File size: 78,294 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
{
    "paper_id": "O14-5003",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:04:15.624246Z"
    },
    "title": "Automatic Move Analysis of Research Articles for Assisting Writing",
    "authors": [
        {
            "first": "Guan-Cheng",
            "middle": [],
            "last": "Huang",
            "suffix": "",
            "affiliation": {},
            "email": "hsiang@nlplab.cc"
        },
        {
            "first": "Jian-Cheng",
            "middle": [],
            "last": "Wu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Hsiang-Ling",
            "middle": [],
            "last": "Hsu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Tzu-Hsi",
            "middle": [],
            "last": "Yen",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Jason",
            "middle": [
                "S"
            ],
            "last": "Chang",
            "suffix": "",
            "affiliation": {},
            "email": "cheng@nlplab.cc"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Rhetorical moves are a useful framework for analyzing the hidden rhetorical organization in research papers, in teaching academic writing. We propose a",
    "pdf_parse": {
        "paper_id": "O14-5003",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Rhetorical moves are a useful framework for analyzing the hidden rhetorical organization in research papers, in teaching academic writing. We propose a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "S = s 1 , s 2 , ..., s n \uff0c\u6211\u5011\u7684\u76ee\u6a19\u5c07 S \u6a19\u8a3b \u4e0a\u4e00\u5e8f\u5217\u5c0d\u61c9\u7684\u6587\u6b65\u6a19\u7c64 M = m 1 , m 2 , ..., m n \uff0c\u5176\u4e2d m i \u70ba s i \u7684\u6587\u6b65\u985e\u578b\u3002\u70ba\u6b64\uff0c\u6211\u5011 \u5f9e S \u8a08\u7b97\u51fa\u5e38\u898b\u7684 k \u500b\u53e5\u578b P = p 1 , p 2 , ..., p k \uff0c\u4e26\u4eba\u5de5\u6a19\u8a3b\u5c0d\u61c9\u6587\u6b65 T = t 1 , t 2 , ..., t k \uff0c \u800c\u4eba\u5de5\u6a19\u793a\u53e5\u578b p i \u70ba t i \u6642\uff0c\u5fc5\u9808\u78ba\u8a8d\u7b26\u5408 p i \u53e5\u578b\u7684\u53e5\u5b50\u5927\u90fd\u8868\u9054 t i \u6587\u6b65\u7684\u8cc7\u8a0a\u3002 \u5728\u672c\u7bc0\u7684\u5176\u9918\u5c0f\u7bc0\uff0c\u6211\u5011\u5c07\u63cf\u8ff0\u6211\u5011\u5c0d\u6b64\u4e00\u554f\u984c\u7684\u89e3\u6c7a\u65b9\u6cd5\u3002\u9996\u5148\uff0c\u5728\u7b2c 3.2.1 \u7bc0\uff0c \u6211\u5011\u63cf\u8ff0\u5982\u4f55\u5f9e\u7db2\u8def\u6536\u96c6\u5b78\u8853\u6703\u8b70\u8207\u671f\u520a\u7684\u8ad6\u6587\uff0c\u4e26\u64f7\u53d6\u5176\u4e2d\u7684\u300c\u7c21\u4ecb\u300d\u6b64\u4e00\u7bc0\u3002\u63a5\u8457\uff0c \u6211\u5011\u5728\u7b2c 3.2.2 \u7bc0\u63cf\u8ff0\uff0c\u5982\u4f55\u5f9e\u7c21\u4ecb\u4e2d\uff0c\u7d71\u8a08\u5e38\u898b\u7684\u53e5\u578b\uff0c\u4ee5\u53ca\u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587 \u6b65(\u7b2c 3.2.3 \u7bc0)\uff0c\u9032\u800c\u7522\u751f\u6a19\u793a\u6587\u6b65\u4e4b\u8a13\u7df4\u8cc7\u6599(\u7b2c 3.2.4 \u7bc0)\u3002\u6700\u5f8c\uff0c\u6211\u5011\u63cf\u8ff0\u5982 \u4f55\u5728\u8a13\u7df4\u8cc7\u6599\u4e0a\uff0c\u9644\u52a0\u7279\u5fb5\u503c(\u7b2c 3.2.5 \u7bc0)\uff0c\u4ee5\u53ca\u8a13\u7df4\u7d71\u8a08\u5f0f\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b(\u7b2c 3.2.6 \u7bc0)\u3002 3.2 \u5b78\u7fd2\u5c07\u8ad6\u6587\u53e5\u5b50\u6a19\u6ce8\u6587\u6b65 \u5b78\u7fd2\u5c07\u8ad6\u6587\u53e5\u5b50\u6a19\u6ce8\u6587\u6b65 \u5b78\u7fd2\u5c07\u8ad6\u6587\u53e5\u5b50\u6a19\u6ce8\u6587\u6b65 \u5b78\u7fd2\u5c07\u8ad6\u6587\u53e5\u5b50\u6a19\u6ce8\u6587\u6b65 \u6211\u5011\u8a66\u5716\u627e\u5230\u4e00\u7d44\u5404\u7a2e\u6587\u6b65\u7684\u5e38\u898b\u53e5\u578b\uff0c\u85c9\u4ee5\u7522\u751f\u6a19\u793a\u6587\u6b65\u53e5\u5b50\u4e4b\u8a13\u7df4\u8cc7\u6599\uff0c\u4ee5\u8a13\u7df4\u4e00 \u5957\u6587\u6b65\u5206\u985e\u5668\u3002\u6211\u5011\u7684\u8a13\u7df4\u904e\u7a0b\u5982\u5716 4 \u6240\u793a\u3002 36 \u9ec3\u51a0\u8aa0 \u7b49 (1) \u5f9e\u7db2\u8def\u6536\u96c6\u7814\u7a76\u8ad6\u6587\u7c21\u4ecb (\u7b2c 3.2.1 \u7bc0) (2) \u5f9e\u8ad6\u6587\u7c21\u4ecb\u4e2d\u7d71\u8a08\u5e38\u898b\u53e5\u578b (\u7b2c 3.2.2 \u7bc0) (3) \u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587\u6b65 (\u7b2c 3.2.3 \u7bc0) (4) \u7522\u751f\u6709\u6587\u6b65\u6a19\u793a\u4e4b\u8a13\u7df4\u8cc7\u6599 (\u7b2c 3.2.4 \u7bc0)",
                        "eq_num": "(5"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.nltk.org 3 http://www.nactem.ac.uk/GENIA/tagger/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Mover: A machine learning tool to assist in the reading and writing of technical papers",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Anthony",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [
                            "V"
                        ],
                        "last": "Lashkia",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "IEEE Trans. Prof. Commun",
                "volume": "46",
                "issue": "",
                "pages": "185--193",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anthony, L., & Lashkia, G. V. (2003). Mover: A machine learning tool to assist in the reading and writing of technical papers. IEEE Trans. Prof. Commun., 46, 185-193.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Linguistic Analysis of Grant Proposals",
                "authors": [
                    {
                        "first": "U",
                        "middle": [],
                        "last": "Connor",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mauranen",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Connor, U., & Mauranen, A. (1999). Linguistic Analysis of Grant Proposals: European Union Research Grants.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Inducing features of random fields. Pattern Analysis and Machine Intelligence",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Technol",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Brook",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "IEEE Transactions on",
                "volume": "19",
                "issue": "4",
                "pages": "380--393",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Della Pietra, S., Della Pietra, V., Lafferty, J., Technol, R., & Brook, S. (1997). Inducing features of random fields. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(4), 380-393.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "New Methods in Automatic Extracting",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "P"
                        ],
                        "last": "Edmundson",
                        "suffix": ""
                    }
                ],
                "year": 1969,
                "venue": "Journal of the Association for Computing",
                "volume": "16",
                "issue": "2",
                "pages": "264--285",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Edmundson, H. P. (1969). New Methods in Automatic Extracting. Journal of the Association for Computing: Machinery, 16(2), 264-285.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Teaching EFL students to extract structural information from abstracts",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Graetz",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Reading for Professional Purposed: Methods and Materials in Teaching Languages",
                "volume": "",
                "issue": "",
                "pages": "123--135",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Graetz, N. (1985). Teaching EFL students to extract structural information from abstracts. In Jan M. Ulijn and Anthony K. Pugh, editors, Reading for Professional Purposed: Methods and Materials in Teaching Languages, pages 123-135. Acco, Leuven, Belgium.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Identifying Sections in Scientific Abstracts using Conditional Random Fields",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Hirohata",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Okazaki",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ananiadou",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Ishizuka",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "I"
                        ],
                        "last": "Biocentre",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Hirohata, K., Okazaki, N., Ananiadou, S., Ishizuka, M., & Biocentre, M. I. (2008). Identifying Sections in Scientific Abstracts using Conditional Random Fields.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Generative Content Models for Structural Analysis of Medical Abstracts",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Karakos",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Demner-Fushman",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Khudanpur",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proceedings of th HLT/NAACL 2006 Workshop on Biomedical Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lin, J., Karakos, D., Demner-Fushman, D., & Khudanpur, S. (2006). Generative Content Models for Structural Analysis of Medical Abstracts. In Proceedings of th HLT/NAACL 2006 Workshop on Biomedical Natural Language Processing (BioNLP'06), 65-72.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Categorization of sentence types in medical abstracts",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Mcknight",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Srinivasan",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "AMIA Annual Symposium Proceedings",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "McKnight, L., & Srinivasan, P. (2003). Categorization of sentence types in medical abstracts. In AMIA Annual Symposium Proceedings (Vol. 2003, p. 440). American Medical Informatics Association.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Using argumentation to extract key sentences from biomedical bstracts",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Ruch",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Boyer",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Chichester",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Tbahriti",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Geissb\u00fchler",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Fabry",
                        "suffix": ""
                    },
                    {
                        "first": ".",
                        "middle": [
                            "."
                        ],
                        "last": "Veuthey",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "International journal of medical informatics",
                "volume": "76",
                "issue": "2",
                "pages": "195--200",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ruch, P., Boyer, C., Chichester, C., Tbahriti, I., Geissb\u00fchler, A., Fabry, P., ... & Veuthey, A. L. (2007). Using argumentation to extract key sentences from biomedical bstracts. International journal of medical informatics, 76(2), 195-200.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Using sectioning information for text retrieval: a case study with the MEDLINE abstracts",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Shimbo",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Yamasaki",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Shimbo, M., Yamasaki, T., & Matsumoto, Y. (2003). Using sectioning information for text retrieval: a case study with the MEDLINE abstracts.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Genre analysis: English in Academic and Research Settings",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Swales",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Swales, J.M. (1990). Genre analysis: English in Academic and Research Settings. Cambridge University Press.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Argumentative Zoning: Information Extraction from Scientific Text",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Teufel, S. (1999). Argumentative Zoning: Information Extraction from Scientific Text. PhD thesis, University of Edinburgh.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Teufel",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Moens",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Computational Linguistics",
                "volume": "28",
                "issue": "4",
                "pages": "409--445",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Teufel, S., & Moens, M. (2002). Summarizing Scientific Articles: Experiments with Relevance and Rhetorical Status. Computational Linguistics, 28(4), 409-445.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Computational analysis of move structures in academic abstracts",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [
                            "C"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [
                            "C"
                        ],
                        "last": "Liou",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wu, J. C., Chang, Y. C., Liou, H. C., & Chang, J. S. (2006). Computational analysis of move structures in academic abstracts.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A sentence classification system for multi-document summarization in the biomedical domain",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takagi",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of International Workshop on Biomedical Data Engineering",
                "volume": "",
                "issue": "",
                "pages": "90--95",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yamamoto, Y., & Takagi, T. (2005). A sentence classification system for multi-document summarization in the biomedical domain. In Proceedings of International Workshop on Biomedical Data Engineering, 90-95.",
                "links": null
            }
        },
        "ref_entries": {
            "TABREF0": {
                "text": "\u8a73\u898b www.nlm.nih.gov/bsd/policy/structured_abstracts.htmlSwales & Feak, 2004; Glasman-Deal, 2010)\u3002\u4e5f\u6709\u7814\u7a76\u8005\u958b\u767c\u8edf\u9ad4\u7cfb\u7d71(\u4f8b \u5982\uff0cMarking Mate: writingtools.xjtlu.edu.cn:8080/mm/markingmate.html)\uff0c\u5206\u6790\u5b78\u751f\u7684\u4f5c",
                "num": null,
                "html": null,
                "content": "<table><tr><td>32</td><td/><td/><td>\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u8207\u5beb\u4f5c\u63d0\u793a</td><td>31 \u9ec3\u51a0\u8aa0 \u7b49</td></tr><tr><td colspan=\"4\">CARS \u6587\u6b65 WriteAhead \u6587\u6b65 \u8cc7\u8a0a\u5167\u5bb9 \u5b50\u6587\u6b65\u8207\u8cc7\u8a0a\u5167\u5bb9 WriteAhead \u80fd\u5920\u63d0\u4f9b\u8207\u6392\u5217\u9019\u4e9b\u63d0\u793a\uff0c\u662f\u56e0\u70ba WriteAhead \u900f\u904e\u5927\u91cf\u7684\u8ad6\u6587\u539f\u59cb\u8cc7 \u5c0d\u61c9\u4e4b CARS \u6587\u6b65</td></tr><tr><td colspan=\"4\">\u6587\u6b65 I \u754c\u5b9a\u7bc4\u570d \u80cc\u666f(BKG) \u6599\u4ee5\u53ca\u5c11\u91cf\u7684\u4eba\u5de5\u6a19\u793a\uff0c\u5b78\u7fd2\u5982\u4f55\u8fa8\u8b58 OWN \u6587\u6b65\u7684\u53e5\u5b50\uff0c\u4e26\u9032\u800c\u7d71\u8a08\u9019\u4e9b\u53e5\u5b50\u5167\u7684\u5e38 1. \u8072\u660e\u7814\u7a76\u9818\u57df\u7684\u91cd\u8981\u6027\uff0c\u53ca/\u6216 2. \u8072\u660e\u7814\u7a76\u8ab2\u984c\u7684\u5ee3\u6cdb\u6027\u8207\u666e\u53ca\u6027\uff0c\u53ca/\u6216 \u9818\u57df\uff1a\u91cd\u8981\u6027\u3001\u8853\u8a9e\u5b9a\u7fa9\u3001\u7f3a\u53e3 \u5f15\u7528\u8207\u8a55\u8ad6\u524d\u4eba\u7814\u7a76 \u6587\u6b65 I-1,2,3, \u6587\u6b65 II-1B \u6587\u6b65 I-3 \u898b\u7247\u8a9e\u53ca\u5176\u983b\u7387\u3002\u6211\u5011\u5c07\u5728\u7b2c\u4e09\u7bc0\u8a73\u8ff0 WriteAhead \u6240\u904b\u7528\u7684\u6587\u6b65\u5206\u985e\u5668\u7684\u8a13\u7df4\u904e\u7a0b\u3002</td></tr><tr><td colspan=\"4\">3. 1A. \u63d0\u51fa\u8207\u524d\u4eba\u4e0d\u540c\u7684\u8072\u660e\uff0c\u6216 \u56de\u9867\u8207\u8a55\u8ad6\u524d\u4eba\u7814\u7a76 1B. \u6307\u51fa\u524d\u4eba\u7814\u7a76\u7684\u7f3a\u53e3(gap) \uff0c\u6216 \u672c\u8ad6\u6587(OWN) \u76ee\u7684\uff1a\u8f38\u5165\u3001\u8f38\u51fa\u3001\u689d\u4ef6 \u6587\u6b65 II \u5efa\u7acb\u5229\u57fa \u65b9\u6cd5\uff1a\u7814\u7a76\u8def\u7dda\u3001\u5178\u7bc4\u3001\u4f9d\u64da\u3001\u6b65\u9a5f \u7d50\u679c\uff1a\u5be6\u4f5c\u3001\u5be6\u9a57\u3001\u8a55\u4f30\u3001\u7d50\u679c\u3001\u767c\u73fe \u672c\u8ad6\u6587\u63a5\u4e0b\u4f86\u7684\u90e8\u5206\uff0c\u5b89\u6392\u5982\u4e0b\u3002\u6211\u5011\u5728\u4e0b\u4e00\u7bc0\u56de\u9867\u76f8\u95dc\u7684\u7814\u7a76\u3002\u63a5\u8457\uff0c\u6211\u5011\u63cf\u8ff0 \u6587\u6b65 III-1A, \u6587\u6b65 II-1C \u5982\u4f55\u5b78\u7fd2\u81ea\u52d5\u5c07\u8ad6\u6587\u7c21\u4ecb\u53e5\u5b50\u6a19\u8a3b\u6587\u6b65 (\u7b2c\u4e09\u7bc0) \u3002\u6211\u5011\u7e7c\u800c\u63cf\u8ff0\u5982\u4f55\u5c07\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\uff0c \u6587\u6b65 III-1B, \u6587\u6b65 II-1D \u5be6\u969b\u88fd\u4f5c\u6210\u4e00\u500b\u8003\u616e\u6587\u6b65\u985e\u5225\u9032\u884c\u5beb\u4f5c\u63d0\u793a\u7684\u96db\u5f62\u7cfb\u7d71\uff0c\u4ee5\u53ca\u76f8\u95dc\u7684\u5be6\u9a57\u8a2d\u5b9a\u3001\u8a55\u4f30\u6307 \u6587\u6b65 III-2 \u6a19\u3001\u4ee5\u53ca\u5be6\u9a57\u7d50\u679c(\u7b2c\u56db\u7bc0)\u3002\u6700\u5f8c\uff0c\u6211\u5011\u6307\u51fa\u672a\u4f86\u7814\u7a76\u65b9\u5411\uff0c\u4e26\u4f5c\u7d50\u8ad6(\u7b2c\u4e94\u7bc0)\u3002</td></tr><tr><td colspan=\"2\">\u8a0e\u8ad6(DIS) 2. \u76f8\u95dc\u6587\u737b \u76f8\u95dc\u6587\u737b \u76f8\u95dc\u6587\u737b \u76f8\u95dc\u6587\u737b</td><td colspan=\"2\">\u9ec3\u51a0\u8aa0 \u9ec3\u51a0\u8aa0 \u9ec3\u51a0\u8aa0 \u9ec3\u51a0\u8aa0  *   *   *   *  \u3001 \u3001 \u3001 \u3001\u5433\u9451\u57ce \u5433\u9451\u57ce \u5433\u9451\u57ce \u5433\u9451\u57ce  *   *   *   *  \u3001 \u3001 \u3001 \u3001\u8a31\u6e58\u7fce \u8a31\u6e58\u7fce \u8a31\u6e58\u7fce \u8a31\u6e58\u7fce  *   *   *   *  \u3001 \u3001 \u3001 \u3001\u984f\u5b5c\u66e6 \u984f\u5b5c\u66e6 \u984f\u5b5c\u66e6 \u984f\u5b5c\u66e6  *   *   *   *  \u3001 \u3001 \u3001 \u3001\u5f35\u4fca\u76db \u5f35\u4fca\u76db \u5f35\u4fca\u76db \u5f35\u4fca\u76db  *  1C. \u63d0\u51fa\u672c\u8ad6\u6587\u7684\u7814\u7a76\u8b70\u984c(research question) \uff0c\u6216 1D. \u8aaa\u660e\u672c\u7814\u7a76\u6240\u6839\u64da\u7684\u5178\u7bc4\u8207\u50b3\u7d71 \u6bd4\u8f03\u672c\u8ad6\u6587\u8207\u524d\u4eba\u7814\u7a76\u7684\u76f8\u540c\u4e4b\u8655 \u5c0d\u7167\u672c\u8ad6\u6587\u8207\u524d\u4eba\u7814\u7a76\u7684\u76f8\u7570\u4e4b\u8655 \u6587\u6b65 II-1A</td></tr><tr><td colspan=\"4\">\u6587\u6b65 III \u5b78\u8853\u82f1\u6587\u7814\u7a76\u8207\u6559\u5b78(English for Academic Purpose)\u70ba\u76f8\u7576\u91cd\u8981\u7684\u7814\u7a76\u9818\u57df\u3002\u8fd1\u5e74\u4f86\uff0c 1A. \u6982\u8ff0\u672c\u8ad6\u6587\u7684\u76ee\u7684\uff0c\u6216 \u672a\u4f86\u7814\u7a76\u65b9\u5411</td></tr><tr><td colspan=\"4\">\u4f54\u64da\u5229\u57fa \u6587\u672c\u7d44\u7e54(TEX) \u63d0\u4f9b\u5168\u6587\u7684\u7bc0\u5927\u7db1(\u76ee\u6b21\u8868) 1B. \u6982\u8ff0\u672c\u8ad6\u6587\u7684\u65b9\u6cd5 \u5b78\u8005\u5c0d\u65bc\u7814\u7a76\u8a08\u5283\u66f8\uff0c\u4ee5\u53ca\u5b78\u8853\u6703\u8b70\u8207\u671f\u520a\u8ad6\u6587\uff0c\u90fd\u6709\u6df1\u5165\u7684\u7814\u7a76(Connor &amp; Mauranen, \u6587\u6b65 III-3</td></tr><tr><td colspan=\"4\">2. \u5ba3\u5e03\u672c\u8ad6\u6587\u7684\u4e3b\u8981\u7d50\u679c\u8207\u767c\u73fe \u63d0\u4f9b\u7bc0\u5167\u7d30\u5206\u5b50\u7bc0\u7684\u5927\u7db1 1999; Swales &amp; Feak, 2004) \u3002\u9019\u4e9b\u7814\u7a76\u901a\u5e38\u91dd\u5c0d\u8ad6\u6587\u9010\u53e5\u9010\u6bb5\u9032\u884c\u4eba\u70ba\u5206\u6790\uff0c\u7d93\u904e\u6b78\u7d0d</td></tr><tr><td colspan=\"4\">1. \u7c21\u4ecb \u7c21\u4ecb \u7c21\u4ecb \u5f8c\uff0c\u63d0\u51fa\u4e00\u5957\u8ad6\u6587\u4fee\u8fad\u7684\u5206\u6790\u67b6\u69cb\u3002\u5728\u672c\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u5247\u91dd\u5c0d\u5b78\u8853\u8ad6\u6587\u7684\u300c\u7c21\u4ecb\u300d\u9019\u4e00 3. \u6307\u51fa\u672c\u8ad6\u6587\u7684\u7d50\u69cb \u6307\u793a\u5716\u8868(\u7de8\u865f) \u7c21\u4ecb \u8fd1\u5e74\u4f86\uff0c\u82f1\u6587\u9010\u6f38\u8b8a\u6210\u5168\u4e16\u754c\u5b78\u8853\u7814\u7a76\u6700\u4e3b\u8981\u7684\u6e9d\u901a\u7684\u5a92\u4ecb\u3002\u800c\u5b78\u8853\u82f1\u6587\u5beb\u4f5c\uff0c\u4e5f\u6210\u70ba \u975e\u5e38\u91cd\u8981\u7684\u7814\u7a76\u8207\u6559\u5b78\u7684\u9818\u57df\u3002\u5b78\u8005\u4e5f\u5f88\u91cd\u8996\uff0c\u5982\u4f55\u900f\u904e\u96fb\u8166\u7684\u8f14\u52a9\uff0c\u5e6b\u52a9\u4e00\u822c\u6027\u7684\u8a9e \u8a00\u5b78\u7fd2\uff0c\u751a\u6216\u7279\u5b9a\u6027\u7684\u5b78\u8853\u5beb\u4f5c\u3002\u5b78\u8853\u5beb\u4f5c\u5305\u542b\u8a31\u591a\u7684\u6587\u7ae0\u985e\u578b\uff0c\u5305\u62ec\u5b78\u8853\u8ad6\u6587\u3001\u8a08\u756b \u7533\u8acb\u66f8\u3001\u56de\u9867\u8207\u8a55\u8ad6\u6587\u7ae0\u7b49(Swales, 1990)\u3002\u5176\u4e2d\uff0c\u7814\u7a76\u8ad6\u6587\u5360\u6709\u6700\u91cd\u8981\u7684\u89d2\u8272\u3002 \u5728\u5b78\u8853\u8ad6\u6587\u4e2d\uff0c\u300c\u7c21\u4ecb\u300d\u662f\u7d55\u5927\u90e8\u5206\u8ad6\u6587\u90fd\u6709\u7684\u7b2c\u4e00\u500b\u5c0f\u7bc0\u3002\u73fe\u4eca\uff0c\u5e7e\u4e4e\u6c92\u6709\u5b78\u8853 \u8ad6\u6587\uff0c\u6c92\u6709\u300c\u6458\u8981\u300d\u8207\u300c\u7c21\u4ecb\u300d\uff0c\u800c\u76f4\u63a5\u8a73\u7d30\u5730\u63cf\u8ff0\u7814\u7a76\u7684\u76ee\u7684\u3001\u65b9\u6cd5\u3001\u7d50\u679c\u3002\u800c\u4e14\uff0c \u5c0d\u5beb\u8005\u548c\u8b80\u8005\u800c\u8a00\uff0c\u300c\u7c21\u4ecb\u300d\u5728\u5b78\u8853\u8ad6\u6587\u4e2d\u90fd\u626e\u6f14\u975e\u5e38\u91cd\u8981\u7684\u89d2\u8272\u3002\u4e00\u7bc7\u597d\u7684\u7c21\u4ecb\uff0c\u8981 \u80fd\u70ba\u6574\u7bc7\u8ad6\u6587\u5b9a\u8abf\uff0c\u6293\u4f4f\u8b80\u8005\u7684\u8208\u8da3\uff0c\u63d0\u4f9b\u8ad6\u6587\u7684\u627c\u8981\u8cc7\u8a0a\u3002\u63db\u8a00\u4e4b\uff0c\u300c\u7c21\u4ecb\u300d \u80a9\u8ca0\u91cd \u5927\u8cac\u4efb\u2500\u2500\u5438\u5f15\u8b80\u8005\u6ce8\u610f\uff0c\u8b80\u5b8c\u5168\u6587\u3002 \u6b64\u4e00\u5206\u985e\u65b9\u5f0f\uff0c\u9664\u7cfb\u7d71\u8f03\u6613\u65bc\u81ea\u52d5\u5206\u985e\u6587\u6b65\u5916\uff0c\u4f7f\u7528\u8005\u4ea6\u6bd4\u8f03\u5bb9\u6613\u638c\u63e1\u4e26\u4f7f\u7528\u65bc\u5beb\u4f5c\u904e \u8a55\u4f30(evaluation)\u3001\u7d50\u8ad6(conclusion)\u7b49\u90e8\u5206\u3002 WriteAhead \u7684\u958b\u767c\u904e\u7a0b\uff0c\u6211\u5011\u63a1\u7528\u4e86\u6bd4 CARS \u66f4\u7c21\u55ae\u7684\u6587\u6b65\u5206\u985e\uff0c\u5982\u5716 2 \u6240\u793a\u3002\u7528\u4e86 \u6587\u7c21\u4ecb\u4f3c\u4e4e\u6709\u5171\u540c\u7684 \u300c\u554f\u984c\u2500\u89e3\u6cd5\u300d \u4fee\u8fad\u7d50\u69cb\uff0c\u4f9d\u5e8f\u5305\u62ec\u554f\u984c (problem) \u3001\u65b9\u6cd5 (solution) \u3001 \u4f86\u9810\u6e2c\u8ad6\u6587\u7c21\u4ecb\u4e2d\u53e5\u5b50\u7684\u6587\u6b65\uff0c\u4e26\u85c9\u4ee5\u958b\u767c\u4e00\u500b\u7dda\u4e0a\u8f14\u52a9\u5beb\u4f5c\u7cfb\u7d71 WriteAhead\u3002\u5728 \u56e0\u6b64\uff0c\u6709\u4e00\u4e9b\u7814\u7a76\u958b\u59cb\u5206\u6790\u8ad6\u6587\u7c21\u4ecb\u5982\u4f55\u9054\u6210\u5176\u6e9d\u901a\u7684\u4efb\u52d9\u3002Graetz (1985) \u767c\u73fe\u8ad6 \u5716 \u5716 \u5716 \u5716 1. Swales (1990) \u63d0\u51fa\u7684 \u63d0\u51fa\u7684 \u63d0\u51fa\u7684 \u63d0\u51fa\u7684 CARS \u6a21\u5f0f\u7684\u6587\u6b65\u8207\u8cc7\u8a0a\u5167\u5bb9 \u6a21\u5f0f\u7684\u6587\u6b65\u8207\u8cc7\u8a0a\u5167\u5bb9 \u6a21\u5f0f\u7684\u6587\u6b65\u8207\u8cc7\u8a0a\u5167\u5bb9 \u6a21\u5f0f\u7684\u6587\u6b65\u8207\u8cc7\u8a0a\u5167\u5bb9 \u76ee\u524d\u5df2\u7d93\u6709\u8a31\u591a\u5b78\u8853\u5beb\u4f5c\u6559\u6750\uff0c\u900f\u904e\u6587\u6b65\u5206\u6790\u4f86\u6559\u5c0e\u82f1\u6587\u975e\u6bcd\u8a9e\u7684\u5b78\u751f\uff0c\u5982\u4f55\u5beb\u4f5c \u500b\u90e8\u5206\uff0c\u63d0\u51fa\u4e00\u5957\u81ea\u52d5\u5316\u7684\u7d50\u69cb\u5206\u6790\u65b9\u6cd5\uff0c\u4e26\u958b\u767c\u4e00\u5957\u80fd\u5920\u8b93\u5b78\u751f\u4e00\u9762\u5beb\u4f5c\uff0c\u4e00\u9762\u7372\u5f97 \u56de\u9867\u4e4b\u524d\u8cc7\u8a0a\u3001\u9810\u544a\u4e4b\u5f8c\u8cc7\u8a0a \u5716 \u5716 \u5716 \u5716 2. WriteAhead \u63a1\u7528\u6587\u6b65\u8207 \u63a1\u7528\u6587\u6b65\u8207 \u63a1\u7528\u6587\u6b65\u8207 \u63a1\u7528\u6587\u6b65\u8207 CARS \u6a21\u5f0f\u6587\u6b65\u4e4b\u5c0d\u7167 \u6a21\u5f0f\u6587\u6b65\u4e4b\u5c0d\u7167 \u6a21\u5f0f\u6587\u6b65\u4e4b\u5c0d\u7167 \u5beb\u4f5c\u63d0\u793a\u7684\u96fb\u8166\u8f14\u52a9\u5beb\u4f5c\u7cfb\u7d71\u3002\u6211\u5011\u4e5f\u8a0e\u8ad6\u5982\u4f55\u5728\u53e5\u5b50\u4e2d\uff0c\u64f7\u53d6\u80fd\u53cd\u61c9\u4fee\u8fad\u7d50\u69cb\u7684\u7279\u5fb5\uff0c \u6a21\u5f0f\u6587\u6b65\u4e4b\u5c0d\u7167 \u4ee5\u6709\u52a9\u65bc\u7522\u751f\u8a13\u7df4\u8cc7\u6599\uff0c\u5c07\u53e5\u5b50\u6b78\u985e\u3002 \u8a31\u591a\u5b78\u8005\u90fd\u6307\u51fa\uff0c\u5728\u8868\u9762\u4e0a\u4ee5\u53ca\u5c0f\u7bc0\u5206\u6bb5\u4e0a\uff0c\u7814\u7a76\u8ad6\u6587\u5927\u81f4\u4e0a\u6709\u5171\u901a\u7684\u7c21\u55ae\u7d50\u69cb\u2500 \u2500IMRD \u7d50\u69cb\uff0c\u5373\u7c21\u4ecb (introduction) \u3001\u65b9\u6cd5 (method) \u3001\u7d50\u679c (results) \u3001\u8a0e\u8ad6 (discussion) \u3002 \u5b78\u8853\u8ad6\u6587(\u5982 \u6587\u4e26\u81ea\u52d5\u7522\u751f\u6279\u6539\u7684\u5efa\u8b70\u8207\u8a55\u5206\u3002\u4f46\u662f\u5f88\u5c11\u6709\u7cfb\u7d71\u80fd\u5920\u5728\u5b78\u751f\u5beb\u4f5c\u4e2d\uff0c\u4f9d\u7167\u6587\u6b65\u7684\u63a8\u9032\uff0c \u4e5f\u6709\u5b78\u8005\u9032\u4e00\u6b65\u95e1\u8ff0 IMRD \u7684\u4fee\u8fad\u7d50\u69cb\uff0c\u5c31\u50cf\u4e0a\u4e0b\u5bec\u5927\uff0c\u4e2d\u9593\u72f9\u7a84\u7684\u6c99\u6f0f\uff1a\u958b\u59cb\u6642\u5148 \u9069\u6642\u5730\u63d0\u4f9b\u5beb\u4f5c\u63d0\u793a\u8207\u8f14\u52a9\u3002\u76f4\u89ba\u4e0a\uff0c\u5982\u679c\u6211\u5011\u80fd\u5c07\u5927\u91cf\u7684\u8ad6\u6587\u7c21\u4ecb\u52a0\u4ee5\u8655\u7406\uff0c\u81ea\u52d5\u5316 \u5ee3\u5f8c\u5c08 (from general to specific) \uff0c\u7d50\u5c3e\u6642\u7531\u5c08\u800c\u5ee3 (from specific to general) \u3002Swales (1990) \u5206\u6790\u5176\u4e2d\u6bcf\u53e5\u7684\u6587\u6b65\uff0c\u7e7c\u800c\u5206\u6790\u7279\u5b9a\u6587\u6b65\u53e5\u5b50\u7684\u5e38\u898b\u7247\u8a9e\u6216\u53e5\u578b\uff0c\u6211\u5011\u5c07\u53ef\u4ee5\u5728\u5beb\u4f5c\u7684 \u66f4\u70ba\u7c21\u4ecb\u9019\u4e00\u500b\u5c0f\u7bc0\uff0c\u63d0\u51fa\u4e86\u6240\u8b02\u7684 CARS \u6a21\u5f0f(\u4ea6\u5373\u300c\u5275\u9020\u7814\u7a76\u7684\u7a7a\u9593\u300d\"Create a \u904e\u7a0b\uff0c\u6709\u6548\u5730\u5354\u52a9\u5b78\u751f\u3002 Research Space\") \u3002CARS \u6a21\u5f0f\u6b78\u7d0d\u4e86\u5178\u578b\u7684\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u4fee\u8fad\u7684\u52d5\u6a5f\u8207\u6a21\u5f0f\u3002CARS \u6a21 \u7136\u800c\uff0c\u904e\u53bb\u6240\u63d0\u51fa\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u65b9\u6cd5\uff0c\u90fd\u9700\u8cbb\u6642\u8cbb\u5de5\u6a19\u8a3b\u5927\u91cf\u8ad6\u6587\u3002\u6709\u9451\u65bc\u6b64\uff0c \u6211\u5011\u63d0\u51fa\u65b0\u65b9\u6cd5\uff0c\u4ee5\u964d\u4f4e\u4eba\u5de5\u6a19\u8a3b\u7684\u5de5\u4f5c\u91cf\uff0c\u4e14\u6a19\u6ce8\u4e4b\u8cc7\u6599\u5c07\u904b\u7528\u65bc\u8a13\u7df4\u7d71\u8a08\u5f0f\u5206\u985e\u5668\uff0c \u5f0f\u63d0\u51fa\u4e4b\u5f8c\uff0c\u5ee3\u6cdb\u5730\u70ba\u5b78\u8005\u63a1\u7528\u4f5c\u70ba\u5206\u6790\u8ad6\u6587\u300c\u7c21\u4ecb\u300d\u7bc0\u7684\u5beb\u4f5c\u4fee\u8fad\u7b56\u7565 (\u4f8b\u5982\uff0cCooper,</td></tr><tr><td>\u7a0b\u3002</td><td colspan=\"3\">Swales (1990) \u5206\u6790\u5927\u91cf\u7684\u8ad6\u6587\u7c21\u4ecb\uff0c\u6b78\u7d0d\u51fa\u4e00\u5957\u4fee\u8fad\u7684\u52d5\u6a5f\u8207\u6a21\u5f0f\uff1a\u300c\u5275\u9020\u7814\u7a76\u7a7a</td></tr><tr><td colspan=\"4\">\u9593\u300d(Create A Research Space, CARS)\u3002Swales \u8a8d\u70ba\u8ad6\u6587\u722d\u53d6\u7814\u7a76\u5f97\u5230\u8b80\u8005\u7684\u8a8d\u540c\uff0c \u6211\u5011\u671f\u671b\u6b64\u4e00\u81ea\u52d5\u6587\u6b65\u5206\u6790\u5de5\u5177\uff0c\u4ee5\u53ca WriteAhead \u7cfb\u7d71\uff0c\u6709\u52a9\u65bc\u63d0\u5347\u82f1\u6587\u975e\u6bcd\u8a9e \u6709\u5982\u74b0\u5883\u4e2d\u751f\u7269\u722d\u53d6\u751f\u5b58\u7a7a\u9593\u3002\u70ba\u6b64\uff0c\u5927\u90e8\u5206\u4f5c\u8005\u4f9d\u5faa\u4e09\u500b\u4fee\u8fad\u7684\u6b65\u9a5f\u2500\u2500\u4e5f\u5c31\u662f\u6587\u6b65 \u8005(non-native speakers, NNS)\u5beb\u4f5c\u5b78\u8853\u8ad6\u6587\u7684\u80fd\u529b\u3002\u5728\u672c\u8ad6\u6587\u4e2d\uff0c\u6211\u5011\u63d0\u51fa\u4e86\u4e00\u5957\u76e3\u7763 (moves)\u2500\u2500\u4f86\u8aaa\u670d\u8b80\u8005\u3002\u5982\u5716 1 \u6240\u793a\uff0c\u9019\u4e09\u500b\u6587\u6b65\u5305\u62ec\u4e86\u300c\u754c\u5b9a\u7814\u7a76\u7bc4\u570d\u300d\u3001\u300c\u5efa \u5f0f\u6a5f\u5668\u5b78\u7fd2\u7684\u65b9\u6cd5\uff0c\u80fd\u5920\u81ea\u52d5\u5730\u5b78\u7fd2\u5982\u4f55\u5c07\u8a9e\u6599\u5eab\u5167\u7684\u7c21\u4ecb\u53e5\u5b50\uff0c\u5927\u7565\u5730\u5206\u985e\u70ba\u5e7e\u500b\u6587 \u5716 \u5716 \u5716 \u5716 3. WriteAhead \u7cfb\u7d71\u64cd\u4f5c\u7bc4\u4f8b \u7cfb\u7d71\u64cd\u4f5c\u7bc4\u4f8b \u7cfb\u7d71\u64cd\u4f5c\u7bc4\u4f8b \u7cfb\u7d71\u64cd\u4f5c\u7bc4\u4f8b \u7acb\u5229\u57fa\u300d\u3001\u300c\u4f54\u64da\u5229\u57fa\u300d\u3002\u5728\u6bcf\u4e00\u500b\u6587\u6b65\u4e0b\uff0c\u53c8\u9700\u8981\u63cf\u8ff0\u82e5\u5e72\u5fc5\u8981\u6216\u9078\u9805\u7684\u5167\u5bb9\u3002\u53e6\u5916\uff0c \u7f8e\u570b\u570b\u5bb6\u91ab\u5b78\u5716\u66f8\u9928\uff0c\u4e5f\u4e3b\u5f35\u91ab\u5b78\u8ad6\u6587\u4f5c\u8005\uff0c\u61c9\u63d0\u4f9b\u5206\u6bb5\u6709\u6a19\u984c(labeled sections)\u7684\u7d50 \u69cb\u5316\u6458\u8981(structured abstract) 1 \u3002 \u6b65\u3002\u6709\u4e86\u5206\u985e\u7684\u53e5\u5b50\u4e4b\u5f8c\uff0c\u6211\u5011\u5c31\u53ef\u4ee5\u7d71\u8a08\u5404\u6587\u6b65\u7684 N \u9023\u8a5e (ngrams) \u8a5e\u983b\u3002\u5728 WriteAhead \u5716 3 \u986f\u793a WriteAhead \u7cfb\u7d71\u7684\u64cd\u4f5c\u5be6\u4f8b\u3002\u5728\u5716\u4e2d\uff0c\u4f7f\u7528\u8005\u5df2\u7d93\u4ecb\u7d39\u4e86\u7814\u7a76\u80cc\u666f \u7cfb\u7d71\uff0c\u5373\u53ef\u53c3\u8003\u4f7f\u7528\u8005\u9078\u64c7\u7684\u6587\u6b65\uff0c\u4ee5\u53ca\u6e38\u6a19\u4e4b\u524d\u7684\u5167\u5bb9\uff0c\u63d0\u793a\u55ae\u5b57\u4ee5\u53ca\u63a5\u7e8c\u7247\u8a9e\u3002 (BKG \u6587\u6b65)\uff0c\u63a5\u8457\u4f7f\u7528\u8005\u9078\u64c7\u4e86\u300c\u672c\u8ad6\u6587\u6587\u6b65\u300d (OWN)\uff0c\u7e7c\u800c\u8f38\u5165\"In this paper\" \u7b49</td></tr><tr><td colspan=\"4\">\u5b57\u3002\u6839\u64da\u9019\u4e9b\u8cc7\u8a0a\uff0cWriteAhead \u986f\u793a\u4e86\u9069\u5408\u6b64\u4e00\u8108\u7d61\u7684\u63d0\u793a\u5982\u4e0b\uff0c\u4f5c\u70ba\u7e7c\u7e8c\u5beb\u4f5c\u7684\u53c3\u8003\uff1a</td></tr><tr><td/><td colspan=\"2\">, we present</td><td>, we describe</td><td>, we explore</td></tr><tr><td/><td colspan=\"2\">, we propose</td><td>, we will</td><td>, we show</td></tr></table>",
                "type_str": "table"
            },
            "TABREF2": {
                "text": "Researchers have successfully applied ANN techniques across abroad spectrum of problem domains .",
                "num": null,
                "html": null,
                "content": "<table><tr><td>46</td><td>\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u8207\u5beb\u4f5c\u63d0\u793a \u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u8207\u5beb\u4f5c\u63d0\u793a \u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u8207\u5beb\u4f5c\u63d0\u793a \u5b78\u8853\u8ad6\u6587\u7c21\u4ecb\u7684\u81ea\u52d5\u6587\u6b65\u5206\u6790\u8207\u5beb\u4f5c\u63d0\u793a</td><td>\u9ec3\u51a0\u8aa0 \u7b49 39 \u9ec3\u51a0\u8aa0 \u7b49 41 43 \u9ec3\u51a0\u8aa0 \u7b49 45 \u9ec3\u51a0\u8aa0 \u7b49</td></tr><tr><td colspan=\"3\">) \u8a13\u7df4\u8cc7\u6599\u9644\u52a0\u7279\u5fb5\u503c (6) \u8a13\u7df4\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b \u5716 \u5716 \u5716 \u5716 4. \u8a13\u7df4\u6a21\u7d44\u7684\u6d41\u7a0b (\u7b2c 3.2.5 \u7bc0) (\u7b2c 3.2.6 \u7bc0) \u8a13\u7df4\u6a21\u7d44\u7684\u6d41\u7a0b \u8a13\u7df4\u6a21\u7d44\u7684\u6d41\u7a0b \u8a13\u7df4\u6a21\u7d44\u7684\u6d41\u7a0b 3.2.1 \u5f9e\u7db2\u8def\u6536\u96c6\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb \u5f9e\u7db2\u8def\u6536\u96c6\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb \u5f9e\u7db2\u8def\u6536\u96c6\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb \u5f9e\u7db2\u8def\u6536\u96c6\u5b78\u8853\u8ad6\u6587\u7c21\u4ecb \u5728\u8a13\u7df4\u904e\u7a0b\u7684\u7b2c\u4e00\u6b65\uff0c\u6211\u5011\u6536\u96c6\u5927\u91cf\u7684\u7814\u7a76\u8ad6\u6587\uff0c\u4ee5\u8a13\u7df4\u6587\u6b65\u5206\u985e\u5668\u3002\u70ba\u6b64\uff0c\u6211\u5011\u9078\u64c7 \u6709\u5f59\u6574\u8ad6\u6587\u53ef\u4f9b\u76f4\u63a5\u4e0b\u8f09\u7684\u5b78\u6703\u7db2\u7ad9\uff0c\u4e14\u53d6\u5f97\u7d93\u904e PDF \u6a94\u6848\u8f49\u63db\u6216\u5149\u5b78\u5b57\u5143\u8b58\u5225 (OCR) \u8655\u7406\u7684\u8ad6\u6587\u6587\u5b57\u6a94\u3002\u7136\u800c\uff0c\u901a\u5e38\u6a94\u6848\u90fd\u672a\u6a19\u660e\u7bc0\u8cc7\u8a0a\u3002\u6211\u5011\u5229\u7528\u7c21\u55ae\u898f\u5247\uff0c\u5927\u81f4\u4e0a\u8fa8\u8b58 \u51fa\u7bc0\u6a19\u984c\uff0c\u4e26\u64f7\u53d6\u8ad6\u6587\u300c\u7c21\u4ecb\u300d\u7684\u90e8\u4efd\u3002 3.2.2 \u64f7\u53d6\u7c21\u4ecb\u5e38\u898b\u53e5\u578b \u64f7\u53d6\u7c21\u4ecb\u5e38\u898b\u53e5\u578b \u64f7\u53d6\u7c21\u4ecb\u5e38\u898b\u53e5\u578b \u64f7\u53d6\u7c21\u4ecb\u5e38\u898b\u53e5\u578b \u5728\u8a13\u7df4\u7684\u7b2c\u4e8c\u6b65\uff0c\u6211\u5011\u5229\u7528\u73fe\u6709\u7684\u53e5\u5b50\u5206\u5272\u7a0b\u5f0f\uff0c\u5c07\u524d\u4e00\u6b65\u9a5f\u53d6\u5f97\u7684\u8ad6\u6587\u7c21\u4ecb\uff0c\u5206\u5272\u6210 \u4e00\u53e5\u4e00\u53e5\u3002\u7136\u5f8c\uff0c\u518d\u9010\u53e5\u9032\u884c\u5207\u5272\u8a5e\u5f59(tokenization) \u3001\u6a19\u793a\u8a5e\u6027(part of speech tagging) \u8207\u57fa\u5e95\u7247\u8a9e(base phrases \u6216 chunks)\u64f7\u53d6\u7684\u9810\u8655\u7406\u4f5c\u696d\u3002 \u7531\u65bc\u5c08\u6709\u540d\u8a5e(\u5982\u4f5c\u8005\u540d)\u4ee5\u53ca\u6578\u5b57(\u4f8b\u5982\u5e74\u5ea6\uff0c\u6216\u7bc0\u3001\u5716\u8868\u7de8\u865f)\u8b8a\u5316\u6027\u5927\uff0c\u4ee5 \u53ca\u540d\u8a5e(\u5982 method, approach \u7b49)\u4e4b\u524d\uff0c\u5e38\u6709\u5404\u5f0f\u7684\u5f62\u5bb9\u8a5e(\u5982 new, novel)\u3002\u9019\u4e9b\u73fe \u8c61\u90fd\u6703\u5c0e\u81f4\u53e5\u578b\u767c\u6563\uff0c\u4e0d\u6613\u6b78\u985e\u6210\u5e38\u898b\u53e5\u578b\u3002\u70ba\u4e86\u6709\u6548\u6b78\u7d0d\u5e38\u898b\u53e5\u578b\uff0c\u5c0d\u65bc\u53e5\u5b50\u5167\u7684\u8a5e \u5f59\uff0c\u6211\u5011\u505a\u4ee5\u4e0b\u7684\u8655\u7406\uff1a \u2022 \u5c08\u6709\u540d\u8a5e\u3001\u6578\u5b57\u8a5e\u66ff\u63db\u70ba\u5176\u8a5e\u6027\u6a19\u7c64(\u5373 NE, CD) \u2022 \u540d\u8a5e\u7247\u8a9e\u3001\u52d5\u8a5e\u7247\u8a9e\uff0c\u53bb\u9664\u4fee\u98fe\u8a9e\u7684\u90e8\u4efd\uff0c\u53ea\u7559\u4e0b\u4e2d\u5fc3\u8a9e \u2022 \u8907\u6578\u540d\u8a5e\u66ff\u63db\u70ba\u55ae\u6578\u540d\u8a5e \u2022 \u4e0d\u540c\u6642\u614b\u7684\u52d5\u8a5e\u66ff\u63db\u70ba\u539f\u5f62\u52d5\u8a5e \u4f8b\u5982\uff0c\u6211\u5011\u6703\u5c07\u539f\u59cb\u7684\u53e5\u5b50 (1) \u66ff\u63db\u70ba (2) \u4e4b\u5f8c\uff0c\u64f7\u53d6 N \u9023\u8a5e(ngram)\u3002\u9664\u4e86\u8003 \u616e N \u9023\u8a5e\u983b\u7387\uff0c\u6211\u5011\u4e5f\u8a08\u7b97\u76f8\u9130\u8a5e\u8a9e\u8a5e\u4e4b\u9593\u7684\u76f8\u4e92\u8cc7\u8a0a(mutual information)\uff0c\u7be9\u9078\u6240 \u5f97\u7684\u5e38\u898b\u53e5\u578b\u8207\u7247\u8a9e\uff0c\u5927\u90fd\u6709\u4fee\u8fad\u7684\u529f\u80fd\uff0c\u800c\u4e14\u76f4\u89ba\u4e0a\u5c0d\u5beb\u4f5c\u5f88\u6709\u5e6b\u52a9\u7684\u591a\u5b57\u8a5e\u8a9e (multiword expressions)\u6216\u77ed\u8a5e\u4e32(lexical bundles)\u3002 \u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587\u6b65 \u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587\u6b65 \u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587\u6b65 \u5728\u8a13\u7df4\u7684\u7b2c\u4e09\u6b65\u9a5f\uff0c\u6211\u5011\u6311\u9078\u4e00\u4e9b\u9ad8\u983b\u4e14\u6587\u6b65\u7279\u6027\u660e\u986f\u7684\u7247\u8a9e\u4e26\u624b\u52d5\u5730\u6a19\u8a18\u4e0a\u6587\u6b65\u3002\u5728 \u6b64\u968e\u6bb5\uff0c\u6211\u5011\u5c07\u6587\u6b65\u5206\u70ba\u80cc\u666f(BKG)\u3001\u672c\u8ad6\u6587(OWN)\u3001\u8a0e\u8ad6(DIS)\u3001\u6587\u672c(TEX) \u56db\u7a2e\u985e\u578b\u3002 BKG \u90e8\u5206\u63cf\u8ff0\u9818\u57df\u3001\u8ab2\u984c\u3001\u7f3a\u53e3\u3001\u6587\u737b\uff0cOWN \u90e8\u5206\u63cf\u8ff0\u672c\u8ad6\u6587\u4e4b\u65b9\u6cd5\u3001\u7d50 \u679c\uff0cDIS \u90e8\u5206\u8a0e\u8ad6\u672c\u8ad6\u6587\u8207\u524d\u4eba\u4e4b\u512a\u52a3\u7570\u540c\uff0cTEX \u90e8\u5206\u63cf\u8ff0\u5168\u6587\u6216\u7bc0\u7684\u76ee\u7684\u8207\u7d44\u7e54\u3002 \u8868 1 \u986f\u793a\u6a19\u4e86\u6587\u6b65\u7684\u7247\u8a9e\u7bc4\u4f8b\uff0c\u4ee5\u53ca\u6a19\u7c64\u7684\u7c21\u55ae\u5b9a\u7fa9\u3002\u6240\u4ee5\u9019\u500b\u968e\u6bb5\u7684\u6a19\u8a3b\u5c0d\u8c61\u662f\u8655\u7406\u904e 3.2.5 \u9644\u52a0\u8a13\u7df4\u8cc7\u6599\u4e4b\u7279\u5fb5\u503c \u9644\u52a0\u8a13\u7df4\u8cc7\u6599\u4e4b\u7279\u5fb5\u503c \u9644\u52a0\u8a13\u7df4\u8cc7\u6599\u4e4b\u7279\u5fb5\u503c \u9644\u52a0\u8a13\u7df4\u8cc7\u6599\u4e4b\u7279\u5fb5\u503c \u5728\u8a13\u7df4\u7684\u7b2c\u4e94\u968e\u6bb5\uff0c\u6211\u5011\u8981\u9644\u52a0\u7279\u5fb5\u503c\u5230\u8a13\u7df4\u8cc7\u6599\u4ee5\u7528\u4f86\u8a13\u7df4\u6a19\u8a18\u6587\u6b65\u6a21\u578b\u3002\u6211\u5011\u5f9e\u53e5 \u5b50\u4e2d\u6240\u62bd\u51fa N \u9023\u8a5e\u7279\u5fb5\u503c\u3002\u8868 3 \u70ba N \u9023\u8a5e\u7279\u5fb5\u503c\u7684\u4f8b\u5b50\u3002\u70ba\u4e86\u8b93\u7279\u5fb5\u503c\u66f4\u80fd\u53cd\u61c9\u6587 \u6b65\uff0c\u6211\u5011\u4e5f\u52a0\u5165\u8a5e\u985e\u3001\u8a9e\u610f\u5206\u985e(Word class)\u7684\u7279\u5fb5\u503c\u3002\u6211\u5011\u5229\u7528 Teufel(1999)\u4e2d \u4eba\u5de5\u7de8\u8f2f\u7684\u4e00\u7d44\u5b78\u8853\u8ad6\u6587\u7684\u5206\u985e\u8a5e\u5f59\u3002\u8868 4 \u70ba\u6211\u5011\u6240\u4f7f\u7528\u7684 \u8a9e\u610f\u5206\u985e(Word class)\u7684 \u7279\u5fb5\u503c\u3002 4. \u5be6\u9a57\u8207\u7d50\u679c \u5be6\u9a57\u8207\u7d50\u679c \u5be6\u9a57\u8207\u7d50\u679c \u5be6\u9a57\u8207\u7d50\u679c \u6211\u5011\u8a2d\u8a08 WriteAhead \u7684\u521d\u8877\uff0c\u662f\u70ba\u4e86\u63d0\u793a\u4f7f\u7528\u8005\u63a5\u8457\u53ef\u4ee5\u5beb\u7684\u6578\u500b\u5b57\u8a5e\uff0c\u4ee5\u8f14\u52a9\u5b78\u7fd2 \u8005\u5beb\u4f5c\u5b78\u8853\u8ad6\u6587\u7684\u300c\u7c21\u4ecb\u300d\u3002\u56e0\u6b64\uff0c\u6211\u5011\u64f7\u53d6\u7d93\u904e\u5be9\u67e5\u3001\u7de8\u8f2f\u7684\u7a0b\u5e8f\uff0c\u767c\u8868\u7684\u5b78\u8853\u8ad6\u6587\uff0c \u4f86\u5be6\u4f5c\u6211\u5011\u63d0\u51fa\u7684\u65b9\u6cd5\uff0c\u4ee5\u53ca\u958b\u767c\u5beb\u4f5c\u8f14\u52a9\u7cfb\u7d71\u3002\u672c\u7bc0\u4e2d\uff0c\u6211\u5011\u63cf\u8ff0\u6a21\u7d44\u8a13\u7df4\u7684\u5be6\u9a57\u8a2d \u5b9a(\u7b2c 4.1 \u7bc0)\uff0c\u4ee5\u53ca\u521d\u6b65\u5be6\u9a57\u7684\u6548\u80fd\u8a55\u4f30\u8207\u7d50\u679c(\u7b2c 4.2 \u7bc0)\u3002 \u6211\u5011\u85c9\u7531\u8a13\u7df4\u6240\u5f97\u7684\u6587\u6b65\u6a19\u8a3b\u6a21\u7d44\uff0c\u5c0d\u4e00\u842c\u7bc7\u7c21\u4ecb\u4e2d\u7684\u6bcf\u4e00\u53e5\u9032\u884c\u6587\u6b65\u6a19\u8a3b\u3002\u6700\u5f8c \u6211\u5011\u7d71\u8a08\u5404\u7a2e\u6587\u6b65\u4e2d\u7684 N \u9023\u8a5e\u8cc7\u8a0a\uff0c\u6211\u5011\u7e7c\u800c\u5c07\u4e00\u842c\u591a\u7bc7\u7c21\u4ecb\u5167\u7684\u53e5\u5b50\uff0c\u9010\u53e5\u505a\u6587\u6b65\u7684 \u5206\u985e\uff0c\u904b\u7528\u65bc WriteAhead \u5beb\u4f5c\u8f14\u52a9\u7cfb\u7d71\u3002 4.2 \u8a55\u4f30 \u8a55\u4f30 \u8a55\u4f30 \u8a55\u4f30\u8207\u8a0e\u8ad6 \u8207\u8a0e\u8ad6 \u8207\u8a0e\u8ad6 \u8207\u8a0e\u8ad6 \u5982\u524d\u6240\u8ff0\uff0cWriteAhead \u7684\u8a2d\u8a08\u76ee\u6a19\u662f\u8f14\u52a9\u5b78\u7fd2\u8005\u5beb\u4f5c\u5b78\u8853\u8ad6\u6587\u7684\u300c\u7c21\u4ecb\u300d\uff0c\u6240\u4ee5\u61c9\u8a72\u8a55 5. \u7d50\u8ad6 \u7d50\u8ad6 \u7d50\u8ad6 \u7d50\u8ad6 \u5c0d\u65bc\u5982\u4f55\u6539\u5584\u6211\u5011\u6240\u63d0\u51fa\u7684\u7cfb\u7d71\uff0c\u6211\u5011\u9810\u898b\u8a31\u591a\u53ef\u80fd\u7684\u672a\u4f86\u7814\u7a76\u65b9\u5411\u3002\u4f8b\u5982\uff0c\u53ef\u4ee5\u904b\u7528 \u65e2\u6709\u7684\u81ea\u7136\u8a9e\u8a00\u8655\u7406\u6280\u8853\uff0c\u64f7\u53d6\u66f4\u5177\u6548\u679c\u7684\u7279\u5fb5\u503c\uff0c\u4f86\u63d0\u5347\u6587\u6b65\u5206\u985e\u7684\u6b63\u78ba\u7387\u3002\u4f8b\u5982\uff0c \u6211\u5011\u53ef\u4ee5\u81ea\u52d5\u7522\u751f\u5beb\u4f5c\u6587\u9ad4\u4e4b\u5206\u985e\u8a5e\u5f59\u7fa4\u3002\u4e26\u4e14\uff0c\u6839\u64da\u5206\u985e\u8a5e\u5f59\u7fa4\uff0c\u64f7\u53d6\u8a5e\u7fa4\u5f0f\u7684\u5e38\u898b \u6a23\u677f(class-based patterns)\uff0c\u7528\u4f86\u5e6b\u52a9\u5206\u985e\u7684\u6b63\u78ba\u6027\uff0c\u4ee5\u53ca\u63d0\u4f9b\u5bcc\u542b\u8cc7\u8a0a\u7684\u5beb\u4f5c\u63d0\u793a\u3002 \u53e6\u5916\u4e00\u500b\u6709\u6f5b\u529b\u7684\u7814\u7a76\u65b9\u5411\uff0c\u662f\u8b93\u4f7f\u7528\u8005\u5728\u53e6\u4e00\u500b\u6587\u5b57\u6846\uff0c\u8f38\u5165\u6bcd\u8a9e(\u5982\u4e2d\u6587\u3001\u65e5\u6587) \u9644\u9304 \u9644\u9304 \u9644\u9304 \u9644\u9304 A \u6574\u5408\u5e38\u898b\u53e5\u578b\u7684\u5beb\u4f5c\u6a23\u677f \u6574\u5408\u5e38\u898b\u53e5\u578b\u7684\u5beb\u4f5c\u6a23\u677f \u6574\u5408\u5e38\u898b\u53e5\u578b\u7684\u5beb\u4f5c\u6a23\u677f \u6574\u5408\u5e38\u898b\u53e5\u578b\u7684\u5beb\u4f5c\u6a23\u677f \u6211\u5011\u64f7\u53d6\u5e38\u898b\u53e5\u578b\u6a19\u793a\u6587\u6b65\u4e4b\u5f8c\uff0c\u767c\u73fe\u8a31\u591a\u53e5\u578b\u5f88\u985e\u4f3c\uff0c\u53ea\u6709\u5c11\u6578\u7684\u5e7e\u500b\u5b57\u8b8a\u52d5\u3002\u6211\u5011 \u53ef\u5c07\u9019\u4e9b\u53e5\u578b\u805a\u96c6\u8d77\u4f86\uff0c\u6b78\u7d0d\u6574\u5408\u6210\u70ba\u6b63\u898f\u5f0f\u6a23\u677f(regular expression patterns)\u3002\u9019\u4e9b \u6a23\u677f\u907f\u514d\u7f85\u5217\u8a31\u591a\u53e5\u578b\u7684\u4e0d\u4fbf\uff0c\u4e00\u76ee\u4e86\u7136\u2500\u2500\u65e2\u4ee3\u8868\u4e86\u5beb\u4f5c\u7684\u5e38\u614b\uff0c\u4e5f\u5448\u73fe\u4e86\u5404\u7a2e\u8b8a\u5316\u3002 \u904b\u7528\u5728\u6559\u5b78\u4e0a\u8b93\u5b78\u751f\u5b78\u7fd2\u5f88\u6709\u6548\u679c\uff0c\u5beb\u4f5c\u6642\u4e5f\u5bb9\u6613\u52a0\u4ee5\u6a21\u4eff\u3001\u6539\u5beb\u3002 \u4f8b\u5982\uff0c\u5f9e\u9644\u9304 B \u4e2d\u6211\u5011\u53ef\u4ee5\u770b\u5230\u4e0b\u9762\u5de6\u908a\u9019\u4e9b\u548c\u6642\u9593\u6709\u95dc\u7684\u53e5\u578b\u3002\u7d93\u904e\u89c0\u5bdf\u8207\u6b78 \u9644\u9304 \u9644\u9304 \u9644\u9304 \u9644\u9304 B \u5404\u7a2e \u5404\u7a2e \u5404\u7a2e \u5404\u7a2e\u6587\u6b65\u7684\u5e38\u898b\u53e5\u578b \u6587\u6b65\u7684\u5e38\u898b\u53e5\u578b \u6587\u6b65\u7684\u5e38\u898b\u53e5\u578b \u6587\u6b65\u7684\u5e38\u898b\u53e5\u578b B.1 \u80cc\u666f\u6587\u6b65 \u80cc\u666f\u6587\u6b65 \u80cc\u666f\u6587\u6b65 \u80cc\u666f\u6587\u6b65 follow NE ( CD ) , NE ( CD ) show that NE ( CD ) demonstrate on hand , approach currently , there be this , however , it know that as alternative , over year , however , since in decade , however , study method in paper , we argue that in paper , we propose model in paper we focus on in paper , we present in paper we show that in paper we describe work present in paper in paper , we we also show that paper propose method for in paper we discuss in paper we investigate in paper we propose to achieve goal , thus , method finally , result experiment show that work focus on goal be to claim be that result indicate that therefore , method evaluation show that result show that we evaluate approach we show that remainder of paper organise as follow in CD , we describe system rest of paper organize as follow outline of paper be as follow paper organize as follow : CD structure of paper be as in CD we present result for example , CD show in section of paper , paper organize as follow : in CD we show that we conclude paper in CD in rest of paper , finally , we present result approach describe in CD in CD we introduce paper structure as follow in CD we describe conclusion draw in CD result give in CD after that , CD present evaluation CD describe experiment CD describe setup in section , CD show how CD describe work CD describe approach CD give result CD discuss work (1) 3.2.3 \u4eba\u5de5\u6a19\u8a18\u5e38\u898b\u53e5\u578b\u4e4b\u6587\u6b65 \u5f8c\u7684\u7247\u8a9e\u3002\u4eba\u5de5\u6a19\u8a3b\u7684\u904e\u7a0b\u4e2d\uff0c\u5f88\u96e3\u63a7\u5236\u6a19\u8a3b\u7684\u54c1\u8cea\uff0c\u56e0\u6b64\u6a19\u8a3b\u8005\u4e4b\u9593\u7684\u4e00\u81f4\u6027\uff0c\u9700\u7d93 \u53cd\u8986\u7684\u6838\u5c0d\uff0c\u8abf\u89e3\u6709\u885d\u7a81\u7684\u6a19\u8a18 \u3002 \u8868 \u8868 \u8868 \u8868 1. \u6709\u6587\u6b65\u6a19\u8a18\u4e4b\u53e5\u578b\u7bc4\u4f8b \u6709\u6587\u6b65\u6a19\u8a18\u4e4b\u53e5\u578b\u7bc4\u4f8b \u6709\u6587\u6b65\u6a19\u8a18\u4e4b\u53e5\u578b\u7bc4\u4f8b \u6709\u6587\u6b65\u6a19\u8a18\u4e4b\u53e5\u578b\u7bc4\u4f8b \u6587\u6b65 \u53e5\u578b \u89e3\u91cb TEX in section , we review work \u6587\u672c\uff1a\u63cf\u8ff0\u5168\u6587\u6216\u7bc0\u7684\u76ee\u7684\u8207\u7d44\u7e54 BKG research support in part by NE \u80cc\u666f\uff1a\u63cf\u8ff0\u9818\u57df\u3001\u8ab2\u984c\u3001\u7f3a\u53e3\u3001\u6587\u737b DIS it be important to note that \u8a0e\u8ad6\uff1a\u8a0e\u8ad6\u672c\u8ad6\u6587\u8207\u524d\u4eba\u4e4b\u512a\u52a3\u7570\u540c TEX rest of paper structure as follow OWN in paper , we propose approach \u672c\u6587\uff1a\u63cf\u8ff0\u672c\u8ad6\u6587\u4e4b\u65b9\u6cd5\u3001\u7d50\u679c BKG follow NE ( CD ) , 3.2.4 \u7522\u751f\u6709\u6587\u6b65\u6a19\u793a\u4e4b\u8a13\u7df4\u8cc7\u6599 \u7522\u751f\u6709\u6587\u6b65\u6a19\u793a\u4e4b\u8a13\u7df4\u8cc7\u6599 \u7522\u751f\u6709\u6587\u6b65\u6a19\u793a\u4e4b\u8a13\u7df4\u8cc7\u6599 \u7522\u751f\u6709\u6587\u6b65\u6a19\u793a\u4e4b\u8a13\u7df4\u8cc7\u6599 \u5728\u8a13\u7df4\u7684\u7b2c\u56db\u6b65\u9a5f\uff0c\u6211\u5011\u5229\u7528\u6709\u6a19\u8a18\u7684\u53e5\u578b\u53bb\u5339\u914d\u5927\u91cf\u8ad6\u6587\u7c21\u4ecb\u53e5\u5b50\uff0c\u4e26\u5c07\u53e5\u578b\u7684\u6587\u6b65 \u6a19\u8a3b\u5230\u53e5\u5b50\u4e0a\u9762\u3002\u5339\u914d\u7684\u539f\u5247\u662f\u6108\u9577\u7684\u53e5\u578b\u6108\u512a\u5148\u3002\u6211\u5011\u5229\u7528\u53e5\u578b\u4f86\u7522\u751f\u5927\u91cf\u6709\u6a19\u8a18\u6587 \u6b65\u7684\u53e5\u5b50\uff0c\u7528\u4ee5\u505a\u70ba\u4e4b\u5f8c\u6a21\u7d44\u7684\u8a13\u7df4\u8cc7\u6599\u3002\u8868 2 \u70ba\u5339\u914d\u6210\u529f\u7684\u53e5\u5b50\u7684\u7bc4\u4f8b\u3002\u9019\u500b\u968e\u6bb5\u7684 \u6a19\u8a3b\u7bc4\u570d\u662f\u55ae\u53e5\u3002 \u8868 \u8868 \u8868 \u8868 2.\u53e5\u578b \u53e5\u578b \u53e5\u578b \u53e5\u578b\u5c0d\u61c9\u53e5\u5b50\u7684\u7bc4\u4f8b \u5c0d\u61c9\u53e5\u5b50\u7684\u7bc4\u4f8b \u5c0d\u61c9\u53e5\u5b50\u7684\u7bc4\u4f8b \u6587\u6b65 \u53e5\u578b \u5339\u914d\u53e5\u5b50 TEX in section , we review work In the next section, we will first review some related works. BKG in year , there be In recent years, there has been a rapid growth of interest in the sociological study of childhood. OWN in paper , we propose approach In this paper, we propose a novel unsupervised approach to query segmentation, an important task in Web search. 3.2.6 \u8a13\u7df4\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b \u8a13\u7df4\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b \u8a13\u7df4\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b \u8a13\u7df4\u6a5f\u5668\u5b78\u7fd2\u6a21\u578b \u76ee\u524d\u6709\u8a31\u591a\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\u53ef\u4ee5\u8655\u7406\u5206\u985e\u7684\u554f\u984c\u3002\u57fa\u672c\u7684\u76e3\u7763\u5f0f\u7684\u65b9\u6cd5\u9700\u8981\u6b63\u78ba\u7684\u5206\u985e\u8cc7 \u8a0a\uff0c\u975e\u76e3\u7763\u5f0f\u65b9\u6cd5\u5247\u4e0d\u9700\u8981\u6709\u6b63\u78ba\u7b54\u6848\u3002\u5728\u672c\u7814\u7a76\u4e2d\uff0c\u6211\u5011\u63a1\u7528\u76e3\u7763\u5f0f\u8a13\u7df4\u65b9\u6cd5\uff0c\u4f46\u662f \u53e5\u5b50\uff0c\u4f5c\u70ba\u76e3\u7763\u5f0f\u6a5f\u5668\u5b78\u7fd2\u65b9\u6cd5\u6240\u9700\u7684\u8a13\u7df4\u8cc7\u6599\uff0c\u4e26\u4f7f\u7528\u6700\u5927\u71b5\u6a21\u578b(Maximum Entropy, ME)\u4f86\u8a13\u7df4\u6587\u6b65\u5206\u985e\u5668\u3002 \u8a13\u7df4\u5b8c\u6210\u5f8c\uff0c\u6211\u5011\u5c31\u904b\u7528\u6b64\u4e00\u5206\u985e\u5668\uff0c\u5c07\u8a9e\u6599\u5eab\u5167\u6240\u6709\u7684\u8ad6\u6587\u53e5\u5b50\uff0c\u52a0\u4ee5\u5206\u985e\uff0c\u6a19 \u8a3b\u4e0a\u9069\u7576\u7684\u6587\u6b65\u3002\u4e4b\u5f8c\uff0c\u6211\u5011\u5c31\u53ef\u4ee5\u904b\u7528\u9019\u4e9b\u9644\u6709\u6587\u6b65\u6a19\u7c64\u7684\u53e5\u5b50\uff0c\u4f86\u7d71\u8a08\u5404\u7a2e\u6587\u6b65\u7684 \u5e38\u898b N \u9023\u8a5e\u3002\u4e4b\u5f8c\uff0cWriteAhead \u7cfb\u7d71\u5728\u8f14\u52a9\u5beb\u4f5c\u6642\uff0c\u5c07\u53c3\u7167\u4f7f\u7528\u8005\u8a2d\u5b9a\u7684\u6587\u6b65\uff0c\u4e26\u6839 \u64da\u8f38\u5165\u7684\u5167\u5bb9\uff0c\u67e5\u8a62\u9069\u7576\u7684\u7247\u8a9e\u63d0\u4f9b\u7d66\u5b78\u7fd2\u8005\u53c3\u8003\u3002 \u7684\u53e5\u578b\u3002\u6211\u5011\u4eba\u5de5\u7684\u6311\u9078\u4e86\u4e94\u767e\u500b\u53e5\u578b\u5f8c\uff0c\u624b\u52d5\u6ffe\u6389\u6587\u6b65\u7279\u6027\u4e0d\u660e\u986f\u5f97\u7684\u7247\u8a9e\u4e26\u628a\u5269\u4e0b \u7684\u53e5\u578b\u90fd\u6a19\u4e0a\u6587\u6b65\uff0c\u5269\u4e0b\u8fd1\u7d04\u56db\u767e\u500b\u6709\u6587\u6b65\u6a19\u8a18\u7684\u53e5\u578b\u3002\u6211\u5011\u5728\u5229\u7528\u9019\u4e9b\u6a19\u8a18\u904e\u7684\u53e5\u578b \u53bb\u5339\u914d\u4e00\u842c\u7bc7\u7684\u8ad6\u6587\u7c21\u4ecb\u3002\u6211\u5011\u5f97\u5230\u5927\u7d04\u4e00\u842c\u516b\u5343\u500b\u53e5\u5b50\uff0c\u5176\u6587\u6b65\u7684\u5206\u4f48\u5982\u8868 5 \u6240\u793a\u3002 \u6a19\u8a3b\u6a21\u7d44\u3002 system goal in paper be to solution be to paper provide in CD , we present approach finally , we draw conclusion paper organize as follow CD present work \u65bc\u8cc7\u6599\uff0c\u672c\u7cfb\u7d71\u61c9\u8a72\u5c0d\u975e\u8cc7\u8a0a\u9818\u57df(\u4f8b\u5982\u6587\u5b78\u3001\u7ba1\u7406\u5b78\u3001\u6559\u80b2\u5b78)\u7684\u9069\u7528\u6027\u61c9\u8a72\u4e0d\u662f\u5f88 in paper , we describe goal of paper be to therefore , we we demonstrate follow experiment discussion present in CD CD present result \u696d\u9818\u57df\u7279\u6b8a\u6027\u7684\u5f71\u97ff\u3002\u4f46\u662f\uff0c\u500b\u5225\u9818\u57df\u8868\u9054\u7684\u65b9\u5f0f\u5728\u7528\u5b57\u9063\u8a5e\u4ecd\u7136\u6709\u4e0d\u5c0f\u7684\u5dee\u7570\uff0c\u53d7\u9650 in paper , we show how in paper , we investigate purpose be to part of paper organize as CD present result of work discuss in CD CD describe system paper describe CRFs \u3002\u672c\u8ad6\u6587\u6240\u63d0\u51fa\u7684\u65b9\u6cd5\uff0c\u662f\u57fa\u65bc\u8de8\u9818\u57df\u7684\u8ad6\u6587\u4fee\u8fad\u7814\u7a76\uff0c\u61c9\u8a72\u4e0d\u6703\u53d7\u4e0d\u540c\u5b78\u8853\u5c08 in study , we focus on goal of work be to paper describe system follow result finally , in CD finally , we aim of \u672c \u8ad6 \u6587 \u6240 \u4f7f \u7528 \u7684 \u5206 \u985e \u5668 \u662f Maximal Entropy \uff0c \u672a \u4f86 \u4e5f \u5c07 \u8003 \u616e \u63a1 \u7528 SVM \u6216 \u662f in paper , we focus on in paper , we propose in paper we focus be rest of paper organise as section present and discuss in rest of paper plan of paper \u518d\u5c07\u6a19\u8a18\u597d\u7684\u53e5\u5b50\u9644\u52a0\u4e0a\u7279\u5fb5\u503c N-gram\u3001\u8a5e\u8a9e\u5206\u985e\u5f8c\uff0c\u8b93 ME \u6a21\u7d44\u505a\u8a13\u7df4\uff0c\u7372\u5f97\u6587\u6b65 that in paper , we study we demonstrate that purpose of as follow finally , CD conclude paper paper organise as follow CD show result \u8005\u7684\u6548\u679c\u3002\u4e0d\u904e\u6211\u5011\u8a8d\u70ba\uff0c\u9ad8\u983b N \u9023\u8a5e\u7684\u7cbe\u78ba\u7387\u53ef\u80fd\u9060\u9ad8\u65bc\u6587\u6b65\u6a19\u793a\u7684\u7cbe\u78ba\u7387\u3002 in particular , we show in work , we use paper focus on paper present remainder of paper structure in CD we present experiment in section CD , CD describe method \u5408\u7406\u3002\u53d7\u9650\u65bc\u6642\u9593\uff0c\u6211\u5011\u5c1a\u672a\u8a55\u4f30 WriteAhead \u904b\u7528\u5404\u5206\u985e\u9ad8\u983b N \u9023\u8a5e\uff0c\u5c0d\u65bc\u63d0\u793a\u4f7f\u7528 system in work we focus on in study , in CD , we present model next , in CD , finally CD conclude paper CD review work in work \u96d6\u7136\u500b\u5225\u53e5\u5b50\u7684\u5206\u985e\u6b63\u78ba\u6027\u4e0d\u7406\u60f3\uff0c\u6211\u5011\u89c0\u5bdf\u7d71\u8a08\u5f8c\u7684\u5404\u5206\u985e\u4e4b\u9ad8\u983b N \u9023\u8a5e\u9084\u7b97 in paper , we present in paper , we address we propose that follow we discuss work in CD article organize as follow CD discuss result in paper \u6211\u5011\u4e26\u4e0d\u76f4\u63a5\u4eba\u5de5\u6a19\u8a3b\u6b63\u78ba\u7b54\u6848\u3002\u6211\u5011\u900f\u904e\u6a19\u8a3b\u5c11\u91cf\u53e5\u578b\uff0c\u9593\u63a5\u5730\u81ea\u52d5\u7522\u751f\u5927\u91cf\u7684\u6a19\u8a18 \u7684\u5de5\u5177\uff0c\u5c07\u4e00\u7bc7\u7bc7\u8ad6\u6587\u5206\u5272\u6210\u53e5\u5b50\uff0c\u518d\u5c07\u53e5\u5b50\u5206\u5272\u6210\u8a5e\u5f59\u8207\u6a19\u9ede(tokens)\u3002\u6709\u4e86\u53e5\u5b50 \u8207\u8a5e\u5f59\u5f8c\uff0c\u6211\u5011\u63a5\u8457\u4f7f\u7528 Genia Tagger 3 \u6a19\u8a3b\u8a5e\u6027\u8207\u57fa\u5e95\u7247\u8a9e (base phrase \u6216 chunks) \u3002 \u4e4b\u5f8c\uff0c\u7576\u6240\u6709\u7684\u7dd2\u8ad6\u55ae\u5b57\u90fd\u88ab\u65b7\u8a5e\u548c\u6a19\u8a18\u8a5e\u6027\u4ee5\u53ca\u5340\u584a\u5f8c\uff0c\u6211\u5011\u5229\u7528\u7d71\u8a08\u65b9\u6cd5\u7372\u5f97\u82e5\u5e72 mothed in paper , we describe focus of paper be in study rest of paper structure as in CD we discuss work finally , CD present CD describe result \u5f88\u96e3\u7528\u6709\u9650\u7684\u8cc7\u6599\u4f86\u638c\u63e1\uff0c\u76f8\u53cd\u5730\u5b57\u8a5e\u4e5f\u6709\u4e0d\u5c0f\u7684\u8a5e\u5f59\u8a9e\u610f\u6b67\u7fa9\u3002 in paper , we present in paper , we consider in paper we present motivation for in CD , we describe model in remainder of paper , result show in CD CD present method \u4e14\u6a19\u8a3b\u7684\u6b63\u78ba\u6027\u4e5f\u4e0d\u662f\u975e\u5e38\u7406\u60f3\u3002\u53e6\u5916\uff0c\u8868\u9054\u540c\u4e00\u985e\u7684\u6587\u6b65\uff0c\u7528\u5b57\u9063\u8a5e\u7684\u5dee\u7570\u6027\u5f88\u5927\uff0c approach purpose of paper be to result show that approach as follow paper structure as follow : in what follow , CD describe model goal be \u500b\u5225\u53e5\u5b50\u7684\u5206\u985e\u6b63\u78ba\u7387\u4e26\u4e0d\u9ad8\uff0c\u9019\u53ef\u80fd\u6b78\u548e\u65bc\u5e7e\u500b\u539f\u56e0\u3002\u9996\u5148\uff0c\u6a19\u8a3b\u8cc7\u6599\u592a\u5c11\uff0c\u800c in paper , we present in paper , we use to address problem , remainder of paper organize in CD we describe how in CD we discuss we then present hypothesis be that \u6211\u5011\u9010\u7bc7\u8655\u7406\u9019\u4e00\u842c\u7bc7\u8ad6\u6587\u7c21\u4ecb\u3002\u6211\u5011\u5229\u7528 Python/NLTK 2 \u7684\u5206\u5272\u82f1\u6587\u53e5\u5b50\u3001\u8a5e\u5f59 \u4f86\u52a0\u4ee5\u638c\u63e1\uff0c\u672a\u4f86\u53ef\u80fd\u9084\u9700\u8981\u767c\u6398\u6bd4\u8f03\u6709\u6548\u7684\u7279\u5fb5\u503c\u3002 in paper , we show that in paper , we introduce result show that method we argue that in section , we review work we discuss result in CD in CD we present in section that \u5c0d\u61c9\u53e5\u5b50\u7684\u7bc4\u4f8b \u8868 \u8868 \u8868 \u8868 3. \u8f38\u5165\u53e5 \u8f38\u5165\u53e5 \u8f38\u5165\u53e5 \u8f38\u5165\u53e5\" \" \" \"In this paper , we will describe a method \u2026\"\u7684 \u7684 \u7684 \u7684 N \u9023\u8a5e\u7279\u5fb5\u503c \u9023\u8a5e\u7279\u5fb5\u503c \u9023\u8a5e\u7279\u5fb5\u503c 4.1 \u5be6\u9a57\u8a2d\u5b9a \u5be6\u9a57\u8a2d\u5b9a \u5be6\u9a57\u8a2d\u5b9a \u5be6\u9a57\u8a2d\u5b9a \u4f30\u5404\u7a2e\u5beb\u4f5c\u60c5\u5883\u4e0b\uff0c\u4f7f\u7528\u8005\u89ba\u5f97 WriteAhead \u7684\u63d0\u793a\uff0c\u662f\u5426\u6709\u52a9\u65bc\u5beb\u4f5c\u51fa\u66f4\u597d\u7684 \u300c\u7c21\u4ecb\u300d \u3002 \u8349\u7a3f\uff0c\u800c\u7cfb\u7d71\u53c3\u8003\u9019\u4e9b\u6bcd\u8a9e\u8349\u7a3f\uff0c\u4f86\u8abf\u6574\u63d0\u793a\u7684\u82f1\u6587\u53e5\u578b\u8207\u7247\u8a9e\u3002\u53e6\u5916\uff0c\u6211\u5011\u4e5f\u53ef\u4ee5\u8b93 \u7d0d\uff0c\u6211\u5011\u53ef\u4ee5\u5f97\u5230\u4e0b\u9762\u53f3\u908a\u7684\u6a23\u677f\u53ca\u5176\u8b8a\u5316\u578b\uff1a that first of all , this be important however , approach system in paper , i in work , follow in section , we describe structure of paper in section \u9023\u8a5e\u7279\u5fb5\u503c N-gram Features Surface unigram in this paper we will describe a method Surface bigram \u6211 \u5011 \u5f9e \u5bc6 \u897f \u6839 \u5927 \u5b78 \u7684 \u8a08 \u7b97 \u8a9e \u8a00 \u5b78 \u53ca \u8cc7 \u8a0a \u6aa2 \u7d22 \u7d44 ( Computational Linguistics And Information Retrieval Group, CLAIR) \u8a2d \u8a08 \u7dad \u8b77 \u7684 \u8a08 \u7b97 \u8a9e \u8a00 \u5b78 \u6703 ( Association for \u7136\u800c\uff0c\u4e00\u822c\u800c\u8a00\uff0c\u51e1\u662f\u6d89\u53ca\u4f7f\u7528\u8005\u7684\u8a55\u4f30\u90fd\u662f\u975e\u5e38\u56f0\u96e3\u3002\u9000\u800c\u6c42\u5176\u6b21\uff0c\u6211\u5011\u76ee\u524d\u50c5\u91dd\u5c0d \u6587\u6b65\u5206\u985e\u5668\u90e8\u5206\uff0c\u8a55\u4f30\u5176\u5206\u985e\u6b63\u78ba\u6027\u3002\u7531\u65bc\u8ad6\u6587\u7684\u6587\u6b65\u662f\u4f9d\u5e8f\u63a8\u79fb\uff0c\u6240\u4ee5\u6211\u5011\u91dd\u5c0d\u300c\u7c21 NE ( CD ) propose model however , for language much of work unfortunately , in CD , we describe method CD show example of CD conclude paper CD describe \u4f7f\u7528\u8005\u9078\u53d6\u90e8\u5206\u6c92\u6709\u628a\u63e1\u7684 2-5 \u500b\u5b57\uff0c\u7cfb\u7d71\u63d0\u793a\u6b63\u78ba\u6216\u932f\u8aa4\u7684\u6a5f\u7387\uff0c\u4ee5\u53ca\u5176\u4ed6\u53ef\u4ee5\u66ff\u63db \u7684\u8868\u9054\u65b9\u5f0f\u3002 recently , al ( CD ) it be , however , there be , however , approach , however , research support by NE over decade , however , if difficulty be problem with B.3\u300c \u300c \u300c \u300c\u8a0e\u8ad6 \u8a0e\u8ad6 \u8a0e\u8ad6 \u8a0e\u8ad6\u300d \u300d \u300d \u300d\u6587\u6b65 \u6587\u6b65 \u6587\u6b65 paper organize as follow : in finally , CD conclude CD report result CD introduce \u6587\u6b65 finally , we conclude in CD as we see , CD describe algorithm CD conclude \u4ecb\u300d \u7684\u6574\u500b\u7bc0\uff0c\u4f86\u8a55\u4f30\u6587\u6b65\u7684\u6a19\u8a3b\u662f\u5426\u6b63\u78ba\u3002 \u7e3d\u800c\u8a00\u4e4b\uff0c\u6211\u5011\u4ecb\u7d39\u4e86\u4e00\u5957\u65b9\u6cd5\uff0c\u80fd\u8655\u7406\u6240\u641c\u96c6\u5230\u7684\u5b78\u8853\u8ad6\u6587\uff0c\u5c07\u6bcf\u4e00\u500b\u53e5\u5b50\u6a19\u793a currently , there be to knowledge , there be however , there be however , unlike challenge be it be important to note to overcome problem , for reason , in short , in CD , we describe corpus CD give overview of CD present algorithm CD show in_this this_paper paper_, ,_we we_will will_describe describe_a a_method Lemma unigram in this paper we will describe a method Lemma bigram in_this this_paper paper_, ,_we we_will will_describe describe_a a_method Chunk head unigram Chunk head bigram in_paper paper_, ,_we we_describe describe_method \u8868 \u8868 \u8868 \u8868 4. \u5206\u985e\u8a5e\u985e\u96c6\u7bc4\u4f8b \u5206\u985e\u8a5e\u985e\u96c6\u7bc4\u4f8b \u5206\u985e\u8a5e\u985e\u96c6\u7bc4\u4f8b \u5206\u985e\u8a5e\u985e\u96c6\u7bc4\u4f8b \u8a5e\u985e\u540d\u7a31 \u8a5e\u6027 \u8a5e\u5f59 AFFECT v afford, believe, decide, feel, hope, imagine, regard, trust, think COMPARISON v compare, compete, evaluate, test TEXT n paragraph, section, subsection, chapter \u90e8\u5206\u4f86\u505a\u70ba\u7814\u7a76\u7684\u8a13\u7df4\u8cc7\u6599\uff0c\u4ee5\u53ca\u7cfb\u7d71\u958b\u767c\u7684\u8cc7\u6599\u3002 \u8868 \u8868 \u8868 \u8868 5. \u6709\u5339\u914d\u53e5\u578b\u4e4b\u53e5\u5b50\u6587\u6b65\u5206\u5e03\u60c5\u5f62 \u6709\u5339\u914d\u53e5\u578b\u4e4b\u53e5\u5b50\u6587\u6b65\u5206\u5e03\u60c5\u5f62 \u6709\u5339\u914d\u53e5\u578b\u4e4b\u53e5\u5b50\u6587\u6b65\u5206\u5e03\u60c5\u5f62 \u6709\u5339\u914d\u53e5\u578b\u4e4b\u53e5\u5b50\u6587\u6b65\u5206\u5e03\u60c5\u5f62 \u6587\u6b65 \u53e5\u6578 BKG 3,333 OWN DIS TEX 5,687 \u7e3d\u8a08 17,791 \u6587\u6b65\u7684\u7cbe\u78ba\u7387\u50c5\u50c5\u7565\u9ad8\u65bc 50%\uff0c\u9019\u7576\u7136\u662f\u56e0\u70ba\u8868\u9054\u7684\u65b9\u5f0f\u6bd4\u8f03\u5206\u6b67\uff0c\u4e0d\u6613\u900f\u904e\u5e38\u898b\u53e5\u578b in work , we focus on in paper , we report on aim of paper be to in paper , we explore result show that model in work , we in paper , B.4\u300c \u300c \u300c \u300c\u7d44\u7e54 \u7d44\u7e54 \u7d44\u7e54 \u7d44\u7e54\u300d \u300d \u300d \u300d\u6587\u6b65 \u6587\u6b65 \u6587\u6b65 \u6587\u6b65 aim be to \u6587\u8108\u6587\u6b65\u5169\u8005\u90fd\u6709\u6bd4\u8f03\u56fa\u5b9a\u7684\u8868\u9054\u65b9\u5f0f\u3002\u76f8\u5c0d\u7684\uff0c\u672c\u8ad6\u6587(OWN)\u3001\u8a0e\u8ad6( DIS)\u5169\u7a2e approach goal of research be to paper address problem of we hypothesize that \u666f\u6587\u6b65 ( BKG)\u7684\u6b63\u78ba\u7387\u9054 86% \u800c\u6587\u8108\u6587\u6b65(TEX)\u9054 76%\uff0c\u9019\u53ef\u80fd\u662f\u56e0\u70ba\u80cc\u666f\u3001 in paper , we propose focus of paper be on in study , we we start with contribution of paper be : in comparison , difference be that 1,572 it be worth note that by contrast , example show that \u793a\u8a55\u4f30\u7684\u7d50\u679c\u3002\u6574\u9ad4\u7684\u6587\u6b65\u9810\u6e2c\u6b63\u78ba\u7387 67%\uff0c\u9084\u6709\u6539\u5584\u7684\u7a7a\u9593\u3002\u5c31\u500b\u5225\u7684\u6587\u6b65\u4f86\u770b\uff0c\u80cc 7,199 DIS 312 461 241 .52 TEX 117 98 75 .76 \u7e3d\u8a08 1,288 1,288 862 .67 Network \u4e2d\u96a8\u6a5f\u6311\u9078\u4e94\u5341\u7bc7\u8ad6\u6587\u7c21\u4ecb\u7684\u53e5\u5b50\uff0c\u505a\u70ba\u6211\u5011\u6587\u6b65\u6a19\u8a3b\u6a21\u7d44\u7684\u8a55\u4f30\u8cc7\u6599\u3002\u8868 6 \u986f \u53c3\u8003\u6587\u737b \u53c3\u8003\u6587\u737b \u53c3\u8003\u6587\u737b B.2 \u300c \u300c \u300c \u300c\u672c\u8ad6\u6587 \u672c\u8ad6\u6587 \u672c\u8ad6\u6587 \u672c\u8ad6\u6587\u300d \u300d \u300d \u300d\u6587\u6b65 \u6587\u6b65 \u6587\u6b65 \u6587\u6b65 reason for this be that contribution be : on contrary , although approac \u53c3\u8003\u6587\u737b as it turn out , as result of in principle , we believe \u70ba\u4e86 \u9054\u6210 \u80fd\u81ea \u52d5 \u7684\u70ba \u8ad6 \u6587 \u7c21 \u4ecb\u53e5 \u5b50\u6a19 \u8a3b \u6587 \u6b65 \u6b64\u4e00 \u76ee \u6a19 \uff0c \u6211\u5011 \u5f9e ACL Anthology \u81f4\u8b1d\u8a5e \u81f4\u8b1d\u8a5e \u81f4\u8b1d\u8a5e \u81f4\u8b1d\u8a5e \u672c\u7814\u7a76\u627f\u8499\u79d1\u6280\u90e8\u88dc\u52a9\u7814\u7a76\u7d93\u8cbb\uff0c\u8a08\u756b\u6a19\u865f NSC 100-2511-S-007 -005 -MY3\u3002 to date , as matter of fact , in general , it recognize that sponsor first , it we believe that observation be recently , NE ( CD ) propose at present , this be task view express endorse by in contrast , system this mean that advantage of traditionally , recognition ( NE ) be however , they to knowledge , in order to do this we also show how analysis show that contribution be currently , in practice , however , recently , model most of system recently contribution of work be : to knowledge , work intuition be that this suggest that in decade , collection comprise CD challenge be that to date , recently , that reason for this be that be why we note that in paper we describe method )\u6240 \u5f97\u5230\u7684\u6587\u5b57\u6a94\u6848\u3002\u56e0\u6b64\uff0c\u9019\u4e9b\u6a94\u6848\u6709\u8457\u5404\u5f0f\u7684\u96dc\u8a0a\uff0c\u50cf\u662f\u6b98\u7559\u7684\u63db\u884c\u9023\u5b57\u7b26\u865f\u3001\u55ae\u5b57\u8fa8 \u8b58\u932f\u8aa4\u7b49\u3002 \u6211\u5011\u900f\u904e\u8a2d\u8a08\u53ca\u5206\u6790\u898f\u5247\uff0c\u8a2d\u5b9a\u7c21\u55ae\u7684\u689d\u4ef6\uff0c\u8fa8\u8b58\u51fa\u7bc0\u7684\u6a19\u984c\uff0c \u4e26\u6311\u9078\u4e86 \u6a19\u793a\u5f88\u6e05\u695a\u7684\u8ad6\u6587\u5c07\u8fd1\u4e00\u842c\u7bc7\u3002\u4e4b\u5f8c\uff0c\u6211\u5011\u6839\u64da\u6a19\u984c\u7684\u7de8\u865f\uff0c\u6a19\u984c\u7684\u5167\u5bb9\uff0c\u62bd\u53d6\u300c\u7c21\u4ecb\u300d \u8868 \u8868 \u8868 \u8868 6. \u7e3d\u5171 \u7e3d\u5171 \u7e3d\u5171 \u7e3d\u5171 50 \u7bc7\u7c21\u4ecb\u4e4b \u7bc7\u7c21\u4ecb\u4e4b \u7bc7\u7c21\u4ecb\u4e4b \u7bc7\u7c21\u4ecb\u4e4b\u53e5\u5b50\u6a19\u793a\u6587\u6b65\u8207\u9810\u6e2c\u6587\u6b65\u8207\u9810\u6e2c\u6b63\u78ba\u7387 \u53e5\u5b50\u6a19\u793a\u6587\u6b65\u8207\u9810\u6e2c\u6587\u6b65\u8207\u9810\u6e2c\u6b63\u78ba\u7387 \u53e5\u5b50\u6a19\u793a\u6587\u6b65\u8207\u9810\u6e2c\u6587\u6b65\u8207\u9810\u6e2c\u6b63\u78ba\u7387 \u53e5\u5b50\u6a19\u793a\u6587\u6b65\u8207\u9810\u6e2c\u6587\u6b65\u8207\u9810\u6e2c\u6b63\u78ba\u7387 \u6587\u6b65 \u6a19\u793a\u53e5\u6578 \u9810\u6e2c\u53e5\u6578 \u6b63\u78ba\u53e5\u6578 \u7cbe\u78ba\u7387 BKG 621 470 402 .86 OWN 238 259 144 \u793a\u5b78\u7fd2\u8005\uff0c\u5982\u4f55\u5beb\u4f5c\u5404\u7a2e\u6587\u6b65\u7684\u53e5\u5b50\u3002 there be work to knowledge , this be most of method however , when unlike method advantage of approach be contribution of paper be as consequence , this be because finally , in CD , result discuss in CD CD describe how .56 at present , to good of knowledge , however , while recently , method they describe that for example , name in practice , we then discuss in CD , we review work result report in CD CD present experiment CD detail \u4e0a\u9069\u7576\u7684\u6587\u6b65(move)\uff0c\u4e26\u7d71\u8a08\u5404\u985e\u6587\u6b65\u7684\u5e38\u898b\u7247\u8a9e\uff0c\u85c9\u4ee5\u5e6b\u52a9\u82f1\u6587\u975e\u5176\u6bcd\u8a9e\u5b78\u751f\uff0c\u5beb over year , in case , however , study show that in year , currently , this be due to fact that in particular , it reason be that unlike NE , organization of paper be as result present in CD CD introduce model CD explain \u4f5c\u5b78\u8853\u8ad6\u6587\u3002 \u6211\u5011\u7684\u65b9\u6cd5\u6d89\u53ca\u64f7\u53d6\u5e38\u898b\u5beb\u4f5c\u53e5\u578b\u3001\u6a19\u793a\u53e5\u578b\u7684\u6587\u6b65\u3001\u7522\u751f\u5927\u91cf\u5df2\u6a19\u793a\u6587 over decade , NE ( CD ) present difficulty be that it observe that traditionally , contribution of paper be in contrast , model specifically , it it note that follow as we show , CD introduce method CD present \u6b65\u7684\u53e5\u5b50\u4ee5\u53ca\u7279\u5fb5\u503c\uff0c\u4f5c\u70ba\u8a13\u7df4\u8cc7\u6599\u4f86\u958b\u767c\u6587\u6b65\u5206\u985e\u5668\u3002\u6211\u5011\u85c9\u7531\u6b64\u4e00\u5206\u985e\u5668\uff0c\u9810\u6e2c\u53e5 in year , however , in case , there be also there be work while approach however , we believe that it turn out that this lead to in sum , conclusion we conclude in CD CD show example \u5b50\u7684\u6587\u6b65\u3002\u6211\u5011\u63d0\u51fa\u4e00\u500b\u96db\u578b\u7cfb\u7d71 WriteAhead\uff0c\u61c9\u7528\u5206\u985e\u7684\u53e5\u5b50\u8207\u5e38\u898b\u7247\u8a9e\u7684\u8cc7\u6599\uff0c\u63d0 recently , method NE ( CD ) describe currently , system they show that in year as follow it be obvious that this be problem among them , finally , CD present paper proceed as follow CD present model CD discuss</td></tr><tr><td colspan=\"2\">\u7406\u60f3\uff0c\u9700\u8981\u53e6\u5916\u8490\u96c6\u8cc7\u6599\uff0c\u4f9d\u7167\u5b78\u79d1\u5efa\u7f6e\u4e0d\u540c\u7684\u7cfb\u7d71\u3002 in paper , we propose in paper we describe idea be to</td><td>we evaluate</td></tr></table>",
                "type_str": "table"
            }
        }
    }
}