u6a21\u578b\u7684\u6b77\u53f2\u8a5e\u5e8f\u5217\u3001\u5019\u9078\u8a5e\u5c0d\u61c9\u7684\u958b</td></tr><tr><td>\u59cb\u8207\u7d50\u675f\u7684\u97f3\u6846\u3001\u4ee5\u53ca\u641c\u5c0b\u6642\u8072\u5b78\u6a21\u578b\u7684\u89e3\u78bc\u5206\u6578\uff0c\u4f86\u5efa\u7acb\u8a5e\u5716(Word Graph)\uff0c</td></tr><tr><td>\u4e26\u5728\u8a5e\u5716\u4e0a\u4f7f\u7528\u4e09\u9023\u8a5e(Trigram)\u6216\u56db\u9023\u8a5e(Fourgram)\u7b49\u985e\u4f3c\u8a9e\u8a00\u6a21\u578b\uff0c\u5728\u91cd\u65b0\u9032</td></tr><tr><td>\u884c\u4e00\u6b21\u8a5e\u5716\u52d5\u614b\u898f\u5283\u641c\u5c0b(Word Graph Rescoring)\u4e2d\uff0c\u627e\u51fa\u4e00\u689d\u6700\u4f73\u7684\u8fa8\u8b58\u8a5e\u5e8f</td></tr><tr><td>\u5217\uff0c\u5982\u5716\u4e09\u6240\u793a\u3002</td></tr><tr><td>\u5716\u4e09\u3001\u8a5e\u5716\u641c\u5c0b\u793a\u610f\u5716</td></tr><tr><td>\u8a5e\u5716\u662f\u7531\u8a5e\u5f59\u6a39\u8907\u88fd\u641c\u5c0b\u904e\u5f8c\u6240\u5efa\u7acb\u7684\u5716\uff0c\u800c\u8a5e\u5716\u4e2d\u7684\u6bcf\u500b\u5206\u652f(Arc)\u8868\u793a</td></tr><tr><td>\u7d93\u904e\u88c1\u526a\u904e\u5f8c\u6240\u4fdd\u7559\u7684\u8a5e\u6bb5\uff0c\u6bcf\u500b\u8a5e\u6bb5\u6703\u8a18\u9304\u5176\u8072\u5b78\u5206\u6578\u3002\u63a5\u8457\u91dd\u5c0d\u6bcf\u500b\u8a5e\u6bb5\u9032</td></tr><tr><td>\u884c\u7dad\u7279\u6bd4(Viterbi)\u641c\u5c0b\uff0c\u4e26\u8a18\u9304\u8207\u6bcf\u500b\u8a5e\u6bb5\u76f8\u9023\u4e14\u6700\u6709\u53ef\u80fd\u7684\u4e0b\u4e00\u500b\u8a5e\u6bb5(\u4ea6\u5373\u524d</td></tr><tr><td>\u8a5e\u6bb5\u4e4b\u7d50\u675f\u6642\u9593\u8207\u4e0b\u4e00\u8a5e\u6bb5\u7684\u958b\u59cb\u6642\u9593\u76f8\u540c\u4e26\u4e14\u7dad\u7279\u6bd4\u5206\u6578\u70ba\u6700\u9ad8\u8005) \u3002\u7136\u800c\u5f9e</td></tr><tr><td>\u8a5e\u5716\u4e2d\u6240\u4fdd\u7559\u7684\u8a5e\u6bb5\uff0c\u5728\u8072\u5b78\u6a21\u578b\u4e2d\u5927\u591a\u70ba\u540c\u97f3\u7570\u5b57\u6216\u662f\u6df7\u6dc6\u7684\uff0c\u6240\u4ee5\u9700\u8981\u900f\u904e</td></tr><tr><td>\u8a9e\u8a00\u6a21\u578b\u7684\u8f14\u52a9\u3002</td></tr><tr><td>\u5728\u8a5e\u5716\u641c\u5c0b\u6642\uff0c\u7d66\u5b9a\u6b77\u53f2\u8a5e\u5e8f\u5217 \u4e0b\u9810\u6e2c\u7576\u524d\u8a5e w i \u7684\u6a5f\u7387\u53ef\u4ee5\u7531\u4e0b\u5f0f\u8868\u793a:</td></tr></table>",
                "text": "\u5176\u4e2d c \u70ba\u8a13\u7df4\u4e0a\u4e0b\u6587\u7684\u7a97\u53e3\u5927\u5c0f\uff0cT \u70ba\u8a13\u7df4\u7684\u6587\u5b57\u8a9e\u6599\u9577\u5ea6\uff0cP(w t+k |w t ) \u8868\u793a\u5728\u7576 \u524d\u8a5e w t \u7684\u689d\u4ef6\u4e0b w t+k \u51fa\u73fe\u7684\u6a5f\u7387\u3002\u8a08\u7b97\u5728\u4e00\u500b\u56fa\u5b9a\u7684\u7a97\u53e3\u5927\u5c0f\u5167\u5169\u5169\u8a5e\u5f59\u4e4b\u9593 \u7684\u6a5f\u7387\uff0c\u53ef\u4ee5\u7528\u4f86\u627e\u51fa\u5728\u4e00\u6bb5\u8a9e\u53e5\u4e2d\u8a5e\u5f59\u5f7c\u6b64\u4e4b\u9593\u7684\u76f8\u4e92\u95dc\u4fc2\u3002\u4e0a\u4e0b\u6587\u7684\u7a97\u53e3\u8d8a \u5927\uff0c\u9810\u6e2c\u7684\u7d50\u679c\u8d8a\u7cbe\u6e96\uff0c\u76f8\u5c0d\u7684\u8a13\u7df4\u6642\u9593\u4ea6\u6703\u96a8\u4e4b\u589e\u52a0\u3002",
                "num": null
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "content": "<table><tr><td colspan=\"18\">(\u4e8c)\u3001\u57fa\u790e\u5be6\u9a57\u7d50\u679c \u53e6\u5916\u5728\u8a08\u7b97\u6e2c\u8a66\u8a9e\u53e5\u8207\u6982\u5ff5\u7fa4\u805a\u76f8\u4f3c\u5ea6\u90e8\u5206\uff0c\u6211\u5011\u4f7f\u7528\u8a5e\u5411\u91cf\u8868\u793a\u4e26\u900f\u904e\u9918\u5f26\u65b9 \u91cf\u904e\u5c11\u800c\u7121\u6cd5\u63cf\u7e6a\u51fa\u5176\u6982\u5ff5\u7684\u7279\u6027\uff0c\u56e0\u6b64\u7fa4\u805a\u7684\u6578\u76ee\u4ea6\u662f\u6703\u5f71\u97ff\u8fa8\u8b58\u7d50\u679c\u7684\u91cd\u8981 \u8ca2\u737b\u53ef\u4ee5\u5206\u70ba\u5169\u500b\u90e8\u5206: \u7b2c\u4e00\u90e8\u5206\uff0c\u672c\u8ad6\u6587\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u8cc7\u8a0a\u61c9\u7528\u65bc\u8a5e\u5716\u641c\u5c0b\u4e4b</td></tr><tr><td colspan=\"18\">W \u672c\u8ad6\u6587\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u6cd5\u878d\u5165\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\u4e2d\uff0c\u4e26\u4ee5\u5f0f(8)\u6240\u793a\u7684\u8a5e\u96d9\u9023\u6982\u5ff5\u8a9e\u8a00 C P C h h P C h P C h w P W H w P 2 1 1 BCLM ) | ( ) , | ( ) | ( ) , | ( ) , | ( \u5716\u56db\u3001\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\u6d41\u7a0b\u5716 (\u4e00)\u3001\u7d50\u5408\u8a5e\u5411\u91cf\u8868\u793a\u8207\u6982\u5ff5\u8cc7\u8a0a\u65bc\u8a9e\u8a00\u6a21\u578b \u6a21\u578b(BCLM)\u70ba\u4f8b\u3002\u9996\u5148\uff0c\u5728\u8abf\u9069\u8a9e\u6599\u6587\u4ef6\u96c6\u5167\u4e4b\u6587\u4ef6\u7531\u4e00\u7d44\u6982\u5ff5\u985e\u5225 C \u4f86\u8868\u793a\uff0c \u4ee5\u7fa4\u805a\u4e4b\u9593\u7684\u76f8\u4f3c\u5ea6\u8fd1\u4f3c\u8a9e\u53e5\u6982\u5ff5\u8868\u9054\u7684\u6db5\u610f\u3002\u5728\u8abf\u9069\u8a9e\u6599\u4e2d\u4ee5\u53e5\u5b50\u7684\u5c64\u6b21\u505a\u6a21 \u578b\u8a13\u7df4\u8cc7\u6599\u9078\u53d6\u4e4b\u4f9d\u64da\uff0c\u5c07\u5177\u6709\u76f8\u4f3c\u8a9e\u610f\u6216\u662f\u76f8\u540c\u6982\u5ff5\u7684\u8a9e\u53e5\u6b78\u70ba\u540c\u4e00\u500b\u985e\u5225 \u4e2d\uff0c\u4f7f\u5f97\u7d93\u7531\u8abf\u9069\u8a9e\u6599\u4e2d\u8a13\u7df4\u51fa\u7684\u6982\u5ff5\u985e\u5225\u66f4\u70ba\u5177\u4ee3\u8868\u6027\u3002\u5176\u4e2d W \u4ee3\u8868\u8a9e\u8005\u6240 \u8b1b\u8a9e\u53e5\u6b32\u8868\u9054\u7684\u8a9e\u8a00\u8cc7\u8a0a\uff0c\u5728\u6b64\u4ee5\u8a9e\u97f3\u8fa8\u8b58\u521d\u6b65\u6240\u7522\u751f\u7684\u8a5e\u5716(Word Graph)\u4f86\u8fd1 \u4f3c\u3002 \u800c P(C|W)\u662f\u900f\u904e\u8a9e\u8a00\u8cc7\u8a0a W \u8207\u6bcf\u4e00\u500b\u6982\u5ff5\u985e\u5225 C \uff0c\u4ee5\u8a5e\u5411\u91cf\u8868\u793a(Word Embedding)\u7684\u65b9\u5f0f\uff0c\u5148\u5c07\u8a5e\u8f49\u63db\u6210\u5411\u91cf\u7684\u5f62\u5f0f\uff0c\u63a5\u8457\u8a08\u7b97\u5176\u9918\u5f26\u76f8\u4f3c\u5ea6\u800c\u5f97\u3002\u5176 \u4e2d\u8a5e\u5411\u91cf\u8868\u793a\u662f\u7531\u9023\u7e8c\u578b\u6a21\u578b(Continue Bag-of-Words Model)\u6216\u662f\u8df3\u8e8d\u5f0f\u6a21\u578b (Skip-gram Model)\u751f\u6210\u3002 ( | )\u8868\u793a\u6982\u5ff5\u985e\u5225 C \u9810\u6e2c\u8a5e\u5f59 \u7684\u55ae\u9023\u8a9e\u8a00\u6a21\u578b\u6a5f \u7387\uff0c\u53ef\u4ee5\u900f\u904e\u6700\u5927\u5316\u76f8\u4f3c\u6a5f\u7387\u4f30\u6e2c\u800c\u5f97\u3002 \u56db\u3001 \u5be6\u9a57\u8a2d\u5b9a\u8207\u7d50\u679c\u8a0e\u8ad6 (\u4e00)\u3001\u5be6\u9a57\u8a9e\u6599 \u672c\u7814\u7a76\u6240\u9032\u884c\u4e4b\u8a9e\u97f3\u8fa8\u8b58\u5be6\u9a57\u662f\u4f7f\u7528\u53f0\u5e2b\u5927\u6240\u81ea\u884c\u7814\u767c\u7684\u5927\u8a5e\u5f59\u9023\u7e8c\u8a9e\u97f3\u8fa8\u8b58 \u7cfb\u7d71(\u8a5e\u5178\u5927\u5c0f\u7d04\u70ba 7 \u842c 2 \u5343\u8a5e)[14]\u4ee5\u53ca\u516c\u8996\u96fb\u8996\u65b0\u805e\u8a9e\u97f3\u8a9e\uf9be\u5eab(Mandarin Across Taiwan Broadcast News, MATBN)[15]\u3002\u6b64\u65b0\u805e\u8a9e\u97f3\u8a9e\uf9be\u5eab\u662f\u7531\u4e2d\u592e\u7814\u7a76\u9662 \u8cc7\u8a0a\u6240\u53e3\u8a9e\u5c0f\u7d44\u8017\u6642\u4e09\uf98e(2001~2003)\u8207\u516c\u5171\u96fb\u8996\u53f0[PTS]\u5408\u4f5c\uf93f\u88fd\u5b8c\u6210\u3002\u6211\u5011\u521d Model)\uff0c\u6b64\u8a9e\u8a00\u6a21\u578b\u662f\u4f7f\u7528 SRI Language Modeling Toolkit (SRILM)[17]\u8a13\u7df4\u800c \u5f97\uff0c\u63a1\u7528 Good-Turning \u5e73\u6ed1\u5316\u65b9\u6cd5\u4f86\u89e3\u6c7a\u8cc7\u6599\u7a00\u758f\u7684\u554f\u984c\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u6211\u5011\u4ea6 \u8490\u96c6\u540c\u70ba\u516c\u8996\u96fb\u8996\u65b0\u805e\u8a9e\u6599\u5eab\u4e2d\u7684\u540c\u9818\u57df\u6587\u4ef6\u505a\u70ba\u8abf\u9069\u8a9e\u6599\u5eab\uff0c\u7528\u4f86\u4f30\u6e2c\u672c\u8ad6\u6587 \u6240\u63a2\u8a0e\u7684\u5404\u5f0f\u505a\u70ba\u8abf\u9069\u4e4b\u7528\u7684\u8a9e\u8a00\u6a21\u578b\uff0c\u7e3d\u5171\u7d04\u4e09\u5343\u516d\u767e\u56db\u4e09\u53e5\u8a9e\u53e5\u3002\u672c\u8ad6\u6587\u5be6 \u9a57\u6240\u4f7f\u7528\u4e4b\u8a9e\u97f3\u8a9e\u6599\u5eab\u4ee5\u53ca\u6587\u5b57\u8a9e\u6599\u5eab\u7684\u627c\u8981\u7d71\u8a08\u8cc7\u8a0a\u5206\u5225\u5982\u8868\u4e00\u8207\u8868\u4e8c\u6240\u793a\u3002 \u8868\u4e00 \u8a9e\u97f3\u8fa8\u8b58\u5be6\u9a57\u4f7f\u7528\u4e4b\u8a9e\u97f3\u8a9e\u6599\u7d71\u8a08\u8cc7\u8a0a \u8a5e\u5178\u5927\u5c0f \u53e5\u6578 \u9577\u5ea6(\u5c0f\u6642) \u8aaa\u8a71\u901f\u5ea6 \u8a9e\u6599 \u7d04 72000 \u8a5e 292 \u7d04 1.5 8.52 \u5b57/\u79d2 \u8868\u4e8c \u8a9e\u8a00\u6a21\u578b\u4f30\u6e2c\u6240\u4f7f\u7528\u80cc\u666f\u6587\u5b57\u8a9e\u6599\u4ee5\u53ca\u8abf\u9069\u6587\u5b57\u8a9e\u6599\u7d71\u8a08\u8cc7\u8a0a \u80cc\u666f\u8a9e\u6599 \u7d04 80,000,000 2,068,991 \u5728\u57fa\u790e\u5be6\u9a57\u90e8\u5206\uff0c\u9996\u5148\u50c5\u4f7f\u7528\u80cc\u666f\u8a9e\u8a00\u6a21\u578b\u65bc\u4e2d\u6587\u5927\u8a5e\u5f59\u9023\u7e8c\u8a9e\u97f3\u8fa8\u8b58\uff0c\u89c0\u5bdf\u5176 \u5b57\u8fa8\u8b58\u932f\u8aa4\u7387(Character Error Rate, CER)\uff0c\u6211\u5011\u4ea6\u6bd4\u8f03\u540c\u9818\u57df\u8a9e\u6599\u8a13\u7df4\u7684\u8a9e\u8a00\u6a21 \u578b\u7d50\u5408\u80cc\u666f\u8a9e\u8a00\u6a21\u578b\u7684\u5b57\u932f\u8aa4\u7387\u3002\u53e6\u5916\uff0c\u6211\u5011\u4ee5\u8a5e\u5716\u6700\u4f73\u89e3\u78bc(Oracle)\u4f5c\u70ba\u8a9e\u97f3 \u8fa8\u8b58\u6548\u80fd\u7684\u4e0a\u754c\uff1b\u8a5e\u5716\u4e2d\u6700\u4f73\u89e3\u78bc\u662f\u5229\u7528\u52d5\u614b\u898f\u5283\u65b9\u5f0f\uff0c\u627e\u51fa\u8a5e\u5716\u4e2d\u5b57\u932f\u8aa4\u7387\u6700 \u4f4e\u4e4b\u8def\u5f91\u3002\u57fa\u790e\u5be6\u9a57\u65bc\u6e2c\u8a66\u96c6\u4e4b\u5b57\u8fa8\u8b58\u7387\u7d50\u679c\u5982\u8868\u4e09\u6240\u793a\u3002 \u8868\u4e09\u3001\u8a9e\u97f3\u8fa8\u8b58\u57fa\u790e\u5be6\u9a57\u4e4b\u5b57\u8fa8\u8b58\u7387(%)\u7d50\u679c \u5b57\u932f\u8aa4\u7387(%) \u80cc\u666f\u55ae\u9023\u8a9e\u8a00\u6a21\u578b(UBG) 34.30 \u80cc\u666f\u96d9\u9023\u8a9e\u8a00\u6a21\u578b(BBG) 22.24 \u80cc\u666f\u4e09\u9023\u8a9e\u8a00\u6a21\u578b(TBG) 20.22 \u540c\u9818\u57df\u96d9\u9023\u8a9e\u8a00\u6a21\u578b+TBG 19.12 \u540c\u9818\u57df\u4e09\u9023\u8a9e\u8a00\u6a21\u578b+TBG 19.04 \u8a5e\u5716\u4e2d\u6700\u4f73\u89e3\u78bc(Oracle) 7.72 \u672c\u8ad6\u6587\u5e0c\u671b\u5229\u7528\u8a5e\u5411\u91cf\u8868\u793a\u627e\u5230\u8a5e\u5f59\u9593\u5f7c\u6b64\u7684\u8a9e\u610f\u95dc\u4fc2\uff0c\u5229\u7528\u8a5e\u5411\u91cf\u8868\u793a\u65bc\u8a9e\u97f3 \u8fa8\u8b58\u7684\u8a5e\u5716\u641c\u5c0b\u4e2d\uff0c\u5e0c\u671b\u85c9\u6b64\u80fd\u9054\u5230\u63d0\u5347\u8fa8\u8b58\u7387\u7684\u6548\u679c\u3002\u8868\u56db\u70ba\u6bd4\u8f03\u4e0d\u540c\u7dad\u5ea6\u4ee5 \u53ca\u4e0d\u540c\u8a5e\u5411\u91cf\u8868\u793a(Skip-gram, CBOW)\u65bc\u8a5e\u5716\u641c\u5c0b\u7684\u5b57\u932f\u8aa4\u7387\u7d50\u679c\uff0c\u5728\u6b64\u7dad\u5ea6\u8a2d \u5b9a\u4ee5 10 \u81f3 50 \u4f5c\u70ba\u5be6\u9a57\u4e4b\u6bd4\u8f03\uff0c\u4ee5\u8f03\u5c0f\u7dad\u5ea6\u4e4b\u5dee\u7570\u6bd4\u8f03\uff0c\u6e1b\u5c11\u5176\u8a08\u7b97\u8907\u96dc\u5ea6\u3002 \u8868\u56db\u3001\u61c9\u7528\u8a5e\u5411\u91cf\u8868\u793a\u65bc\u8a5e\u5716\u641c\u5c0b\u4e2d\u4e4b\u5b57\u932f\u8aa4\u7387(%)\u6bd4\u8f03\u8868 \u7dad\u5ea6\u5927\u5c0f \u8df3\u8e8d\u5f0f\u6a21\u578b(Skip-gram) \u9023\u7e8c\u578b\u8a5e\u888b\u6a21\u578b(CBOW) 10 19.85 19.86 20 19.85 19.87 30 19.83 19.84 40 19.85 19.86 50 19.85 19.84 \u7531\u8868\u56db\u4e2d\u53ef\u4ee5\u770b\u51fa\u878d\u5165\u8a5e\u5411\u91cf\u8868\u793a\u7684\u8cc7\u8a0a\u65bc\u8a5e\u5716\u641c\u5c0b\u4e2d\uff0c\u6211\u5011\u53ef\u4ee5\u5f88\u660e\u986f\u5730\u89c0\u5bdf \u51fa\uff0c\u52a0\u5165\u8a5e\u5411\u91cf\u7684\u8cc7\u8a0a\u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8b58\u6e96\u78ba\u7387\u7684\u63d0\u5347\u6709\u5e6b\u52a9\u3002\u4e0d\u8ad6\u662f\u7528\u8df3\u8e8d\u5f0f\u6a21\u578b (Skip-gram)\u9084\u662f\u4f7f\u7528\u9023\u7e8c\u578b\u8a5e\u888b\u6a21\u578b(CBOW)\u6240\u8a13\u7df4\u5f97\u5230\u7684\u8a5e\u5411\u91cf\u8868\u793a\uff0c\u5c07\u5176\u61c9 \u7528\u65bc\u8a9e\u97f3\u8fa8\u8b58\u7684\u8a5e\u5716\u641c\u5c0b\u4e4b\u4e2d\uff0c\u5b57\u932f\u8aa4\u7387\u5f9e\u539f\u672c\u53ea\u4f7f\u7528\u8a5e\u5716\u641c\u5c0b\u6642\u4e4b\u5b57\u932f\u8aa4\u7387 20.2 \u4e0b\u964d\u81f3 19.83 (\u4f7f\u7528 Skip-gram)\uff0c\u7372\u5f97\u4e0d\u932f\u7684\u6548\u80fd\u63d0\u5347\u3002 (\u56db) \u7d50\u5408\u8a5e\u5411\u91cf\u8868\u793a\u8cc7\u8a0a\u65bc\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\u4e4b\u5be6\u9a57\u7d50\u679c \u672c\u8ad6\u6587\u5617\u8a66\u5c07\u8a5e\u5411\u91cf\u8cc7\u8a0a\u61c9\u7528\u65bc\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\u4e4b\u4e2d\uff0c\u5728\u672c\u5be6\u9a57\u4e2d\uff0c\u6211\u5011\u5c07\u8abf\u9069\u8a9e \u6599\u4ee5\u53e5\u5b50\u70ba\u55ae\u4f4d\uff0c\u5229\u7528 K-means \u5206\u7fa4\u6cd5\u5c07\u8abf\u9069\u8a9e\u6599\u4e2d\u7684\u8a9e\u53e5\u5206\u70ba\u591a\u500b\u6982\u5ff5\u985e\u5225\u3002 \u95dc\u9375\u3002 \u4e2d\uff0c\u5728\u8a9e\u97f3\u8fa8\u8b58\u7684\u904e\u7a0b\u4e2d\uff0c\u5c0d\u65bc\u52d5\u614b\u7522\u751f\u4e4b\u6b77\u53f2\u8a5e\u5e8f\u5217\u8207\u5019\u9078\u8a5e\u6539\u4ee5\u8a5e\u5411\u91cf\u8868\u793a \u5f0f\u8a08\u7b97\u5176\u76f8\u4f3c\u5ea6\u3002\u672c\u5be6\u9a57\u6bd4\u8f03\u50b3\u7d71\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b(BCLM)\u8207\u7d50\u5408\u8a5e\u5411\u91cf\u8868\u793a\u65bc\u6982 \u5ff5\u8a9e\u8a00\u6a21\u578b(\u7c21\u7a31\u70ba BCLM:WE)\u7686\u4f5c\u7528\u65bc\u4e0d\u540c\u7fa4\u805a\u6578\u76ee\u4e4b\u5b57\u932f\u8aa4\u7387\u7d50\u679c;\u4e0a\u8ff0\u5169 \u7684\u65b9\u5f0f\u4f86\u5efa\u7acb\u5176\u5c0d\u61c9\u7684\u8a9e\u8a00\u6a21\u578b\uff0c\u900f\u904e\u6b64\u7a2e\u8868\u793a\u65b9\u5f0f\u800c\u80fd\u7372\u53d6\u5230\u66f4\u591a\u8a5e\u5f59\u9593\u7684\u8a9e (\u4e94) \u5404\u5f0f\u8a9e\u8a00\u6a21\u578b\u4e4b\u5be6\u9a57\u7d50\u679c\u6bd4\u8f03 \u610f\u8cc7\u8a0a\uff0c\u4ee5\u63d0\u5347\u8fa8\u8b58\u7684\u6e96\u78ba\u5ea6\u3002\u7b2c\u4e8c\u90e8\u5206\uff0c\u6211\u5011\u91dd\u5c0d\u65b0\u8fd1\u88ab\u63d0\u51fa\u7684\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b \u7a2e\u65b9\u6cd5\u7686\u8207\u80cc\u666f\u4e09\u9023\u8a9e\u8a00\u6a21\u578b\u505a\u7dda\u6027\u7d50\u5408\u3002\u672c\u5be6\u9a57\u63a1\u7528\u8df3\u8e8d\u5f0f\u6a21\u578b(Skip-gram) \u4f5c\u70ba\u8a5e\u5411\u91cf\u8a13\u7df4\uff0c\u76f8\u8f03\u65bc\u9023\u7e8c\u578b\u6a21\u578b(CBOW) \u6709\u8f03\u4f73\u5be6\u9a57\u7d50\u679c\u3002 \u5176\u4e2d BCLM:WE(10)\u8868\u793a\u4f7f\u7528\u8df3\u8e8d\u5f0f\u6a21\u578b\u8a13\u7df4\u7dad\u5ea6\u70ba 10 \u4e4b\u8a5e\u5411\u91cf\uff0c\u7d50\u5408\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b \u7684\u5be6\u9a57\u7d50\u679c\u3002\u5be6\u9a57\u7d50\u679c\u5982\u8868\u4e94\u6240\u793a\uff0c\u5716\u4e94\u4ee5\u6298\u7dda\u5716\u65b9\u5f0f\u5448\u73fe\u5176\u5be6\u9a57\u7d50\u679c\u3002 \u8868\u4e94\u3001\u7d50\u5408\u8a5e\u5411\u91cf\u8cc7\u8a0a\u65bc\u6982\u5ff5\u6a21\u578b\u4e4b\u4e0d\u540c\u7fa4\u805a\u6578\u7684\u5b57\u932f\u8aa4\u7387(%)\u6bd4\u8f03\u8868 \u7fa4\u805a\u500b\u6578 2 4 8 16 32 BCLM 19.31 19.14 19.58 19.54 19.59 BCLM:WE(10) 18.89 19.05 19.40 19.39 19.52 BCLM:WE(20) 18.90 19.05 19.40 19.39 19.52 BCLM:WE(30) 18.89 19.04 19.40 19.39 19.52 BCLM:WE(40) 18.88 19.05 19.40 19.39 19.52 BCLM:WE(50) 18.88 19.04 19.40 19.39 19.52 \u5716\u4e94\u3001\u7d50\u5408\u8a5e\u5411\u91cf\u8cc7\u8a0a\u65bc\u6982\u5ff5\u6a21\u578b\u4e4b\u4e0d\u540c\u7fa4\u805a\u6578\u7684\u5b57\u932f\u8aa4\u7387(%)\u6bd4\u8f03\u5716 \u7531\u5716\u4e94\u6211\u5011\u53ef\u4ee5\u770b\u51fa\u7d50\u5408\u8a5e\u5411\u91cf\u8868\u793a\u65bc\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b(BCLM:WE)\u4e2d\u4e4b\u5b57\u932f \u8aa4\u7387\u76f8\u8f03\u65bc\u50b3\u7d71\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b(BCLM)\u7686\u6709\u8f03\u597d\u7684\u8868\u73fe\uff0c\u7576\u7fa4\u805a\u6578\u76ee\u70ba 2 \u6642\uff0c\u4f7f \u7528\u8df3\u8e8d\u5f0f\u6a21\u578b(Skip-gram) \u8a13 \u7df4 \u5f97 \u5230 \u7684 \u8a5e \u5411 \u91cf \u8868 \u793a \u65bc \u6982 \u5ff5 \u8a9e \u8a00 \u6a21 \u578b (BCLM:WE(40))\u7576\u7dad\u5ea6\u70ba 40 \u6642\uff0c\u5b57\u932f\u8aa4\u7387\u53ef\u964d\u4f4e\u81f3 18.88\u3002\u53e6\u5916\uff0c\u4ea6\u53ef\u7531\u5716\u4e94\u4e2d \u8ad6\u6587\u4ee5\u6b64\u70ba\u767c\u60f3\uff0c\u63d0\u51fa\u5c07\u5206\u6563\u5f0f\u8868\u793a\u6cd5\u61c9\u7528\u65bc\u8a9e\u97f3\u8fa8\u8b58\u7684\u8a9e\u8a00\u6a21\u578b\u4e2d\u4f7f\u7528\u3002\u4e3b\u8981 \u770b\u51fa\u7576\u7fa4\u805a\u6578\u76ee\u589e\u52a0\u6642\u6709\u5229\u65bc\u6a21\u578b\u7684\u63cf\u8ff0\uff0c\u4f46\u662f\u7531\u65bc\u5206\u7fa4\u6578\u904e\u591a\u6703\u5c0e\u81f4\u6bcf\u7fa4\u8cc7\u6599 \u5716\u516d\u70ba\u5404\u5f0f\u8a9e\u8a00\u6a21\u578b\u8207\u80cc\u666f\u4e09\u9023\u8a9e\u8a00\u6a21\u578b(TBG)\u7d50\u5408\u5f8c\u4e4b\u5b57\u932f\u8aa4\u7387\u7d50\u679c\u6bd4\u8f03\uff0c\u5176 \u4e2d Baseline \u70ba\u8a5e\u5716\u641c\u5c0b(Word Graph Rescoring)\u50c5\u4f7f\u7528\u80cc\u666f\u4e09\u9023\u6a21\u578b\u7d50\u679c\uff0c\u5176\u5b57\u932f \u8aa4\u7387\u70ba 20.22;\u800c CBOW \u8207 Skip-gram \u70ba\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u61c9\u7528\u65bc\u8a5e\u5716\u641c \u5c0b\u4e4b\u5be6\u9a57\u7d50\u679c\uff0c\u76f8\u8f03\u65bc\u6c92\u6709\u4f7f\u7528\u8a5e\u5411\u91cf\u8868\u793a\u65bc\u8a5e\u5716\u641c\u5c0b\u7d50\u679c\u6709 0.39 \u7d55\u5c0d\u5b57\u932f\u8aa4 \u7387\u4e0b\u964d\u3002\u63a5\u8457\uff0c\u6211\u5011\u6bd4\u8f03\u6f5b\u85cf\u8a9e\u610f\u5206\u6790 (Latent Semantic Analysis, LSA)[18]\u3001\u6a5f \u7387\u5f0f\u6f5b\u85cf\u8a9e\u610f\u5206\u6790(Probabilistic Latent Semantic Analysis, PLSA)[7]\u3001\u72c4\u5229\u514b\u91cc\u5206 \u914d(Latent Dirichlet Allocation, LDA)[8]\u3001\u95dc\u806f\u6a21\u578b(Relevance Model, RM)[19, 20]\u3001 \u905e\u8ff4\u5f0f\u985e\u795e\u7d93\u7db2\u8def\u8a9e\u8a00\u6a21\u578b(Recurrent Neural Network, RNN)[21]\u3001\u6982\u5ff5\u6a21\u578b (Bigram Concept Language Model, BCLM)[12]\u4ee5\u53ca\u672c\u8ad6\u6587\u63d0\u51fa\u7d50\u5408\u8a5e\u5411\u91cf\u8868\u793a\u65bc \u6982\u5ff5\u8a9e\u8a00\u6a21\u578b(BCLM:WE) \u4e4b \u5be6 \u9a57 \u7d50 \u679c \u3002 \u6700\u5f8c\uff0cBCLM:WE+CBOW \u8207 BCLM:WE+Skip-gram \u70ba\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u5169\u7a2e\u65b9\u6cd5\u7d50\u5408(\u4ea6\u5373\u7b2c\u4e8c\u7bc0\u4ee5\u53ca\u7b2c\u4e09\u7bc0 \u6240\u63d0\u51fa\u8a9e\u8a00\u6a21\u578b\u8abf\u9069\u65b9\u6cd5\u4e4b\u7d50\u5408)\uff0c\u5be6\u9a57\u679c\u986f\u793a\uff0c\u5169\u8005\u7d50\u5408\u904e\u5f8c\u6548\u679c\u70ba\u6700\u597d\uff0c\u5b57 \u932f\u8aa4\u7387\u53ef\u4e0b\u964d\u81f3 18.70\u3002\u7531\u5716\u516d\u7d50\u679c\u89c0\u5bdf\u5f97\u77e5\uff0c\u672c\u8ad6\u6587\u63d0\u51fa\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u61c9\u7528\u65bc \u8a9e\u8a00\u6a21\u578b\u4e2d\uff0c\u5c0d\u8a9e\u97f3\u8fa8\u8b58\u7684\u63d0\u5347\u78ba\u5be6\u6709\u5e6b\u52a9\u3002 \u5716\u516d\u3001\u5404\u5f0f\u8a9e\u8a00\u6a21\u578b\u4e4b\u5b57\u932f\u8aa4\u7387(%)\u7d50\u679c\u6bd4\u8f03\u5716 \u4e94\u3001 \u7d50\u8ad6\u8207\u672a\u4f86\u5c55\u671b \u8fd1\u5e74\u4f86\u6df1\u5ea6\u5b78\u7fd2(Deep Learning)\u6fc0\u8d77\u4e00\u80a1\u7814\u7a76\u71b1\u6f6e\uff1b\u96a8\u8457\u6df1\u5ea6\u5b78\u7fd2\u7684\u767c\u5c55\u800c\u6709\u5206 \u6563\u5f0f\u8868\u793a\u6cd5(Distributed Representation)\u7684\u7522\u751f\u3002\u6b64\u7a2e\u8868\u793a\u65b9\u5f0f\uff0c\u4e0d\u50c5\u80fd\u4ee5\u8f03\u4f4e\u7dad \u5ea6\u7684\u5411\u91cf\u8868\u793a\u8a5e\u5f59\uff0c\u9084\u80fd\u85c9\u7531\u5411\u91cf\u9593\u7684\u904b\u7b97\uff0c\u627e\u51fa\u4efb\u5169\u8a5e\u5f59\u4e4b\u9593\u7684\u8a9e\u610f\u95dc\u4fc2\u3002\u672c (Concept Language Model)\u52a0\u4ee5\u6539\u9032\uff0c\u5728\u8abf\u9069\u8a9e\u6599\u4e2d\u4ee5\u53e5\u5b50\u7684\u5c64\u6b21\u505a\u6a21\u578b\u8a13\u7df4\u8cc7\u6599 \u9078\u53d6\u4e4b\u4f9d\u64da\uff0c\u53bb\u6389\u591a\u9918\u4e14\u4e0d\u76f8\u95dc\u7684\u8cc7\u8a0a\uff0c\u4f7f\u5f97\u7d93\u7531\u8abf\u9069\u8a9e\u6599\u4e2d\u8a13\u7df4\u51fa\u7684\u6982\u5ff5\u985e\u5225 \u66f4\u70ba\u5177\u4ee3\u8868\u6027\uff0c\u800c\u80fd\u5e6b\u52a9\u52d5\u614b\u8a9e\u8a00\u6a21\u578b\u8abf\u9069\u3002\u53e6\u4e00\u65b9\u9762\uff0c\u5728\u8a9e\u97f3\u8fa8\u8b58\u904e\u7a0b\u4e2d\uff0c\u6703 \u9078\u64c7\u76f8\u95dc\u7684\u6982\u5ff5\u985e\u5225\u4f86\u52d5\u614b\u7d44\u6210\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\uff0c\u800c\u6b64\u662f\u900f\u904e\u8a5e\u5411\u91cf\u8868\u793a\u7684\u65b9\u5f0f\u4f86 \u4f30\u7b97\uff0c\u85c9\u7531\u8a5e\u5411\u91cf\u8868\u793a\u8a18\u9304\u6bcf\u4e00\u500b\u6982\u5ff5\u985e\u5225\u5167\u8a5e\u5f59\u5f7c\u6b64\u9593\u7684\u8a9e\u610f\u95dc\u4fc2\u3002\u6700\u5f8c\uff0c\u6211 \u5011\u5617\u8a66\u5c07\u4e0a\u8ff0\u5169\u7a2e\u8a9e\u8a00\u6a21\u578b\u8abf\u9069\u6280\u8853\u505a\u7d50\u5408\u3002\u6839\u64da\u5be6\u9a57\u7d50\u679c\u986f\u793a\uff0c\u672c\u8ad6\u6587\u63d0\u51fa\u5c07 \u8a5e\u5411\u91cf\u8868\u793a(Word Representation)\u61c9\u7528\u65bc\u8a9e\u8a00\u6a21\u578b\u4e2d\uff0c\u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8b58\u7684\u6e96\u78ba\u7387\u63d0 \u5347\u78ba\u5be6\u6709\u5e6b\u52a9\u3002 \u672a\u4f86\uff0c\u6211\u5011\u5e0c\u671b\u5c07\u8a5e\u5411\u91cf\u8868\u793a\u7684\u8cc7\u8a0a\u61c9\u7528\u65bc\u5176\u4ed6\u7684\u8a9e\u8a00\u6a21\u578b\u4e4b\u4e2d\uff0c\u4f8b\u5982\u61c9\u7528 \u65bc\u95dc\u806f\u6a21\u578b\u3001\u8a5e\u6982\u5ff5\u8a9e\u8a00\u6a21\u578b\u7b49\u3002\u6b64\u5916\uff0c\u6211\u5011\u5e0c\u671b\u4f9d\u64da\u8a5e\u5716\u641c\u5c0b\u7684\u7d50\u679c\u7d50\u5408\u5176\u4ed6 \u8a9e\u8a00\u6a21\u578b\u5f8c\uff0c\u5728\u7b2c\u4e8c\u968e\u6bb5\u7684 N \u689d\u6700\u4f73\u7d50\u679c(N-Best)\u91cd\u65b0\u6392\u540d\u6642\uff0c\u4f7f\u7528\u9577\u77ed\u671f\u8a18\u61b6 \u985e\u795e\u7d93\u7db2\u8def\u6a21\u578b\u3001\u905e\u8ff4\u5f0f\u985e\u795e\u7d93\u7db2\u8def\u7b49\u8a9e\u8a00\u6a21\u578b\u91cd\u65b0\u6392\u5e8f\uff0c\u5e0c\u671b\u85c9\u7531\u6b64\u65b9\u6cd5\u9054\u5230 \u8fa8\u8b58\u6548\u80fd\u7684\u63d0\u5347\u3002 \u6b65\u9078\u64c7\u5916\u5834\u63a1\u8a2a\u8a18\u8005\u8a9e\u6599\u4f5c\u70ba\u5be6\u9a57\u984c\u6750\uff0c\u5c07\u5176\u4e2d\u7d04 25 \u6709\u516b\u5343\u842c\u500b\u8a5e) \u505a \u70ba \u80cc \u666f \u8a9e \u6599 \u5eab \u7528 \u4f86 \u8a13 \u7df4 \u4e09 \u9023 \u8a9e \u8a00 \u6a21 \u578b (Trigram Language \u8a9e\u6599 \u8a5e\u6578 \u53e5\u6578 \u8abf\u9069\u8a9e\u6599 \u7d04 1,000,000 3,643 (\u4e09) \u5c07\u8a5e\u5411\u91cf\u8868\u793a\u61c9\u7528\u65bc\u8a5e\u5716\u641c\u5c0b\u4e4b\u5be6\u9a57\u7d50\u679c \u53c3\u8003\u6587\u737b</td></tr><tr><td>P</td><td>(</td><td>h 1</td><td>|</td><td>C</td><td>)</td><td>2</td><td>P</td><td>(</td><td>h</td><td>|</td><td>h</td><td>1</td><td>,</td><td>)</td><td>(</td><td>|</td><td>)</td></tr></table>",
                "text": "\u5c0f\u6642\u6536\u9304\u65bc 2001 \u5e74 11 \u6708 \u81f3 2002 \u5e74 12 \u6708\u671f\u9593\u7684\u8a9e\u6599\u4f5c\u70ba\u6700\u5c0f\u5316\u97f3\u7d20\u932f\u8aa4(Minimum Phone Error, MPE)\u8072 \u5b78\u6a21\u578b\u8a13\u7df4\u7684\u8a9e\u6599\u4f86\u5efa\u7acb\u8072\u5b78\u6a21\u578b(Acoustic Models)[16]\u3002\u672c\u8ad6\u6587\u4ee5 2003 \u5e74\u6240\u8490 \u96c6\u7684\u8a9e\u6599\u4e2d\u6311\u9078\u7d04 1.5 \u500b\u5c0f\u6642\uff0c\u5305\u542b 292 \u53e5\u8a9e\u53e5\u3002 \u5728\u8a9e\u8a00\u6a21\u578b\u7684\u4f30\u6e2c\u4e0a\uff0c\u6211\u5011\u4f7f\u7528\u81ea 2001 \u81f3 2002 \u5e74\u4e2d\u592e\u901a\u8a0a\u793e(Central News Agency, CNA)\u7684\u6587\u5b57\u65b0\u805e\u8a9e\u6599\uff0c\u5167\u542b\u6709\u7d04\u4e00\u5104\u4e94\u5343\u842c\u500b\u4e2d\u6587\u5b57(\u7d93\u7531\u65b7\u8a5e\u4e4b\u5f8c\u7d04",
                "num": null
            }
        }
    }
}