File size: 20,142 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
{
"paper_id": "O12-1034",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T08:02:55.399590Z"
},
"title": "Improving Chinese Textural Entailment by Monolingual Machine Translation Technology",
"authors": [
{
"first": "Shan-Shun",
"middle": [],
"last": "Yang",
"suffix": "",
"affiliation": {},
"email": ""
},
{
"first": "Shih-Hung",
"middle": [],
"last": "Wu",
"suffix": "",
"affiliation": {},
"email": "shwu@cyut.edu.tw"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "",
"pdf_parse": {
"paper_id": "O12-1034",
"_pdf_hash": "",
"abstract": [],
"body_text": [
{
"text": "(NER) 10 9 1 \"10 \" ",
"cite_spans": [
{
"start": 6,
"end": 8,
"text": "10",
"ref_id": "BIBREF9"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Probabilistic textual entailment: Generic applied modeling of language variability",
"authors": [
{
"first": "Ido",
"middle": [],
"last": "Dagan",
"suffix": ""
},
{
"first": "Oren",
"middle": [],
"last": "Glickman",
"suffix": ""
}
],
"year": 2004,
"venue": "Proceedings of the Workshop on Learning Methods for Text Understanding and Mining",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ido Dagan and Oren Glickman, Probabilistic textual entailment: Generic applied modeling of language variability, In Proceedings of the Workshop on Learning Methods for Text Understanding and Mining, Grenoble, France, 2004.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "NTCIR 9",
"authors": [],
"year": null,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "NTCIR 9, Recognizing Inference in TExt task, http://artigas.lti.cs.cmu.edu/rite/Main_Page.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "A survey of paraphrasing and textual entailment methods",
"authors": [
{
"first": "Ion",
"middle": [],
"last": "Androutsopoulos",
"suffix": ""
},
{
"first": "Prodromos",
"middle": [],
"last": "Malakasiotis",
"suffix": ""
}
],
"year": 2010,
"venue": "Journal of Artificial Intelligence Research",
"volume": "38",
"issue": "",
"pages": "135--187",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ion Androutsopoulos and Prodromos Malakasiotis, \"A survey of paraphrasing and textual entailment methods\", Journal of Artificial Intelligence Research, Volume 38, pages 135-187, 2010.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "WordNet: An Electronic Lexical Database",
"authors": [
{
"first": "Christiane",
"middle": [],
"last": "Fellbaum",
"suffix": ""
}
],
"year": 1998,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Christiane Fellbaum, \"WordNet: An Electronic Lexical Database\", The MIT Press, 1998.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Learning textual entailment using SVMs and string similarity measures",
"authors": [
{
"first": "Prodromos",
"middle": [],
"last": "Malakasiotis",
"suffix": ""
},
{
"first": "Ion",
"middle": [],
"last": "Androutsopoulos",
"suffix": ""
}
],
"year": 2007,
"venue": "Proceedings of ACL-PASCAL Workshop on Textual Entailment and Paraphrasing",
"volume": "",
"issue": "",
"pages": "42--47",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Prodromos Malakasiotis, Ion Androutsopoulos, \"Learning textual entailment using SVMs and string similarity measures\", In Proceedings of ACL-PASCAL Workshop on Textual Entailment and Paraphrasing, pages 42-47, Prague, Czech Republic, 2007.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Using dependency-based features to take the \"para-farce\" out of paraphrase",
"authors": [
{
"first": "S",
"middle": [],
"last": "Wan",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Dras",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Dale",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Paris",
"suffix": ""
}
],
"year": 2006,
"venue": "Proceedings of the Australasian Language Technology Workshop",
"volume": "",
"issue": "",
"pages": "131--138",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wan, S., Dras, M., Dale, R., & Paris, C., \"Using dependency-based features to take the \"para-farce\" out of paraphrase\", In Proceedings of the Australasian Language Technology Workshop, pages 131-138, Sydney, Australia, 2006.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "BLEU: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th Annual Meeting on ACL",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward and Wei-Jing Zhu, \"BLEU: a method for automatic evaluation of machine translation\", In Proceedings of the 40th Annual Meeting on ACL, pages 311-318, Philadelphia, PA, 2002.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Paraphrase recognition using machine learning to combine similarity measures",
"authors": [
{
"first": "Prodromos",
"middle": [],
"last": "Malakasiotis",
"suffix": ""
}
],
"year": 2009,
"venue": "Proceedings of the 47th Annual Meeting of ACL and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Prodromos Malakasiotis, \"Paraphrase recognition using machine learning to combine similarity measures\", In Proceedings of the 47th Annual Meeting of ACL and the 4th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Singapore, 2009.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Binary-class and Multi-class Chinese Textural Entailment System Description in NTCIR-9 RITE",
"authors": [
{
"first": "Shih-Hung",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Wan-Chi",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Liang-Pu",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Tsun",
"middle": [],
"last": "Ku",
"suffix": ""
}
],
"year": 2011,
"venue": "Proceedings of the NTCIR-9 workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Shih-Hung Wu, Wan-Chi Huang, Liang-Pu Chen and Tsun Ku. Binary-class and Multi-class Chinese Textural Entailment System Description in NTCIR-9 RITE, in Proceedings of the NTCIR-9 workshop, Tokyo, Japan, 6-10 Dec., 2011.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "A systematic comparison of various statistical alignment models",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2003,
"venue": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing",
"volume": "29",
"issue": "",
"pages": "19--51",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och and H. Ney, \"A systematic comparison of various statistical alignment models.\" Computational Linguistics, vol. 29, no. 1, pp. 19-51,2003. Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"type_str": "figure",
"num": null,
"uris": null,
"text": "March 11, 2011, Miyagi Prefecture, Japan, a magnitude 9.0 earthquake occurred, causing casualties of about 30,000 people missing or dead.) March 11, 2011, Miyagi Prefecture, Japan, a magnitude 9.0 earthquake occurred) T1\" \" (Gigi married with the \"disability rich\" Mating Jiang married) T2\" \" (Mating Jiang is the son of Ma Xi Ru, one of the founders of Hong Kong, \"the Oriental Press Group\")Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing(ROCLING 2012)"
},
"TABREF1": {
"num": null,
"text": "Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)",
"type_str": "table",
"html": null,
"content": "<table><tr><td colspan=\"37\">Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012) Proceedings of the Twenty-Fourth Conference on Computational Linguistics and Speech Processing (ROCLING 2012)</td></tr><tr><td>1</td><td/><td/><td/><td/><td/><td/><td/><td colspan=\"6\">1~10</td><td/><td/><td/><td/><td colspan=\"2\">[9] N</td><td/><td/><td/><td/><td colspan=\"10\">0.6560 98 197 295</td><td/><td/><td>0.6830</td></tr><tr><td>[8]</td><td/><td/><td/><td/><td/><td colspan=\"8\">1~10 1~12 1~12</td><td/><td/><td/><td colspan=\"4\">GIZA++ Total [9] m</td><td/><td/><td colspan=\"11\">HMM 0.6658 168 239 407 0.6461 0.6560 1 10</td><td/><td/><td>0.6904 0.5577 0.5749</td><td>:</td></tr><tr><td>p D ( )</td><td>t 1 (</td><td>|</td><td>t</td><td>2</td><td>)</td><td>H</td><td>(</td><td colspan=\"2\">m</td><td>|</td><td>l</td><td>)</td><td colspan=\"2\">\u00a6</td><td colspan=\"2\">a</td><td>j</td><td>1</td><td>t ( D</td><td>t 1 (</td><td>j</td><td>|</td><td>t</td><td>2</td><td>j</td><td>)</td><td>a D</td><td>(</td><td>a</td><td>j</td><td>|</td><td>a</td><td>j</td><td>1</td><td>,</td><td>l</td><td>)</td><td>(1)</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">10</td><td/><td/><td/><td/><td colspan=\"2\">1</td><td colspan=\"3\">10</td><td/><td/><td/><td/><td/><td>10</td></tr><tr><td>2</td><td/><td/><td colspan=\"4\">GIZA++</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"4\">Predicted</td><td/><td/><td colspan=\"5\">Actual</td><td/><td/><td colspan=\"4\">Total</td><td/></tr><tr><td>13</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">10</td><td/><td/><td/><td colspan=\"2\">10 Y</td><td/><td/><td colspan=\"2\">N</td><td/><td/><td/><td/><td/><td/><td>T1</td></tr><tr><td colspan=\"2\">T2</td><td colspan=\"2\">p</td><td/><td/><td>log</td><td/><td>i i</td><td>, ,</td><td>j j</td><td colspan=\"3\">max 0</td><td colspan=\"2\">p</td><td colspan=\"19\">(1) \u01f9 j 2 Predicted t i | 1 t Actual (2) (2) Y 172 38 Y N 91 106 197 210 Total N Y 70 42 112 Total 263 144 407</td><td/><td>(3)</td><td>(4)</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"23\">N Total unigram_recall unigram_precision unigram_F_measure 98 197 295 10 T1 T2 168 239 407 t1 Predicted Actual Total</td></tr><tr><td colspan=\"37\">T1 T2 recall log Bleu precision log Bleu F measure values 10 Y N (machine translation) T1 T2 t2 2000 (1) t1 GIZA++ 13 Predicted Actual Y 174 36 Y N 89 108 197 BLEU 10 2000 T1 T2 210 Total N GIZA++ Y 72 40 Total 263 144 407 112 t2 1978 T1 T2 N 96 199 295 1 10</td><td>[7] Bleu T1 T2 T1</td><td>log Bleu (1) T2</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"2\">Total</td><td>t1</td><td/><td colspan=\"14\">1921 6 8 0.9951 168 239 407</td></tr><tr><td/><td/><td/><td/><td/><td/><td colspan=\"3\">(2)</td><td/><td/><td/><td colspan=\"25\">unigram_recall unigram_precision t2 1921 6 8 12 t1 1987 Suharto 2008 1 27 0.9512 1 12 10 0.2014 Predicted Actual Total</td><td>Soeharto</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"18\">unigram_F_measure log_bleu_recall t2 12 Y 126 43 Y N 10</td><td/><td/><td colspan=\"2\">169</td><td/><td/><td>0.9812 0.0151</td><td>1988</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"29\">log_bleu_precision log_bleu_F_measure Predicted N 137 101 238 Actual Total P=log(0.9951*0.9512*0.9812*0.0151)/4 -0.46381736 Y N Total 263 144 407</td></tr><tr><td>3</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"25\">difference in sentence length (character) absolute difference in sentence length (character) Y 68 44 112 N 100 195 295 10</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"23\">difference in sentence length (term) Total 168 239 407 Predicted Actual Total</td><td/></tr><tr><td/><td/><td/><td/><td/><td/><td>407</td><td/><td/><td/><td/><td colspan=\"26\">absolute difference in sentence length (term) Sub-tree mapping Time mapping GIZA++ 407 10 0.69 12 Y N 10 Y 129 40 169 Predicted Actual Total N 134 104 238</td><td>GIZA++</td></tr><tr><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"16\">GIZA++[10] Total 263 144 407 Y N</td><td/><td/><td>GIZA++</td></tr><tr><td colspan=\"3\">IBM1-5</td><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td/><td colspan=\"3\">HMM Y</td><td colspan=\"3\">10</td><td colspan=\"3\">70</td><td colspan=\"3\">42</td><td/><td/><td colspan=\"2\">6 112</td><td/><td/></tr></table>"
}
}
}
} |