File size: 86,080 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
{
    "paper_id": "O09-1019",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:11:18.925033Z"
    },
    "title": "\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\uf9fc\u4e2d\u57fa\u65bc\u5c0f\u6ce2\u8f49\u63db\u4e4b\u5206\u983b\u7d71\u8a08\u88dc\u511f\u6280\u8853\u7684\u7814\u7a76 A Study of Sub-band Feature Statistics Compensation Techniques Based on a Discrete Wavelet Transform for Robust Speech Recognition",
    "authors": [
        {
            "first": "Hao-Teng",
            "middle": [],
            "last": "\u8303\u9865\u9a30",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Fan",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Wen-Hsiang",
            "middle": [],
            "last": "\u675c\u6587\u7965",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Tu",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The environ mental m ismatch caused by additiv e noise and/or channel distortion often degrades th e perform ance of a s peech reco gnition sys tem seriously. V arious ro bustness techniques have been proposed to reduce this mismatch, and one category of them aim s t o normalize the statistics of speech fea tures in bo th training and testing conditions. In general, these statistics norm alization methods deal with the sp eech feature sequ ences in a f ull-band manner, which som ewhat ignores the fact th at dif ferent m odulation frequency com ponents",
    "pdf_parse": {
        "paper_id": "O09-1019",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The environ mental m ismatch caused by additiv e noise and/or channel distortion often degrades th e perform ance of a s peech reco gnition sys tem seriously. V arious ro bustness techniques have been proposed to reduce this mismatch, and one category of them aim s t o normalize the statistics of speech fea tures in bo th training and testing conditions. In general, these statistics norm alization methods deal with the sp eech feature sequ ences in a f ull-band manner, which som ewhat ignores the fact th at dif ferent m odulation frequency com ponents",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "have unequal importance for speech recognition.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "With the above observations, in this paper we propose that the speech feature streams be proce ssed in a sub-band ma nner. The processed temporal-domain feature sequence is first decomposed into non-uniform sub-bands us ing discrete wavelet transform (DWT), and then each sub-band stream is individuall y processed by the well-known normalization methods, like m ean and variance norm alization (MVN) and histogram equalization (HEQ) . Finally, we reconstruct the feature stream w ith all th e modif ied sub-band streams using inverse D WT. W ith this process, the com ponents that correspond to m ore important modulation spectral bands in the feature sequ ence can be processed separately . For the Aurora-2 clean-condition training task, the new proposed su b-band MVN and HEQ provide relative error rate reductions of 20.32% a nd 16.39% over the conventional MVN a nd HEQ, respectively. These results re veal that the proposed m ethods significantly enhance the robustness of speech features in noise-corrupted environments. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "( ) H H z \u8207 ( ) L H z \u8868\u793a\u70ba\u5206\u6790(analysis) \uf984\u6ce2\u5668\u4e4b\u9ad8\u901a\u8207\u4f4e\u901a\u7684\u8f49\u63db\u51fd\uf969(transfer function)\uff0c ( ) H G z \u8207 ( ) L G z \u5247\u70ba\u5408\u6210(synthesis)\uf984\u6ce2\u5668\u4e4b\u9ad8\u901a\u8207\u4f4e\u901a\u7684\u8f49\u63db\u51fd\uf969\uff0c\u4e14\u5b83\u5011 \u9808\u7b26\u5408\u4ee5\u4e0b\u7684\u689d\u4ef6\uff1a ( ) ( ) L H G z H z = , ( ) ( ) H L G z H z = \u2212 \u2212 (3-1) \u800c\u5728\u9ad8\u901a\u8207\u4f4e\u901a\u5206\u6790\uf984\u6ce2\u5668\u4e4b\u9593\u5b58\u6709\u4ee5\u4e0b\u95dc\u4fc2\uff1a ( ) ( ) H L H z H z = \u2212 \u5f0f(3-2) \u610f\u5373\u5176\u983b\uf961\u7279\u6027\u70ba ( ) ( ) ( ) j j H L H e H e \u03c9 \u03c0 \u03c9 \u2212 = \uff0c\u5176\u610f\u7fa9\u5728\u65bc\u9ad8\u901a\u8207\u4f4e\u901a\uf984\u6ce2\u5668\u4e4b\u983b\uf961\u97ff\u61c9\u6703 2 2 2 2 ( ) L H z ( ) H H z ( ) H G z ( ) L G z x[n] y[n] \u4ee5 2 \u03c0 \u03c9 = \u70ba\u4e2d\u5fc3\u5f62\u6210\u5de6\u53f3\u5c0d\u7a31\u7684\u5716\u5f62\uff0c\u5728\u5c0f\u6ce2\u8f49\u63db\u4e2d\uff0c\u5373\uf9dd\u7528\u6b64\u5f62\u5f0f\u7684\uf984\u6ce2\u5668\uf92d\u5c0d\u8a0a\u865f \u4f5c\u5206\u983b\u8655\uf9e4\u3002 \u5716\u56db\u6240\u8868\u793a\uf9ba\u4e00\u8a0a\u865f\u85c9\u7531\u4e0a\u8ff0\u4e4b\uf984\u6ce2\u5668\u8655\uf9e4\u7684\u5206\u89e3\u7a0b\u5e8f(decomposition process) \uff0c\u5373 \uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u7684\u5206\u983b\u8655\uf9e4\u3002\u5176\u4e2d\uff0c\u4e00\uf99a\uf905\u7684\uf978\u500d\u983b(octave-band)\u5206\u6790\uf984\u6ce2\u7d44\u8207\u4e4b\u5f8c\u7684\ufa09 \u4f4e\u53d6\u6a23(down-sampling)\u7684\u7d44\u5408\u901a\u5e38\u88ab\u7a31\u4f5c\u4e8c\u5143\u6a39(binary tree)\u7d50\u69cb\uff0c\u55ae\u4e00\u8f38\u5165\u5e8f\uf99c\u7d93\u7531\u5206 \u983b\u8655\uf9e4\u8207\ufa09\u4f4e\u53d6\u6a23\u5668(down-sampler)\u7684\u8f49\u63db\uff0c\u8f38\u51fa\u8b8a\u70ba\u5404\u5b50\u983b\u5e36\u5e8f\uf99c(sub-sequences)\u7684\u96c6 \u5408\u3002\u5728\u5716\u56db\u4e2d\uff0c\u6211\u5011\u770b\u5230\uf9ba\u4e00\u500b\u4e09\u968e(three-level)\u7684\u4e8c\u5143\u6a39\u5206\u6790\uf984\u6ce2\u5668\u7d44\u7d50\u69cb\uff0c\u5176\u4e2d\u9ad8\u901a ( ( ) H H z ) \u8207 \u4f4e \u901a ( ( ) L H z ) \uf984 \u6ce2 \u5668 \u90fd \u5177 \u6709 \u5b8c \u5168 \u91cd \u69cb (perfect reconstru ction) \u7684 \u96d9 \u901a \u9053 (two-channel)\u7279\u6027\uff0c\u5373\u8a0a\u865f\u901a\u904e\u6b64\uf978\uf984\u6ce2\u5668\u4e4b\u5f8c\uff0c\u4e26\u672a\u55aa\u5931\u4efb\u4f55\u8cc7\u8a0a\u6216\u5f15\u9032\u672a\u77e5\u7684\u5e72\u64fe \u8a0a\u865f\uff0c\u800c\u5f97\u4ee5\u5c07\u5206\u983b\u5f8c\u7684\u8a0a\u865f\u5b8c\u7f8e\u91cd\u5efa\u56de\u539f\u59cb\u8a0a\u865f\u3002\u53e6\u5916\uff0c\u5982\u679c\u8f38\u5165\u6b64\uf984\u6ce2\u5668\u7d44\u7684\u8a0a\u865f [ ] x n \u9577\ufa01\u70ba N \uff0c\u5728\u7b2c\u4e00\u968e\u9ad8\u901a\u5206\u6790\uf984\u6ce2\u5668\u4e4b\u8f38\u51fa [ ] 1 x n \u5373\u7d04\u70ba /2 N \uff0c\u800c\u518d\u4e0b\u4e00\u968e\u9ad8\u901a\u5206 \u6790\uf984\u6ce2\u5668\u8f38\u51fa [ ] 2 x n \u7d04\u70ba / 4 N \uff0c\u5982\u6b64\u91cd\u8907\u9019\u7a0b\u5e8f\uff0c\u5c31\u53ef\u4ee5\u5f97\u5230\u6240\u6709\u968e\u5c64\u4e4b\uf984\u6ce2\u5668\u7684\u8f38 \u51fa\u3002\u8868\u4e00\uf99c\u51fa\uf9ba\u5404\u5c64\uf984\u6ce2\u5668\u7684\u5176\u983b\u5e36\u7bc4\u570d\u53ca\u8f38\u51fa\u8a0a\u865f\u7684\u9577\ufa01\u3002\u4ee5\u4e0a\u6240\u8ff0\u4e4b\uf978\u500d\u983b(octave) \u5b8c\u5168\u91cd\u69cb QMF \uf984\u6ce2\u5668\u7d44\u5c0d\u8f38\u5165\u8a0a\u865f\u7684\u8655\uf9e4\u7a0b\u5e8f\uff0c\u5373\u70ba\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db(discrete wavelet transform, DWT)\uff0c\u7531\u4e0a\u8ff0\u53ef\u77e5\uff0c\u5982\u679c\u6240\u7528\u4e4b\uf984\u6ce2\u5668\u7d44\u7684\u968e\u5c64\uf969\u70ba L (\u76f8\u7576\u65bc L \u5c64\u7684\uf9ea\u6563 \u5c0f\u6ce2\u8f49\u63db) \uff0c\u5247\u8f38\u51fa\u7684\u7e3d\u5206\u983b\u8a0a\u865f\u7684\uf969\u76ee\u5247\u70ba 1 L + \u500b\u3002 \u5716\u56db \uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u7684\u5206\u89e3\u7a0b\u5e8f\u5716(\u968e\u5c64\uf969\u70ba 3) \u8868\u4e00\u3001\u4e09\u5c64\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db(DWT)\u6bcf\u4e00\u968e\u5c64\u7684\u8f38\u51fa\u8a0a\u865f\u9ede\uf969\u53ca\u76f8\u5c0d\u61c9\u7684\u983b\uf961\u7bc4\u570d ( [ ] x n \u53d6\u6a23\u983b\uf961\u70ba s F Hz ) \u8a0a\u865f \u7e3d\u9ede\uf969 \u983b\uf961\u7bc4\u570d [ ] x n N 0, 2 Hz s F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 [ ] 1 x n 2 N 4 Hz, 2 Hz s s F F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 [ ] 2 x n 4 N 8 Hz, 4 Hz s s F F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 [ ] 3 x n 8 N 16 Hz, 8 Hz s s F F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 [ ] 4 x n 8 N 0, 16 Hz s F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 \u5f9e\u4e0a\u8868\u4e00\u53ef\u77e5\uff0c\u5982\u679c\u5e8f\uf99c [ ] x n \u6db5\u84cb\u7684\u983b\uf961\u7bc4\u570d\u70ba[0, 2 s F Hz] \uff0c\u5176\u4e2d s F \u70ba [ ] x n \u7684\u53d6 \u6a23 \u983b \uf961 \uff0c \u5247 \u7d93 \u7531 \u7b2c \u4e00 \u968e \u6b63 \u4ea4 \u93e1 \u50cf \uf984 \u6ce2 \u5668 \u7d44 \u4e4b \u9ad8 \u983b \u8f38 \u51fa [ ] 1 x n \uff0c \u983b \uf961 \u7bc4 \u570d \u70ba 4 Hz, 2 Hz s s F F \u23a1 \u23a4 \u23a2 \u23a5 \u23a3 \u23a6 \uff0c\u4f9d\u6b64\uf9d0\u63a8\uff0c\u9010\u6b65\u5f80\u4f4e\u983b\uf961\u90e8\u4efd\u505a\uf967\u7b49\u5206\ufa00\u5272\uff0c\u96a8\u8457\u983b\uf961\u8d8a\u9ad8\uff0c\u5176 L H 2 \u2193 2 \u2193 H H L H 2 \u2193 2 \u2193 H H L H 2 \u2193 2 \u2193 [ ] x n [ ] 1 x n [ ] 2 x n [ ] 3 x n [ ] 4 x n H H Level 1 Level 3 Level 2 \u983b\u5bec\u5247\u8d8a\u5927\u3002\u7531\u4e0a\u6240\u8ff0\uff0c\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u7684\u7b2ck \u500b\u8f38\u51fa [ ] k x n \uff0c\u76f8\u7576\u65bc\u662f\u539f\u59cb\u5e8f\uf99c [ ] x n \u8207 \u7b2ck \u500b\u5e36\u901a\uf984\u6ce2\u5668\u4e4b\u8108\u885d\u97ff\u61c9(impulse response)\u76f8\u4e92\u647a\u7a4d(convolution)\u7684\u7d50\u679c\uff0c\u5982\u5f0f(3-3) \u6240\u793a\uff1a [ ] [ ] [ ] 1 ,1 2 , 0 -1 , 2 , . k k m k k k m h n m x m k L x n h n m x m k L \u221e + =\u2212\u221e \u221e =\u2212\u221e \u23a7 \u23aa \u23a1 \u23a4 \u23aa \u2212 \u2264 \u2264 \u23aa \u23a3 \u23a6 \u23aa \u23aa = \u23a8 \u23aa \u23aa \u23a1 \u23a4 \u2212 = \u23aa \u23a3 \u23a6 \u23aa \u23aa \u23a9 \u2211 \u2211 \u5f0f(3-3) \u5176\u4e2d 1 ,1 2 k k h n + \u23a1 \u23a4 \u23a3 \u23a6 \u8207 2 k k h n \u23a1 \u23a4 \u23a3 \u23a6 \u70ba\u539f\u59cb\u8108\u885d\u97ff\u61c9 [ ] ,1 k h n \u8207 [ ] k h n \ufa09\u4f4e\u53d6\u6a23\u800c\u5f97\uff0c\u800c\u9ad8\u901a\uf984\u6ce2\u5668\u4e4b \u8f38\u51fa\uff0c\u7a31\u70ba\u7d30\u7bc0(detail)\u4fc2\uf969\uff1b\u4f4e\u901a\uf984\u6ce2\u5668\u4e4b\u8f38\u51fa\u5247\u7a31\u70ba\u8fd1\u4f3c(approximation)\u4fc2\uf969\u3002 \uf974 \u8981 \u85c9 \u7531 \u6240 \u6709 \u5b50 \u983b \u5e36 \u8a0a \u865f \u7684 \u96c6 \u5408 \u5f97 \u5230 \u539f \u59cb \u5e8f \uf99c [ ] x n \uff0c \u5176 \u904e \u7a0b \u7a31 \u70ba \u91cd \u5efa \u7a0b \u5e8f (reconstruction process)\uff0c\u6b64\u6070\u70ba\u524d\u8ff0\u4e4b\u5206\u89e3\u7a0b\u5e8f\u7684\u53cd\u7a0b\u5e8f(inverse process)\uff0c\u5373\u4f7f\u7528\u6240\u5f97 \u4e4b [ ] { } k x n \u7d93 L \u968e\uf978\u500d\u983b\u5b8c\u5168\u91cd\u69cb QMF \u5408\u6210\uf984\u6ce2\u5668\u7d44\u9010\u5c64\u8655\uf9e4\uff0c\u6b64\u904e\u7a0b\u5373\u70ba\u53cd\uf9ea\u6563\u5c0f\u6ce2 \u8f49\u63db(inverse discrete wavelet transform, IDWT)\uff0c\u5982\u4e0b\u5716\u4e94\u6240\u793a\uff1a \u5716\u4e94 \u53cd\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u7684\u91cd\u5efa\u7a0b\u5e8f\u5716(\u968e\u5c64\uf969\u70ba 3) \u9084\u539f\u7a0b\u5e8f\u5176\uf969\u5b78\u5f0f\u5982\u5f0f(3-4)\uff1a [ ] [ ] [ ] 1 1 ,1 0 2 2 L k L k k k L k m m x n g n m x m g n m x m \u2212 \u221e \u221e + = =\u2212\u221e =\u2212\u221e \u23a1 \u23a4 \u23a1 \u23a4 = \u2212 + \u2212 \u23a3 \u23a6 \u23a3 \u23a6 \u2211 \u2211 \u2211 , (3-4) \u5176\u4e2d 1 ,1 2 k k g n + \u23a1 \u23a4 \u23a3 \u23a6 \u8207 2 k k g n \u23a1 \u23a4 \u23a3 \u23a6 \u5206\u5225\u70ba\u539f\u59cb\u8108\u885d\u97ff\u61c9 [ ] ,1 k g n \u8207 [ ] k g n \u63d0\u5347\u53d6\u6a23\u800c\u5f97\u3002\u5716\u4e94\u4e4b\u9084\u539f \u7a0b\u5e8f\uff0c\u5373\u662f\u5c07\u5404\u5b50\u983b\u5e36\u7684\u8a0a\u865f\u4ee5\u63d0\u5347\u53d6\u6a23(up-sampling)\u7684\u65b9\u5f0f\u589e\u52a0\u5e8f\uf99c\u9ede\uf969\uff0c\u518d\u7d93\u904e\u9ad8 \u901a( ( ) ( ) H H G z H z = )\u8207\u4f4e\u901a( ( ) ( ) L L G z H z = )\u4e4b\u5408\u6210\uf984\u6ce2\u5668\u8655\uf9e4\uff0c\u5982\u679c\u7b2c\u4e09\u968e\u8f38\u5165\u8a0a\u865f\u9ede \uf969\u70ba 8 N \uff0c\u5247\u5728\u7b2c\u4e09\u968e\u8f38\u51fa\u8a0a\u865f\u9ede\uf969\u7d04\u70ba 4 N \uff0c\u800c\u7b2c\u4e8c\u968e\u8f38\u51fa\u8a0a\u865f\u9ede\uf969\u7d04\u70ba 2 N \uff0c\u5982\u6b64 \u91cd\u8986\u6b64\u7a0b\u5e8f\uff0c\u5247\u6700\u5f8c\u6240\u5f97\u4e4b\u8a0a\u865f\u70ba\u539f\u59cb N \u9ede\u4e4b\u8a0a\u865f [ ] x n : \u4ee5\u4e0a\u6240\u8ff0\u70ba\u5c0f\u6ce2\u8f49\u63db\u4e4b\u5206\u6790(analysis)\u8207\u5408\u6210(synthesis)\u7a0b\u5e8f\uff0c\u7d93\u7531\u6b64\u8f49\u63db\u5f8c\uff0c\u8a0a\u865f \u88ab\u5206\u89e3\u6210\u5404\u500b\u5b50\u983b\u5e36\u4e4b\u8a0a\u865f\uff0c\u5982\u8868\u4e00\u6240\u793a\uff0c\u4f4e\u983b\u90e8\u5206\u7684\u5b50\u983b\u5e36\u983b\u5bec\u8f03\u5c0f\uff0c\u800c\u9ad8\u983b\u90e8\u5206\u7684 \u5b50\u983b\u5e36\u983b\u5bec\u8f03\u5927\u3002\u85c9\u7531\u4ee5\u4e0a\u6240\u8ff0\u7684\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u7a0b\u5e8f\uff0c\u6211\u5011\u53ef\u4ee5\u5c07\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u4f5c \u5206\u983b\u7684\u8655\uf9e4\uff0c\u9032\u800c\u91dd\u5c0d\uf967\u540c\u8abf\u8b8a\u983b\u5e36\u6210\u5206\u7684\u8a9e\u97f3\u7279\u5fb5\u5e8f\uf99c\u5206\u5225\u4f5c\u8655\uf9e4\uff0c\u5728\u4e0b\u4e00\u7ae0\uf9e8\uff0c\u6211 \u5011\u5c07\u4ecb\u7d39\u5176\u5c0d\u61c9\u7684\u7684\u5206\u983b\u5f0f\u7279\u5fb5\u7d71\u8a08\u88dc\u511f\u6cd5\u3002 \u56db\u3001\u5206\u983b\u5e36\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5 \u5728\u9019\u4e00\u7ae0\u4e2d\uff0c\u6211\u5011\u9996\u5148\u5728\u7b2c\u4e00\u7bc0\u4ecb\u7d39\u6240\u65b0\u63d0\u51fa\u4e4b\u5206\u983b\u5e36\u7279\u5fb5\u7d71\u8a08\u88dc\u511f\u6cd5\u7684\u6b65\u9a5f\u53ca\u7279 \u6027\uff0c\u63a5\u8457\u5728\u7b2c\u4e8c\u7bc0\u4e2d\uff0c\u6211\u5011\u5c07\u4ee5\u4e00\u8a9e\uf906\u70ba\uf9b5\uff0c\u9a57\u8b49\u6240\u63d0\u4e4b\u65b0\u65b9\u6cd5\u8db3\u4ee5\u6709\u6548\ufa09\u4f4e\u96dc\u8a0a\u5c0d\u8a9e \u97f3\u8abf\u8b8a\u983b\u8b5c\u4e4b\u5e72\u64fe\u3002 Level 3 [ ] 4 x n [ ] 3 x n 2 \u2191 2 \u2191 L G H G \u2295 2 \u2191 L G 2 \u2191 H G [ ] 2 x n \u2295 2 \u2191 L G 2 \u2191 H G [ ] 1 x n \u2295 [ ] x n Level 2 Level 1 (\u4e00) \u5206\u983b\u5e36\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u7684\u6b65\u9a5f\uf96f\u660e \u5047\u8a2d\u4e00\u6bb5\u8a9e\uf906(utterance)\u7684\u67d0\u4e00\u7dad\u6885\u723e\u5012\u983b\u8b5c\u8a9e\u97f3\u7279\u5fb5\u4ee5\u4e0b\u5f0f(4-1)\u8868\u793a: ( ) [ ] { } ;1 , 0 1 , m x n n N m M < \u2264 \u2264 \u2264 \u2212 (4-1) \u5176\u4e2d N \u70ba\u6b64\u7279\u5fb5\u5e8f\uf99c\u7684\u7e3d\u97f3\u6846\uf969\uff0c M \u8868\u793a\u6bcf\u4e00\u97f3\u6846\u4e2d\u7684\u7279\u5fb5\u7e3d\uf969\u3002\u6b64\u7279\u5fb5\u5e8f\uf99c\u76f8\u7576\u65bc \u6db5\u84cb\uf9ba\u5168\u8abf\u8b8a\u983b\u5e36(full-band)\u7684\u8a9e\u97f3\u8cc7\u8a0a\uff0c\u7136\u800c\uff0c\u7531\u524d\u9762\u7ae0\u7bc0\u6240\u8ff0\uff0c\uf967\u540c\u7684\u983b\u5e36\u6210\u4efd\uff0c \u5c0d\u65bc\u8a9e\u97f3\u8fa8\u8a8d\u7684\u91cd\u8981\u6027\u6709\u6240\uf967\u540c\uff0c\u57fa\u65bc\u6b64\u9805\uf9e4\u7531\uff0c\u9019\uf9e8\u6211\u5011\u4f7f\u7528\u5206\u983b\u7684\u6280\u8853\uff0c\u5c07\u6b64\u7279\u5fb5 \u5e8f\uf99c\u5206\u89e3\u6210\u5404\uf967\u540c\u983b\uf961\u7684\u6210\u5206\uff0c\u5982\u4ee5\u4e0b\u6b65\u9a5f (\u70ba\uf9ba\u7c21\uf9e0\uf96f\u660e\u8d77\ufa0a\uff0c\u6211\u5011\u5728\u4e4b\u5f8c\u7684\u8a0e\uf941\u4e2d\uff0c \u5c07\uf96d\uf976\u5f0f(4-1)\u4e2d\u4ee3\u8868\uf967\u540c\u7dad\u7279\u5fb5\u7684\u4e0a\u6a19\" ( ) m \"\uff0c\u56e0\u70ba\u6211\u5011\u662f\u5c0d\u6bcf\u4e00\u500b\uf967\u540c\u7dad\u7684\u7279\u5fb5\u5e8f\uf99c \u7686\u4f5c\u540c\u6a23\u8655\uf9e4)\uff1a \u9996\u5148\uff0c\u6211\u5011\u5c07\u539f\u59cb\u7279\u5fb5\u5e8f\uf99c [ ] { } x n \ufa00\u5272\u6210 L \u500b\u5206\u983b\u5e36\u4e14\u5047\u8a2d\u6bcf\u4e00\u5206\u983b\u5e36\u90fd\u70ba\u5404\u81ea\u7368 \uf9f7\uff0c\u800c\u6bcf\u4e00\u983b\u5e36\u4e2d\u7684\u5e8f\uf99c\u8868\u793a\u70ba [ ] { },1 x n L \u2264 \u2264 \uff0c\u6b64\ufa00\u5272\u983b\u5e36\u7684\u65b9\u6cd5\u662f\u5c07\u539f\u59cb\u7279\u5fb5 \u901a\u904e\u4e00\u500d\u983b(octave-band)\u5e36\u901a\uf984\u6ce2\u5668\u7d44\uff0c\u6bcf\u4e00\u5b50\u983b\u5e36\u8a0a\u865f\u518d\u4f5c\ufa09\u4f4e\u53d6\u6a23(down-sampling) \u8655\uf9e4\uff0c\u6b64\u6b65\u9a5f\u7b49\u6548\u65bc\u57f7\ufa08( ) 1 L \u2212 \u968e\u7684\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db(discrete wavelet transform, DWT) \u65bc \u7279\u5fb5\u5e8f\uf99c [ ] x n \u4e0a\u3002\u53e6\u5916\uff0c\u5047\u8a2d\u7279\u5fb5\u5e8f\uf99c [ ] { } x n \u97f3\u6846\u53d6\u6a23\uf961\u70ba s F (Hz) \uff0c\u5247\u5176\u8abf\u8b8a\u983b\u8b5c\u983b \uf961\u7bc4\u570d\u70ba[ ] 0, / 2 s F \uff0c\u56e0\u6b64\uff0c\u7b2c \u500b\u5206\u983b\u5e36\u5e8f\uf99c\u7684\u983b\uf961\u7bc4\u570d\uff0c\u53ef\u88ab\u8fd1\u4f3c\u8868\u793a\u6210\u5f0f(4-2)\uff1a ( ) ( ) ( ) 1 2 1 1 1 1 0, / 2 if =1 2 2 2 / 2 , / 2 if 2, 3, , 2 2 s L s s L L F F F L \u2212 \u2212 \u2212 \u2212 \u2212 \u23a7\u23a1 \u23a4 \u23aa \u23aa \u23a2 \u23a5 \u23aa \u23a2 \u23a5 \u23aa\u23a3 \u23a6 \u23aa \u23a8 \u23a1 \u23a4 \u23aa \u23aa \u23a2 \u23a5 = \u23aa \u23aa\u23a2 \u23a5 \u23aa\u23a3 \u23a6 \u23a9 (4-2) \u5728 DWT \u7a0b\u5e8f\u4e2d\uff0c\u5176\u65b9\u5f0f\u662f\u5c07\u4e00\u4e3b\u983b\u5e36\u4f9d\u983b\u5bec\u5148\u7b49\ufa00\u70ba\uf978\u500b\u526f\u983b\u5e36\uff0c\u7136\u5f8c\u4fdd\u6301\u9ad8\u983b \u5e36\uf967\u52d5\uff0c\u5c07\u4f4e\u983b\u5e36\u518d\u7b49\ufa00\u6210\uf978\u500b\u526f\u983b\u5e36\uff0c\u5982\u6b64\u53cd\u8986\u9032\ufa08\uff0c\u56e0\u6b64\u76f8\u7576\u65bc\u4f4e\u983b\u90e8\u4efd\u6703\u4f7f\u7528\u8f03 \u591a\u500b\u983b\u5bec\u8f03\u5c0f\u7684\uf984\u6ce2\u5668\uff0c\u800c\u9ad8\u983b\u90e8\u4efd\u5247\u7528\u8f03\u5c11\u500b\u983b\u5bec\u8f03\u5927\u7684\uf984\u6ce2\u5668\uff0c\u800c\u56e0\u70ba DWT \u7a0b\u5e8f \u4e2d\u7684\ufa09\u4f4e\u53d6\u6a23(down-sampling)\u7684\u904b\u7b97\uff0c\u6240\u4ee5\u6bcf\u4e00\u5206\u983b\u5e36\u7684\u5e8f\uf99c [ ] { } x n \u9577\ufa01\u7d04\u6b63\u6bd4\u65bc\u983b \u5bec\u7684\u5927\u5c0f\u3002 \u63a5\u8457\uff0c\u5c07\u4e0a\u6b65\u9a5f\u6240\u5f97\u7684\u5206\u983b\u5e36\u5e8f\uf99c [ ] { } x n \u505a\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\uff0c\u5f97\u5230\u65b0\u7684\u5206\u983b\u5e36\u5e8f \uf99c\uff0c\u8868\u793a\u70ba [ ] { } x n \uff0c\u5176\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u7684\u65b9\u5f0f\u662f\u5c07\u6bcf\u4e00\u8a9e\uf906\u4e4b\u5b50\u983b\u5e36\u7279\u5fb5 [ ] { } x n \u7684\u7d71 \u8a08\uf97e\uff0c\u8b6c\u5982\u5e73\u5747\u503c(mean)\u3001\u8b8a\uf962\uf969(variance)\u6216\u662f\uf901\u9ad8\u968e\u7684\u52d5\u5dee(moments)\u4f5c\u8655\uf9e4\uff0c\u4f7f\u65b0 \u7684\u7279\u5fb5\uf96b\uf969 [ ] { } x n \u7684\u7d71\u8a08\uf97e\u7b49\u540c\u6216\u903c\u8fd1\u4e00\u76ee\u6a19(target)\u7d71\u8a08\uf97e\uff0c\u800c\u6b64\u76ee\u6a19\u7d71\u8a08\uf97e\u662f\u7531\u4e7e \u6de8\u8a13\uf996\u8a9e\uf9be\u5eab\u4e2d\uff0c\u6240\u6709\u8a9e\uf906\u4e4b\u5b50\u983b\u5e36\u7279\u5fb5 [ ] { } x n \u4f30\u6e2c\u8a08\u7b97\u800c\u5f97\u3002\u5728\u9019\uf9e8\u6211\u5011\u4f7f\u7528\u7684\u7279 \u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u6709\uf978\u7a2e\uff0c\u5206\u5225\u70ba\u5012\u983b\u8b5c\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u6b63\u898f\u5316\u6cd5(MVN)\u8207\u7d71\u8a08\u5716\u7b49\u5316\u6cd5 (HEQ)\uff0c\u4ee5 MVN \u6cd5\u800c\u8a00\uff0c\u6240\u5f97\u65b0\u7684\u5206\u983b\u5e36\u5e8f\uf99c [ ] { } c n \u53ef\u8868\u793a\u70ba\u4e0b\u5f0f(4-3)\uff1a [ ] [ ] , , , , s t t s x n x n \u03bc \u03c3 \u03bc \u03c3 \u239b \u239e \u2212 \u239f \u239c \u239f \u239c = \u00d7 + \u239f \u239c \u239f \u239f \u239c \u239d \u23a0 (4-3) \u5176\u4e2d ,s \u03bc \u8207 2 ,s \u03c3 \u5206\u5225\u70ba\u76ee\u524d\u8655\uf9e4\u7684\u55ae\u4e00(single)\u5206\u983b\u5e36\u5e8f\uf99c [ ] { } x n \u7684\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\uff0c\u800c ,t \u03bc \u8207 2 ,t \u03c3 \u70ba\u76ee\u6a19(target)\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\uff0c\u6b64\u76ee\u6a19\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u662f\u7531\u539f\u59cb\u4e7e\u6de8\u8a13\uf996\u8a9e\uf9be \u5eab\u4e2d\u6240\u6709\u5206\u983b\u5e36\u7279\u5fb5\u5e8f\uf99c [ ] { } x n \u4f30\u6e2c\u800c\u5f97\u3002\u540c\u6a23\u5730\uff0c\u5982\u4ee5 HEQ \u4f5c\u70ba\u7d71\u8a08\u88dc\u511f\u6cd5\uff0c\u5247 [ ] { } x n \u8207 [ ] { } x n \u5f7c\u6b64\u95dc\u4fc2\u70ba\u4e0b\u5f0f(4-4)\uff1a [ ] [ ] ( ) ( ) 1 , , X t X s x n F F x n \u2212 = (4-4) \u5176\u4e2d ( ) , . X s F \u70ba\u76ee\u524d\u8655\uf9e4\u7684\u55ae\u4e00\u5206\u983b\u5e36\u5e8f\uf99c [ ] { } x n \u6240\u4f30\u6e2c\u7684\u6a5f\uf961\u5206\u4f48\u51fd\uf969(probability distribution function)\uff0c\u800c ( ) , . X t F \u662f\u7531\u539f\u59cb\u4e7e\u6de8\u8a13\uf996\u8a9e\u5eab\u4e2d\u6240\u6709\u5206\u983b\u5e36\u7279\u5fb5\u5e8f\uf99c [ ] { } x n \u6240 \u4f30\u6e2c\u800c\u5f97\u7684\u6a5f\uf961\u5206\u4f48\u51fd\uf969\u3002 \u6700\u5f8c\uff0c\u5c07\u6240\u6709\u7684\u5206\u983b\u5e36\u5e8f\uf99c [ ] { } x n (\u5305\u542b\uf9ba\uf901\u65b0\u904e\u5f8c\u8207\u672a\uf901\u65b0\u7684\u5206\u983b\u5e36\u5e8f\uf99c)\u900f\u904e ( ) 1 L \u2212 \u968e\u53cd\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db(inverse discrete wavelet transform, IDWT)\uff0c\u91cd\u5efa\u70ba\u65b0\u7684\u7279\u5fb5\u6642 \u9593\u5e8f\uf99c\uff0c\u6b64\u5373\u70ba\u6211\u5011\u6700\u5f8c\u4f7f\u7528\u4e4b\u8a9e\u97f3\u7279\u5fb5\u5e8f\uf99c [ ] { } x n \u3002 \u4e0a\u8ff0\u5206\u983b\u5e36\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u7684\uf9ca\u7a0b\u5716\u7e6a\u65bc\u4e0b\u5716\uf9d1\uff1a x[n] H L (z) H H (z) \u21932 \u21932 H H (z) \u21932 \u21932 H L (z) H H (z) \u21932 S S S S \u21932 \u21912 \u21912 H L (z) G L (z) G H (z) \u21912 \u21912 G L (z) G H (z) \u21912 \u21912 G L (z) G H (z) [ ] x n [ ] 1 x n [ ] 2 x n [ ] 3 x n [ ] 4 x n [ ] 1 x n [ ] 2 x n [ ] 3 x n [ ]",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u5716\uf9d1 \u5206\u983b\u5e36\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u7684\u904b\u4f5c\u7a0b\u5e8f\u5716 \u70ba\uf9ba\u5728\u4e4b\u5f8c\u7684\u8a0e\uf941\u4e2d\uff0c\u6709\u6548\u5340\u9694\u50b3\u7d71\u65b9\u6cd5\u8207\u6240\u63d0\u51fa\u7684\u65b0\u65b9\u6cd5\uff0c\u5c0d\u50b3\u7d71\u5168\u983b\u5e36 (full-band)\u7684\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5 MVN \u8207 HEQ\uff0c\u6211\u5011\u5206\u5225\u7a31\u4e4b\u70ba FB-MVN \u8207 FB-HEQ\uff0c \u800c \u5982 \u5f0f (4-3) \u8207 (4-4) \u4e2d \u5206 \u983b (sub-band) \u8655 \uf9e4 \u7684 \u7279 \u5fb5 \u7d71 \u8a08 \u6b63 \u898f \u5316 \u6cd5 \uff0c \u6211 \u5011 \u5247 \u5206 \u5225 \u7a31 \u70ba SB-MVN \u548c SB-",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "De-noising by soft-thresholding",
                "authors": [
                    {
                        "first": "D",
                        "middle": [
                            "L"
                        ],
                        "last": "Donoho",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "IEEE Trans. on Information Theory",
                "volume": "41",
                "issue": "3",
                "pages": "613--627",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D.L. Donoho, \"De-noising by soft-thresholding\", IEEE Trans. on Information Theory, vol. 41, no. 3, pp. 613-627, May 1995.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Suppression of aco ustic noise in speech u sing spectral subtraction",
                "authors": [
                    {
                        "first": "S",
                        "middle": [
                            "F"
                        ],
                        "last": "Boll",
                        "suffix": ""
                    }
                ],
                "year": 1979,
                "venue": "IEEE Trans. on Acoustics, Speech and Signal Processing",
                "volume": "27",
                "issue": "2",
                "pages": "113--120",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. F . Boll, \"Suppression of aco ustic noise in speech u sing spectral subtraction \", IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 27, no. 2, pp. 113-120, 1979",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Noise spectrum estim ation with entropy-based V AD i n non-stationary environm ents",
                "authors": [
                    {
                        "first": "K.-C",
                        "middle": [],
                        "last": "B.-F . W U",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEICE Trans. on Fundamentals of Electronics",
                "volume": "",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B.-F . W u, K.-C. W ang, \"Noise spectrum estim ation with entropy-based V AD i n non-stationary environm ents\", IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, vol. E89-A, no. 2, Feb 2006",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Wavelet speech e nhancement based on voiced /unvoiced decision",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "K"
                        ],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "D"
                        ],
                        "last": "Yoo",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "4149--4156",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.K. Lee , C.D. Yoo, \"Wavelet speech e nhancement based on voiced /unvoiced decision\", 32 nd Inter-Noise, pp. 4149-4156, Aug 2003",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A speech endpoint d etection method based on wavelet coefficient varian ce an d sub-band am plitude varian ce",
                "authors": [
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "International Conference on Innovative Computing",
                "volume": "3",
                "issue": "",
                "pages": "83--86",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "X. Zhang, Z. Zhao and G. Zhao, \"A speech endpoint d etection method based on wavelet coefficient varian ce an d sub-band am plitude varian ce\", International Conference on Innovative Computing, Information and Control, vol. 3, pp. 83-86, 2006",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Mel-scale d discre te wavelet co efficients for speech recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "N"
                        ],
                        "last": "Gowdy",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Tufekci",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "3",
                "issue": "",
                "pages": "1351--1354",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J.N. Gowdy and Z. Tufekci, \"Mel-scale d discre te wavelet co efficients for speech recognition\", in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 3, pp. 1351-1354, 2000",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Objective wavelet packets features for speaker verification",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Siafarikas",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Anchev",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Fakotak",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. International Conference on Spoken Language Processing (ICSLP)",
                "volume": "",
                "issue": "",
                "pages": "2365--2368",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Siafarikas, T. G anchev and N. Fakotak is, \"Objective wavelet packets features for speaker verification\" , in Proc. International Conference on Spoken Language Processing (ICSLP), pp. 2365-2368, 2002",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Cepstral analysis technique for automatic speaker verification",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Furui",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "IEEE Trans. on Acoustics, Speech and Signal Processing",
                "volume": "29",
                "issue": "2",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Furui, \"Cepstral analysis technique for automatic speaker verification\", IEEE Trans. on Acoustics, Speech and Signal Processing, vol. 29, no. 2, Apr 1981",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Bilm es, '' Frontend post-processing and backend model enhancement on The Aurora 2.0/3.0 databases' '",
                "authors": [
                    {
                        "first": "C.-P",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Filaliy",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. International Conference on Spoken Language Processing (ICSLP)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-P. Chen, K. Filaliy and J. A. Bilm es, '' Frontend post-processing and backend model enhancement on The Aurora 2.0/3.0 databases' ', in Proc. International Conference on Spoken Language Processing (ICSLP), 2002",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "M VA processing of speech featu res",
                "authors": [
                    {
                        "first": "C.-P",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "J. -A",
                        "middle": [],
                        "last": "Bilm",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEEE Trans. on Audio, Speech, and Language Processing",
                "volume": "15",
                "issue": "1",
                "pages": "257--270",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-P. Chen and J. -A. Bilm es, \"M VA processing of speech featu res\", IEEE Trans. on Audio, Speech, and Language Processing, vol.15, no. 1, pp.257-270, Jan 2006.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Quantile base d histogram equalization for noise robust speech recognition",
                "authors": [
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Hilger",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Speech Communication and Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. Hilger and H. Ney , \"Quantile base d histogram equalization for noise robust speech recognition\", in European Conference on Speech Communication and Technology (Eurospeech), 2001",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "On the importance of various modulation frequencies for speech recognition",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Ka Nedera",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Arai",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Herm",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Pavel",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Speech Communication and Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Ka nedera, T . Arai, H. Herm ansky, and M. Pavel, \"On the importance of various modulation frequencies for speech recognition \", in European Conference on Speech Communication and Technology (Eurospeech), 1997",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "RASTA Processing of Speech",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Hermansky",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Mor Gan",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Trans. on Speech and Audio Processing",
                "volume": "2",
                "issue": "4",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Hermansky and N. Mor gan, \"RASTA Processing of Speech\", IEEE Trans. on Speech and Audio Processing, vol.2, no. 4, Oct. 1994.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Optim ization of tem poral filters for constructing robust features in speech recognition",
                "authors": [
                    {
                        "first": "J-W",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    },
                    {
                        "first": "L-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEEE Trans. on Audio, Speech and Language Processing",
                "volume": "4",
                "issue": "3",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J-W. Hung and L-S. Lee, \"Optim ization of tem poral filters for constructing robust features in speech recognition\", IEEE Trans. on Audio, Speech and Language Processing, vol.4, no. 3, May 2006",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Application of quadrature mirror filters to spilt-band voice coding schem es",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Esteban",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Galand",
                        "suffix": ""
                    }
                ],
                "year": 1977,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing",
                "volume": "2",
                "issue": "",
                "pages": "191--195",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Esteban and C. Galand. \"Application of quadrature mirror filters to spilt-band voice coding schem es\", in Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 2, pp. 191-195, May 1977.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The A URORA Experim ental Fram ework for the Performance Evaluation s of Speech Rec ognition System s under Noisy Conditions",
                "authors": [
                    {
                        "first": "H",
                        "middle": [
                            "G"
                        ],
                        "last": "Hirsch",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Pearce",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of ISCA IIWR ASR2000",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. G . Hirsch and D. Pearce, \"The A URORA Experim ental Fram ework for the Performance Evaluation s of Speech Rec ognition System s under Noisy Conditions \", in Proc. of ISCA IIWR ASR2000, Paris, France, 2000",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Cepstral gain normalization for noise robust speech recognition",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yoshizawa",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "1",
                "issue": "",
                "pages": "209--221",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Yoshizawa et al., \"Cepstral gain normalization for noise robust speech recognition,\" in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 1, pp. I-209-12, May 2004",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Higher orde r cepstral moment normalization (HOCMN) f or robust speech recognition",
                "authors": [
                    {
                        "first": "C.-W",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "L.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing",
                "volume": "17",
                "issue": "",
                "pages": "205--220",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C.-W. Hsu and L.-S. Lee, \"Higher orde r cepstral moment normalization (HOCMN) f or robust speech recognition \", in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 17, no. 2, pp. 205-220, Feb 2004",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Cepstral shape norm alization (CSN) for robust speech recognition",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "R.-H W",
                        "middle": [],
                        "last": "Ang",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "4389--4392",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Du and R.-H W ang, \"Cepstral shape norm alization (CSN) for robust speech recognition\", in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4389-4392, April 2008",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Entropy-based algor ithms for best basis selection",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "R"
                        ],
                        "last": "Coifm An",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "V"
                        ],
                        "last": "Ickerhauser",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "IEEE Trans. on Information Theory",
                "volume": "38",
                "issue": "2",
                "pages": "713--718",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. R. Coifm an and M. V . W ickerhauser. \"Entropy-based algor ithms for best basis selection\", IEEE Trans. on Information Theory, vol. 38, no. 2, pp. 713-718, March 1992",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "L (z) : low-pass analysis filter H H (z) : high-pass analysis filter G L (z) : low-pass synthesis filter G H (z) : high-pass synthesis filter",
                "num": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "content": "<table><tr><td>\uf961(zero-crossing rate)\uf92d\u6c7a\u5b9a\u542b\u6709\u8a9e\u97f3\u6210\u5206\u7684\u4f4d\u7f6e\uff1b\u5728\u983b\u57df(frequency domain)\u4e0a\uff0c\u5247\u901a\u5e38 (cepstral mean subtraction, CMS)[8] \u3001\u5012\u983b\u8b5c\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u6b63\u898f\u5316\u6cd5(cepstral mean and</td></tr><tr><td>\u662f\u8a08\u7b97\u8a9e\u97f3\u983b\u8b5c\u7684\u71b5(entropy)\uf92d\u7372\u5f97\u8a9e\u97f3\u6210\u5206\u7684\u8cc7\u8a0a[3]\u3002\u800c\u5c0f\u6ce2\u5728\u6b64\u65b9\u5411\u4e0a\u6240\u63d0\u51fa\u7684\u6280 variance normalization, MVN)[9]\u3001\u5012\u983b\u8b5c\u5e73\u5747\u8207\u8b8a\uf962\uf969\u6b63\u898f\u5316\u6cd5\u7d50\u5408\u81ea\u52d5\u56de\u6b78\u52d5\u614b\u5e73\u5747</td></tr><tr><td>\u8853\u76f8\u5c0d\u8f03\u591a\uff0c\u8b6c\u5982\u5728\u6587\u737b[4]\u4e2d\u63d0\u5230\uf9ba\u4f7f\u7528\u5c0f\u6ce2\u8f49\u63db\u7684\u4fc2\uf969\u80fd\uf97e\u6bd4\uf9b5\u5224\u5b9a\u8a9e\u97f3\u53ca\u975e\u8a9e\u97f3 \uf984\u6ce2\u5668\u6cd5(cepstral m ean and variance norm alization p lus auto-regress ive m oving average</td></tr><tr><td>(non-speech)\u6210\u5206\uff0c\u6216\u662f\u5728\u53e6\u4e00[5]\u6587\u737b\uf9e8\u63d0\u51fa\u8a08\u7b97\u5c0f\u6ce2\u4fc2\uf969\u4e4b\u8b8a\uf962\uf969\uff0c\u5c07\u5176\u8996\u70ba\u4e00\u7d44\u96a8 filtering, MVA)[10]\u8207\u7d71\u8a08\u5716\u6b63\u898f\u5316\u6cd5(histogram equalization, HEQ)[11]\u7b49\u3002</td></tr><tr><td>\u6a5f\u8b8a\uf969(random variable) \u7d93\u7531\u6a5f\uf961\uf9e4\uf941\u4e4b\u7d50\u679c\u5224\u5b9a\uff0c\u6240\u5f97\u5206\uf9d0\u65b9\u6cd5\u76f8\u8f03\u65bc\u4e4b\u524d\u65b9\u5f0f\u80fd\uf901 \u4e0a\u8ff0\u5404\u7a2e\u7684\u6b63\u898f\u5316\u6280\u8853\u4e2d\uff0c\u7686\u662f\u628a\u55ae\u4e00\u7dad\u7279\u5fb5\u5e8f\uf99c\u4e4b\u6240\u6709\u7279\u5fb5\u8996\u70ba\u540c\u4e00\u500b\u96a8\u6a5f\u8b8a\uf969</td></tr><tr><td>\u7cbe\u78ba\u5224\u5225\u51fa\u8a9e\u97f3\u8ddf\u975e\u8a9e\u97f3\u4e4b\u6210\u4efd\u3002 \u7684\u53d6\u6a23(sample)\uff0c\u9032\u800c\u76f4\u63a5\u4f30\u6e2c\u6b64\u96a8\u6a5f\u8b8a\uf969\u4e4b\u7d71\u8a08\uf96b\uf969\uff0c\u8b6c\u5982\u671f\u671b\u503c(mean)\u3001\u8b8a\uf962\uf969</td></tr><tr><td>(\u4e09) \u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6(robust speech feature extraction) (variance)\u8207\u6a5f\uf961\u5206\u4f48(probability distribution)\u7b49\u3002\u96d6\u7136\u7a0b\u5e8f\u4e0a\uf9e0\u65bc\u5be6\u73fe\uff0c\u537b\u76f8\u5c0d\u5ffd\uf976\uf9ba\u4e00</td></tr><tr><td>\u6b64\uf9d0\u7684\u8a9e\u97f3\u8655\uf9e4\u6280\u8853\u65b9\u6cd5\u76ee\u7684\u662f\u64f7\u53d6\uf967\u5bb9\uf9e0\u53d7\u5230\u96dc\u8a0a\u5e72\u64fe\u7684\u8a9e\u97f3\u7279\u5fb5\uf96b\uf969\uff0c\u50b3\u7d71 \u6bb5\u8a9e\uf906\u4e4b\u4e2d\uff0c\u5176\u7279\u5fb5\u96a8\u6642\u9593\u8b8a\u5316\u7684\u7279\u6027\uff0c\uf9b5\u5982\u8abf\u8b8a\u983b\u8b5c\u7684\u8cc7\u8a0a\u3002\u5f9e\u53e6\u4e00\u89c0\u9ede\uf92d\u770b\uff0c\u9019\u4e9b</td></tr><tr><td>\u7684\u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6\u6280\u8853\u5927\u591a\uf969\u662f\u5728\u63a2\u8a0e\u8a9e\u97f3\u7279\u5fb5\u7684\u983b\u8b5c\u6027\u8cea\u9032\u800c\u767c\u5c55\u800c\u5f97\uff0c\u63db\uf906\u8a71 \u4f5c\u6cd5\u7b49\u540c\u65bc\u5c07\u5168\u90e8\u8abf\u8b8a\u983b\uf961\u4e4b\u6210\u4efd\u4e00\u4f75\u505a\u8655\uf9e4\u3002\u7136\u800c\u6839\u64da\u904e\u53bb\u8a31\u591a\u7684\u7814\u7a76\u767c\u73fe\uff0c\uf967\u540c\u7684</td></tr><tr><td>\uf96f\uff0c\u5176\u6240\u4f7f\u7528\u7684\u8f49\u63db\u6cd5\u70ba\u6709\u540d\u7684\u5085\uf9f7\uf96e\u8f49\u63db(Fourier transform)\u3002\u7136\u800c\u5c0f\u6ce2\u8655\uf9e4\u4e5f\u76f8\u7e7c\u61c9 \u8abf\u8b8a\u983b\u8b5c\u6210\u4efd\u5c0d\u65bc\u8a9e\u97f3\u8fa8\uf9fc\u64c1\u6709\uf967\u540c\u7684\u91cd\u8981\u6027\uff0c\uf901\u7cbe\u78ba\u5730\uf96f\uff0c\u5728 N.Kanedera \u5b78\u8005[12]</td></tr><tr><td>\u7528\u65bc\u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\u64f7\u53d6\u6280\u8853\u4e0a\uff0c\uf9b5\u5982\uff0c\u5728[6]\u63d0\u51fa\u5c07\u539f\u59cb\u6885\u723e\u5012\u983b\u8b5c\u7279\u5fb5(mel-frequency \u8a73\u7d30\u6307\u51fa\u5927\u90e8\u5206\u7684\u8a9e\u97f3\u8fa8\uf9fc\u8cc7\u8a0a\u5206\u5e03\u5728 1 Hz \u548c 16 Hz \u7684\u8abf\u8b8a\u983b\uf961\u4e4b\u9593\uff0c\u4e14\u4e3b\u8981\u96c6\u4e2d\u5728 4</td></tr><tr><td>cepstral co efficients, M FCC)\u4e2d\u7684\uf9ea\u6563\u9918\u5f26\u8f49\u63db(discrete cosine trans form, DCT) \u7a0b\u5e8f\u6539\u8b8a Hz \u9644\u8fd1\u3002\u56e0\u6b64\uff0c\u8a31\u591a\u77e5\u540d\u4e14\u6210\u529f\u7684\u6642\u9593\u5e8f\uf99c\uf984\u6ce2\u5668(temporal filters)[13,14] \uff0c\u90fd\u662f\u7279\u5225</td></tr><tr><td>\u70ba\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db(discrete wavelet transform, DWT)\uff0c\u5176\uf941\u6587\u5448\u73fe\u7684\u5be6\u9a57\u7d50\u679c\u986f\u793a\u6240\u5f97\u5230\u7684 \u5f37\u8abf\u51fa\u9019\u4e9b\u91cd\u8981\u7684\u8abf\u8b8a\u983b\uf961\u6210\u5206\uff0c\u9032\u800c\u986f\u793a\u80fd\u6709\u6548\u6539\u5584\u96dc\u8a0a\u74b0\u5883\u4e0b\u8a9e\u97f3\u8fa8\uf9fc\u7684\u6548\u80fd\u3002</td></tr><tr><td>\u7279\u5fb5\u6bd4\u539f\u59cb MFCC \uf901\u5177\u6709\u96dc\u8a0a\u74b0\u5883\u4e4b\u5f37\u5065\u6027\u3002 \u800c\u524d\u9762\u4ecb\u7d39\u7684\u5404\u7a2e\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6f14\u7b97\u6cd5\uff0c\u53ef\u80fd\u7f3a\u5931\u5728\u65bc\u7121\u6cd5\u6709\u6548\u7a81\u986f\uf967\u540c\u8abf\u8b8a\u983b</td></tr><tr><td>\u4e00\u3001\u7dd2\uf941 \u8fd1\uf98e\uf92d\uff0c\u8a9e\u97f3\u8655\uf9e4\u4e4b\uf9b4\u57df\u7684\u5b78\u8005\u6301\u7e8c\u5730\u958b\u767c\u7814\u7a76\uff0c\u4f7f\u8a9e\u97f3\u8655\uf9e4\u76f8\u95dc\uf9e4\uf941\u8207\u6280\u8853\uf967 \u65b7\u7cbe\u9032\u6210\u719f\uff0c\u9010\u6f38\u8da8\u65bc\u5be6\u969b\u61c9\u7528\u7684\u76ee\u7684\uff0c\u5c31\u8a9e\u97f3\u8fa8\uf9fc(speech recogn ition)\u800c\u8a00\uff0c\u5176\u7cfb\u7d71 \u5e38\u56e0\u6240\u5728\u74b0\u5883\u4e4b\u96dc\u8a0a\u5e72\u64fe\u6216\u662f\u50b3\u8f38\u901a\u9053\u7684\u6548\u61c9\uff0c\u800c\u4f7f\u8fa8\uf9fc\u6548\u80fd\u53d7\u5230\u660e\u986f\u5f71\u97ff\u3002\u91dd\u5c0d\u9019\u6a23 \u7684\u554f\u984c\uff0c\u8fd1\uf98e\uf92d\u7684\u7814\u7a76\u5b78\u8005\u63d0\u51fa\uf9ba\u4e00\u7cfb\uf99c\u7684\u74b0\u5883\u5f37\u5065\u6027(environmental robustness)\u6280\u8853\uff0c \uf961\u6210\u4efd\u5c0d\u65bc\u8a9e\u97f3\u8fa8\uf9fc\u7684\u91cd\u8981\u6027\uff0c\u56e0\u6b64\u6211\u5011\u5e0c\u671b\u80fd\u628a\u4e00\u7279\u5fb5\u6642\u9593\u5e8f\uf99c\u4e2d\u7684\uf967\u540c\u983b\uf961\u6210\u4efd\u5206 (\u56db) \u807d\u89ba\uf984\u6ce2\u5668\u8a2d\u8a08(auditory filter design) \uf9ea\u51fa\uf92d\uff0c\u9032\u800c\u500b\u5225\u8655\uf9e4\uff0c\u521d\u6b65\u7684\u69cb\u60f3\u662f\u80fd\u5c0d\u65bc\u8abf\u8b8a\u983b\uf961\u8f03\u91cd\u8981\u4e4b\u4f4e\u983b\u7684\u90e8\u4efd\u8f03\u7cbe\u7d30\u7684\u8655 \u4e00\u822c\u800c\u8a00\uff0c\u8a9e\u97f3\u8fa8\uf9fc\u4e2d\u7279\u5fb5\uf96b\uf969\u6c42\u53d6\u7a0b\u5e8f\uf9e8\u6240\u61c9\u7528\u7684\u8a9e\u97f3\u807d\u89ba\uf984\u6ce2\u5668\u7d44\u70ba\u6885\u723e\u5c3a \uf9e4\uff0c\u76f8\u5c0d\u6bd4\u8f03\uf967\u91cd\u8981\u4e4b\u9ad8\u983b\u7684\u90e8\u4efd\u5247\u4f7f\u7528\u8f03\u7c97\uf976\u7684\u65b9\u5f0f\u8655\uf9e4\u3002\u57fa\u65bc\u6b64\u76ee\u7684\uff0c\u6211\u5011\u767c\u73fe\u5c0f \ufa01(mel-scaled)\u7684\uf984\u6ce2\u5668\u7d44\uff0c\u9019\u4e9b\uf984\u6ce2\u5668\u5176\u5206\u4f48\u7279\u6027\u70ba\uff1a1 kHz \u983b\uf961\u4ee5\u4e0b\u70ba\u7dda\u6027\u5206\u4f48\uff0c1 kHz \u6ce2\u8f49\u63db\u662f\u500b\u5341\u5206\u6709\u7528\u7684\u5de5\u5177\uff0c\u512a\u9ede\u70ba\u5176\u80fd\u5c0d\u4e00\u983b\uf961\u5340\u57df\u4f5c\uf967\u7b49\u5206\u7684\ufa00\u5272\uff0c\u5373\u5c07\u8a0a\u865f\u5176\u8f03 \u4ee5\u4e0a\u983b\uf961\u70ba\u975e\u7dda\u6027\u5206\u4f48\uff0c\u5f7c\u6b64\u76f8\u4e92\u90e8\u5206\u91cd\u758a\uff0c\u5176\u53ef\u8fd1\u4f3c\u6a21\u64ec\u4eba\u8033\u807d\u89ba\u6548\u61c9\u3002\u76f8\u5c0d\u800c\u8a00\uff0c \u4f4e\u983b\uf961\u90e8\u5206\u4f7f\u7528\u8f03\u7a84\u7684\uf984\u6ce2\u5668\u904e\uf984\u51fa\uf92d\uff0c\u800c\u9ad8\u983b\u90e8\u5206\u5247\u7528\u8f03\u5bec\u7684\uf984\u6ce2\u5668\u5f97\u4e4b\uff0c\u4e4b\u5f8c\u5c0d\u65bc \u5c0f\u6ce2\u8655\uf9e4\u4e4b\u7814\u7a76\u5b78\u8005[7]\u4e5f\u63d0\u51fa\uf9ba\uf9dd\u7528\u5c0f\u6ce2\u5305(wavelet packet) \u7684\u7279\u6027\uf92d\u4eff\u6548\u4eba\u8033\u807d\u89ba\u6548 \u6bcf\u500b\u5b50\u983b\u5e36\u7684\u7279\u5fb5\u5e8f\uf99c\u4f5c\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u3002\u9019\u6a23\u7684\u7a0b\u5e8f\uff0c\u76f8\u8f03\u65bc\u50b3\u7d71\u7684\u5168\u983b\u5e36\u5f0f\u7684\u7279\u5fb5\u7d71 \u61c9\uff0c\u5176\u9069\u7576\u900f\u904e\u4e00\uf99a\uf905\u5c0f\u6ce2\u5305\u8f49\u63db\u6240\ufa00\u5272\u7684\u90e8\u4efd\u983b\u5e36\uff0c\u9078\u64c7\u51fa\u80fd\u8da8\u8fd1\u65bc\u4eba\u8033\u807d\u89ba\u7684\uf984\u6ce2 \u8a08\u6b63\u898f\u5316\u6cd5\uff0c\uf9e4\u61c9\u53ef\u4ee5\u9032\u4e00\u6b65\u63d0\u6607\u8655\uf9e4\u5f8c\u4e4b\u7279\u5fb5\u7684\u5f37\u5065\u6027\u3002\u4e4b\u5f8c\u4e00\u7cfb\uf99c\u7684\u7ae0\u7bc0\uff0c\u6211\u5011\u5c07 \u5668\u7d44\u6548\u61c9\uff0c\u800c\u7531\u65bc\u5c0f\u6ce2\u8655\uf9e4\u6240\u5f97\u4e4b\u5f7c\u6b64\u983b\u5e36\u9593\u90fd\u5047\u8a2d\u70ba\uf967\u76f8\u95dc\uff0c\u5373\u70ba\u4e92\uf967\u5f71\u97ff\uff0c\u56e0\u6b64\u6240 \u9010\u6b65\u4ecb\u7d39\u5c0f\u6ce2\u8f49\u63db\u4e4b\u5206\u983b\uf9e4\uf941\u4ee5\u53ca\u6240\u63d0\u51fa\u7684\u5206\u983b\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\uff0c\u6700\u5f8c\u4ee5\u5be6\u9a57\u7d50\u679c\u8b49 \ufa00\u5272\u51fa\uf92d\u7684\u5404\u983b\uf961\u7bc4\u570d\u7684\u8a9e\u97f3\u4fe1\u865f\u90fd\u6db5\u84cb\uf9ba\u7368\uf9f7\u7684\u8fa8\uf9fc\u8cc7\u8a0a\uff0c\u5176\u4e2d\u7684\u5be6\u9a57\u7d50\u679c\u9a57\u8b49\uf9ba\u4ee5 \u5be6\u6b64\u5206\u983b\u5f0f\u6b63\u898f\u5316\u6cd5\u512a\u65bc\u50b3\u7d71\u4e4b\u5168\u983b\u5f0f\u6b63\u898f\u5316\u65b9\u6cd5\u3002 \u4e0a\u7684\u8655\uf9e4\u53ef\u4ee5\u512a\u65bc\u50b3\u7d71\u7684\u6885\u723e\uf984\u6ce2\u5668\u7d44\u8655\uf9e4\uff0c\u9054\u5230\u5c07\u8a9e\u97f3\u8fa8\uf9fc\u7cbe\u78ba\ufa01\u63d0\u5347\u7684\u76ee\u7684\u3002 \u85c9\u6b64\ufa09\u4f4e\u96dc\u8a0a\u6216\u901a\u9053\u5e72\u64fe\u6216\u51f8\u986f\u8a9e\u97f3\u7684\u7368\u7279\u6210\u4efd\uff0c\u800c\u9054\u5230\u660e\u986f\u7684\u6539\u9032\u6548\u679c\uff0c\u672c\uf941\u6587\u7684\u7814 \u7a76\u65b9\u5411\uff0c\u5373\u70ba\u958b\u767c\u51fa\u65b0\u7684\ufa09\u4f4e\u96dc\u8a0a\u8207\u901a\u9053\u5e72\u64fe\u4e4b\u76f8\u95dc\u7684\u8a9e\u97f3\u5f37\u5065\u6027\u6f14\u7b97\u6cd5\u3002\u7136\u800c\uff0c\u8ddf\u904e \u5728\u672c\uf941\u6587\u4e2d\uff0c\u6240\u767c\u5c55\u51fa\u7684\u65b0\u6280\u8853\uff0c\u4e26\uf967\u540c\u65bc\u4e0a\u8ff0\u6240\u63d0\u7684\u5e7e\u500b\u50b3\u7d71\u5c0f\u6ce2\u8655\uf9e4\u6240\u61c9\u7528 \u4e09\u3001\u5c0f\u6ce2\u8f49\u63db\u4e4b\u5206\u983b\u6280\u8853\uf9e4\uf941\u7684\u6982\u8ff0 \u7684\u65b9\u5411\uff0c\u800c\u662f\u8457\u91cd\u65bc\u5c07\u5c0f\u6ce2\u8655\uf9e4\u5176\u7279\u6b8a\u7684\u5206\u983b\u6280\u8853\u9069\u7576\u5730\u904b\u7528\u65bc\u8a9e\u97f3\u7279\u5fb5\u6642\u9593\u5e8f\uf99c \u53bb\u76f8\u95dc\u4e4b\u5f37\u5065\u6027\u6280\u8853\u8f03\u70ba\uf967\u540c\u7684\u662f\uff0c\u6211\u5011\u63a1\u7528\uf9ba\u5c0f\u6ce2\u8f49\u63db(wavelet transform)\uff0c\u5c0d\u65bc\u8a9e\u97f3 \u7279\u5fb5\u4e4b\u6642\u9593\u5e8f\uf99c(temporal trajectory)\u52a0\u4ee5\u8655\uf9e4\uff0c\uf92d\u6539\u5584\u8a9e\u97f3\u7279\u5fb5\u7684\u5f37\u5065\u6027\u3002 \u5728\u9019\u4e00\u7ae0\u4e2d\uff0c\u6211\u5011\u5c07\u5c08\u9580\u8a0e\uf941\u5c0f\u6ce2\u8f49\u63db\u904b\u7528\u65bc\uf9ea\u6563\u6642\u9593\u8a0a\u865f(discrete-time signal)\u7684 (temporal trajectory) \u4e0a\uff0c\u7d50\u5408\u5404\u7a2e\u7d71\u8a08\u6b63\u898f\u5316\u7684\u6280\u8853\uff0c\uf92d\u8655\uf9e4\u5c0f\u6ce2\u8f49\u5f8c\u5404\u5b50\u983b\u5e36\u7684\u7279\u5fb5 \u5206\u983b(frequency division) \u6280\u8853\uff0c\u6b64\u61c9\u7b97\u662f\u5c0f\u6ce2\u8f49\u63db\u6700\u5e38\u88ab\u7528\u4ee5\u8655\uf9e4\u8a0a\u865f\u7684\u65b9\u5411\u3002\u9996\u5148\u6211 \u6642\u9593\u5e8f\uf99c\uff0c\u5728\u4e4b\u5f8c\u7684\u7ae0\u7bc0\u4e2d\u6211\u5011\u5c07\u6703\u9010\u6b65\u4ecb\u7d39\u6b64\u65b0\u6280\u8853\uff0c\u5206\u6790\u5176\u4e3b\u8981\u89c0\uf9a3\u3001\u4f5c\u6cd5\u8207\u53ef\u80fd \u5c0f\u6ce2\u76f8\u95dc\uf9e4\uf941\u5728\u8a0a\u865f\u8655\uf9e4\u7684\u7bc4\u7587\u4e2d\u96d6\u5df2\u767c\u5c55\uf969\u5341\uf98e\uff0c\u7136\u800c\u76f8\u5c0d\u65bc\u5176\u4ed6\u8a31\u591a\uf9e4\uf941\u800c\u8a00\uff0c\u61c9 \u5011\u8003\u616e\u4e00\u7d44\u5178\u578b\u96d9\u901a\u9053\u7684\u6b63\u4ea4\u93e1\u50cf\uf984\u6ce2\u5668(quadrature-mirror filter bank, QMF)[15]\uff0c\u5982\u5716 \u512a\u65bc\u50b3\u7d71\u6280\u8853\u7684\u539f\u56e0\uff0c\u4e26\u4ee5\u4e00\u7cfb\uf99c\u7684\u5be6\u9a57\u8b49\u5be6\u6b64\u65b0\u6280\u8853\u76f8\u5c0d\u65bc\u50b3\u7d71\u76f8\u8fd1\u7684\u6280\u8853\u800c\u8a00\uff0c\uf901 \u7528\u65bc\u5728\u8a9e\u97f3\u5f37\u5065\u6027\u8655\uf9e4\u4e4b\uf9b4\u57df\u4e2d\u4ecd\u504f\u5c11\uf969\uff0c\u800c\u5176\u61c9\u7528\u7684\u65b9\u5411\u5927\u81f4\u4e0a\u4e3b\u8981\u5305\u542b\uf9ba\uff1a\u8a9e\u97f3\u5f37 \u672c\uf941\u6587\u5176\u9918\u7684\u7ae0\u7bc0\u6982\u8981\u5982\u4e0b\uff1a\u5728\u7b2c\u4e8c\u7ae0\uf9e8\uff0c\u4ecb\u7d39\u76ee\u524d\u5e38\u7528\u4e4b\u5f37\u5065\u6027\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u4e26 \u5316(speech enhancement)\u3001\u8a9e\u97f3\u7aef\u9ede\u5075\u6e2c(voice activity detection, VAD)\u3001\u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5 \u80fd\u6709\u6548\u63d0\u6607\u8a9e\u97f3\u8fa8\uf9fc\u5728\u96dc\u8a0a\u5e72\u64fe\u74b0\u5883\u4e0b\u7684\u7cbe\u78ba\u6027\u3002 \u4e09\u4e2d\u6240\u793a\uff1a</td></tr><tr><td>(robust speech feature)\u8207\u807d\u89ba\uf984\u6ce2\u5668\u8a2d\u8a08(auditory filter design)\u7b49\u3002\u6211\u5011\u5c07\u5b83\u5011\u7c21\u8ff0\u5982\u4e0b\uff1a \u63a2\u8a0e\u50b3\u7d71\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u4e4b\u53ef\u80fd\u7f3a\u5931\u3002\u5728\u7b2c\u4e09\u7ae0\uff0c\u6211\u5011\u5c07\u7c21\u8981\u4ecb\u7d39\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u4e4b\u5206\u983b\u6280 (\u4e00) \u8a9e\u97f3\u5f37\u5316(speech enhancement) \u8853\u7684\u5be6\u73fe\uff0c\u7b2c\u56db\u7ae0\u70ba\u672c\uf941\u6587\u7684\u91cd\u9ede\uff0c\u6211\u5011\u5c07\u5728\u6b64\u7ae0\u4e2d\u4ecb\u7d39\u6211\u5011\u6240\u63d0\u51fa\u7684\u65b0\u65b9\u6cd5\uff0c\u5373\uf978\u7a2e</td></tr><tr><td>\u8a9e\u97f3\u5f37\u5316\u4e3b\u8981\u76ee\u7684\uff0c\u901a\u5e38\u662f\u5728\u4e00\u6bb5\u8a0a\u865f\u4e2d\uff0c\u5c07\u96dc\u8a0a\u6291\u5236\uff0c\u4e26\u5c07\u8a9e\u97f3\u8a0a\u865f\u6210\u4efd\u5f37\u8abf\u51fa \u8abf\u8b8a\u983b\u8b5c\u57df\u7684\u5206\u983b\u7d71\u8a08\u7279\u5fb5\u88dc\u511f\u6cd5\uff1a\u5206\u983b\u5e36\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u6b63\u898f\u5316\u6cd5\u8207\u5206\u983b\u5e36\u7d71\u8a08\u5716\u7b49</td></tr><tr><td>\uf92d\uff0c\u5e38\u7528\u7684\u65b9\u5f0f\u662f\u5047\u8a2d\u96dc\u8a0a\u5728\u983b\u8b5c(spectrum)\u4e0a\u5177\u6709\u8f03\u70ba\u7a69\u614b(stationary)\u7684\u7279\u6027\uff0c\u5728\u983b\u57df \u5316\u6cd5\uff0c\u4e26\u5c0d\u5176\u521d\u6b65\u6548\u679c\u52a0\u4ee5\u4ecb\u7d39\u3002\u5728\u7b2c\u4e94\u7ae0\uff0c\u6211\u5011\u5c07\u57f7\ufa08\u4e00\u7cfb\uf99c\u7684\u8a9e\u97f3\u8fa8\uf9fc\u5be6\u9a57\uff0c\uf92d\u9a57</td></tr><tr><td>\u4e0a\u5c07\u96dc\u8a0a\u6210\u4efd\u6e1b\u4f4e\uff0c\uf9b5\u5982\u8a2d\u8a08\u4e00\uf984\u6ce2\u5668\uf92d\u904e\uf984\u96dc\u8a0a\u7b49\u3002\u800c\u4ee5\u76ee\u524d\u57fa\u65bc\u5c0f\u6ce2\u7684\u4fe1\u865f\u5f37\u5316\u65b9 \u7d50\uf941\uff0c\u53ca\u672a\uf92d\u53ef\u9032\u4e00\u6b65\u7814\u7a76\u7684\u65b9\u5411\u3002 \u6cd5\uff0c\u5176\u4e2d\u4e4b\u4e00\u70ba Donoho[1]\u5b78\u8005\u6240\u63d0\u51fa\u4f7f\u7528\u5c0f\u6ce2\u6536\u7e2e(wavelet shrinkage)\u7684\u65b9\u5f0f\uff0c\u5176\u65b9\u6cd5 \u8b49\u6240\u63d0\u4e4b\u65b0\u65b9\u6cd5\u8db3\u4ee5\u6709\u6548\u63d0\u6607\u8a9e\u97f3\u7279\u5fb5\u5728\u96dc\u8a0a\u74b0\u5883\u4e0b\u7684\u5f37\u5065\u6027\uff0c\u6700\u5f8c\uff0c\u7b2c\uf9d1\u7ae0\u5247\u70ba\u7c21\u8981 \u5716\u4e09 \u96d9\u901a\u9053 QMF \uf984\u6ce2\u5668\u7d44</td></tr><tr><td>\u662f\u7531\u5c0f\u6ce2\u8f49\u63db\u6240\u5f97\u4e4b\u4fc2\uf969\uff0c\u7d93\u7531\u9580\u6abb\u503c\u7684\u8a2d\u5b9a\u5c07\u96dc\u8a0a\u9069\ufa01\u5730\u6291\u5236\u3002\u5728\u5176\u76f8\u95dc\uf941\u6587\u4e4b\u5be6\u9a57 \u5176\u4e2d</td></tr><tr><td>\u7d50\u679c\u986f\u793a\uf9ba\uff0c\u900f\u904e\u5c0f\u6ce2\u8f49\u63db\u8655\uf9e4\u7684\u8a9e\u97f3\u5f37\u5316\u6548\u80fd\u6bd4\u8d77\u4e4b\u524d\u6240\u63d0\u51fa\u7684\u50b3\u7d71\u8a9e\u97f3\u5f37\u5316\u65b9\u6cd5 \u4e8c\u3001\u5404\u7a2e\u5f37\u5065\u6027\u6280\u8853\u4ecb\u7d39</td></tr><tr><td>[2]\u8981\uf92d\u7684\u597d\u3002 \u5728\u9019\uf9e8\u6211\u5011\u9996\u5148\u76ee\u524d\u5e38\u7528\u4e4b\u5f37\u5065\u6027\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\uff0c\u4e4b\u5f8c\u63a2\u8a0e\u50b3\u7d71\u7d71\u8a08\u6b63\u898f\u5316\u6cd5 (\u4e8c) \u8a9e\u97f3\u7aef\u9ede\u5075\u6e2c(voice activity detection, VAD) \u4e4b\u53ef\u80fd\u7f3a\u5931\uff0c\u4e26\uf96f\u660e\u70ba\u4f55\u4f7f\u7528\u5c0f\u6ce2\u8f49\u63db(discrete wavelet transform, DWT)\u6539\u5584\u9019\u4e9b\u554f\u984c\u3002</td></tr><tr><td>\u7531\u65bc\u4e00\u6bb5\uf93f\u97f3(recording)\uf9e8\u53ef\u80fd\u5305\u542b\u6709\u975e\u8a9e\u97f3\u7684\u5340\u6bb5\uff0c\u5982\u679c\u4e00\u4f75\u8fa8\uf9fc\u6574\u6bb5\uf93f\u97f3\uff0c\u5c07 \u7531\u65bc\u8a9e\u97f3\u8fa8\uf9fc\u7cfb\u7d71\u5bb9\uf9e0\u53d7\u5230\u96dc\u8a0a\u74b0\u5883\u5f71\u97ff\u4f7f\u5f97\u5176\u8fa8\uf9fc\u6548\u80fd\ufa09\u4f4e\uff0c\u56e0\u6b64\u8a9e\u97f3\u8655\uf9e4\u76f8\u95dc</td></tr><tr><td>\u6703\u5f71\u97ff\u8fa8\uf9fc\u8655\uf9e4\u7684\u901f\ufa01\uff0c\u4e26\u53ef\u80fd\u9020\u6210\u8fa8\uf9fc\u7cbe\u78ba\ufa01\u660e\u986f\u4e0b\ufa09\u3002\u8a9e\u97f3\u7aef\u9ede\u5075\u6e2c(voice activity \u7814\u7a76\u7684\u5b78\u8005\u91dd\u5c0d\u6b64\u96dc\u8a0a\u5e72\u64fe\u7684\u554f\u984c\uff0c\u63d0\u51fa\u8af8\u591a\u7684\u5f37\u5065\u6027\u6280\u8853\uff0c\u9019\u4e9b\u6280\u8853\u4e2d\u6709\u4e00\u5927\uf9d0\u662f\u85c9</td></tr><tr><td>detection, endpoint detection)\u76f8\u95dc\u6280\u8853\u5373\u662f\u65bc\u6c7a\u5b9a\u51fa\u4e00\u6bb5\u8a0a\u865f\u4e2d\u771f\u6b63\u8a9e\u97f3\u5b58\u5728\u7684\u4f4d\u7f6e\u3002\u5728 \u7531\u6b63\u898f\u5316\u8a9e\u97f3\u7279\u5fb5\u7684\u7d71\u8a08\u7279\u6027\uff0c\uf92d\ufa09\u4f4e\u96dc\u8a0a\u5c0d\u8a9e\u97f3\u7279\u5fb5\u9020\u6210\u7684\u5931\u771f\u3002\u4ee5\u4e0b\u5c07\u4ecb\u7d39\u8fd1\uf98e\uf92d</td></tr><tr><td>\u50b3\u7d71\u7684\u4f5c\u6cd5\u4e0a\uff0c\u4ee5\u6642\u57df(time domain)\u800c\u8a00\uff0c\u900f\u904e\u8a08\u7b97\u4e00\u6bb5\u8a9e\u97f3\u4fe1\u865f\u7684\u80fd\uf97e(energy)\u6216\u904e\uf9b2 \u5728\u5f37\u5065\u6027\u8a9e\u97f3\u8fa8\uf9fc\u4e2d\u5e38\u7528\u7684\u5e7e\u7a2e\u8a9e\u97f3\u7279\u5fb5\u6b63\u898f\u5316\u6280\u8853\u3002\u5176\u4e2d\u5305\u542b\uf9ba\uff1a\u5012\u983b\u8b5c\u5e73\u5747\u6d88\u53bb\u6cd5</td></tr></table>",
                "num": null,
                "text": "\u95dc\u9375\u8a5e\uff1a\uf9ea\u6563\u5c0f\u6ce2\u8f49\u63db\u3001\u8a9e\u97f3\u8fa8\uf9fc\u3001\u5f37\u5065\u6027\u8a9e\u97f3\u7279\u5fb5\uf96b\uf969keywords: speech recognition, discrete wavelet transform, robust speech features",
                "html": null,
                "type_str": "table"
            },
            "TABREF1": {
                "content": "<table><tr><td>\u7279\u5fb5\uf96b\uf96913\u7dad(c0~c12)\uff0c\u52a0\u4e0a\u4e00\u968e\u8207\u4e8c\u968e\u5dee\uf97e\uff0c\u7e3d\u5171\u70ba39\u7dad\u7279\u5fb5\uf96b\uf969\u3002\u5728\u8868\u4e09\u4e2d\uff0c (a) \uf967\u540c\u5f62\u5f0f\u4e4b\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u6b63\u898f\u5316\u6cd5\u7684\u8fa8\uf9fc\uf961\u6bd4\u8f03</td></tr><tr><td>HEQ\u3002\u76f8\u8f03\u65bc\u50b3\u7d71\u7684\u5168\u983b\u5e36\u7d71\u8a08\u88dc\u511f\u6cd5\uff0c\u6211\u5011\u6240\u63d0\u51fa\u4e4b\u5206\u983b\u5e36\u7d71\u8a08\u88dc\u511f \u6cd5\u6709\u4ee5\u4e0b\u5e7e\u9ede\u76f8\uf962\u4e4b\u8655\uff1a 1. \u50b3\u7d71\u7684\u5168\u983b\u5e36 MVN(FB-MVN)\u6cd5\u4e2d\uff0c\u4efb\u4e00\u7279\u5fb5\u5e8f\uf99c\u7684\u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\u901a\u5e38\u5206\u5225\u88ab\u6b63 \u898f\u5316\u70ba 0 \u8207 1\uff0c\u4f46\u5c0d\u65bc SB-MVN \u800c\u8a00\uff0c\uf967\u540c\u5206\u983b\u5e36\u7684\u7279\u5fb5\u5e8f\uf99c\u4e26\uf967\u64c1\u6709\u76f8\u540c\u7684\u76ee\u6a19 \u5e73\u5747\u503c\u8207\u8b8a\uf962\uf969\uff0c\u56e0\u6b64\uf967\u540c\u5206\u983b\u5e36\u7279\u5fb5\u5e8f\uf99c\u5373\u4f7f\u5728\u6b63\u898f\u5316\u5f8c\uff0c\u4ecd\u4fdd\u6709\u5f7c\u6b64\u7d71\u8a08\u7279\u6027 \u7684\u5dee\uf962\u3002\u76f8\u540c\u5730\uff0cSB-HEQ \u4e5f\u662f\u5177\u6709\u6b64\u7279\u6027\uff0c\uf967\u540c\u7684\u5206\u983b\u5e36\u7279\u5fb5\u5e8f\uf99c\u5c0d\u61c9\u81f3\uf967\u540c\u7684 \u76ee\u6a19\u6a5f\uf961\u5206\u4f48\u51fd\uf969\u3002 2. \u5728 SB-MVN \u8207 SB-HEQ \u4e2d\uff0c\u53ef\u4efb\u610f\u9078\u64c7\u67d0\u4e9b\u5206\u983b\u5e36\u5e8f\uf99c\uf92d\u4f5c\u6b63\u898f\u5316\u3002\u4e00\u822c\u800c\u8a00\uff0c\u5c0d \u65bc\u8a9e\u97f3\u8fa8\uf9fc\uf92d\uf96f\uff0c\u4f4e(\u8abf\u8b8a)\u983b\uf961\u7684\u6210\u5206\uff0c\u5305\u542b\u7684\u8a9e\u97f3\u9451\u5225\u8cc7\u8a0a\u8f03\u591a\uff0c\u56e0\u6b64\u6211\u5011\u901a\u5e38 \u512a \u5148 \u9078 \u64c7 \u4f4e \u983b \uf961 \u7684 \u5206 \u983b \u5e36 \u7279 \u5fb5 \u52a0 \u4ee5 \u6b63 \u898f \u5316 \u3002 \u4f46 \u662f \uff0c \u5982 \u679c \u6709 \u4e9b \u975e \u7a69 \u614b \u96dc \u8a0a (non-stationary noise) \u5b58\u5728\u65bc\u9ad8\u8abf\u8b8a\u983b\uf961\u7684\u5340\u57df\uff0c\u70ba\uf9ba\ufa09\u4f4e\u6b64\uf9d0\u96dc\u8a0a\u5e72\u64fe\uff0c\u5c31\u9808\u5c07\u9ad8 \u983b\u7684\u5206\u983b\u5e36\u8003\u616e\u9032\u53bb\u4e00\u540c\u8655\uf9e4\u3002 3. \u7531\u65bc DWT \u7a0b\u5e8f\u4e2d\u7684\ufa09\u4f4e\u53d6\u6a23(down-sampling)\u6b65\u9a5f\uff0c\u6211\u5011\u6240\u9700\u8655\uf9e4\u4e4b\u6240\u6709\u5206\u983b\u5e36\u5e8f \uf99c\u7684\u7279\u5fb5\u7e3d\uf969\u8fd1\u4f3c\u7b49\u540c\u65bc\u539f\u59cb\u5e8f\uf99c\u7684\u7279\u5fb5\u7e3d\uf969\uff0c\u56e0\u6b64\u8655\uf9e4\u4e0a\u4e26\uf967\u6703\u56e0\u70ba\u589e\u52a0\u5206\u983b\u5e36 \u7684\uf969\u76ee\u800c\u4f7f\u8a08\u7b97\u8907\u96dc\ufa01\u5927\u5e45\u63d0\u5347\u3002\u4f46\uf974\u4ee5\u50b3\u7d71\u7684\u5206\u983b\uf984\u6ce2\u5668\u7d44(filter-bank)\u4e4b\u65b9\u6cd5\uff0c \u6240\u9700\u8655\uf9e4\u7684\u7e3d\u7279\u5fb5\uf969\u6703\u660e\u986f\u96a8\u5206\u983b\u5e36\u7684\u500b\uf969\u800c\u589e\u52a0\uff0c\u76f8\u5c0d\u800c\u8a00\uff0c\u5176\u904b\u7b97\u7684\u8907\u96dc\ufa01\u6703 \u56e0\u6b64\u5927\u5e45\u63d0\u9ad8\u3002 (\u4e8c)\u5206\u983b\u5e36\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u7684\u521d\u6b65\u6548\u80fd\u8a0e\uf941 \u5728\u9019\uf9e8\uff0c\u6211\u5011\u5c07\u6240\u63d0\u51fa\u7684\u5206\u983b\u5e36\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u8ddf\u539f\u59cb\u4e4b\u5168\u983b\u5e36\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u4f5c\u521d\u6b65 \u7684\u6548\u80fd\u6bd4\u8f03\uff0c\u6839\u64da\u9019\u4e9b\u65b9\u6cd5\u5728\u4e00\u8a9e\u97f3\u7279\u5fb5\u5e8f\uf99c\u4e4b\u8abf\u8b8a\u983b\u8b5c\u7684\u5931\u771f\u6539\u5584\u7a0b\ufa01\uff0c\uf92d\u8a55\u4f30\u9019\u4e9b Hz]\u548c[25 Hz, 50 Hz])\u5247\u7dad\u6301\uf967\u52d5\uff0c\u800c SB-MVN (1,2,3,4) \u8207 SB-HEQ (1,2,3,4) \u8868\u793a\uf9ba\u5168\u90e8\u56db\u500b\u5206 \u983b\u5e36\u7686\u500b\u5225\u4ee5 MVN \u6216 HEQ \u8655\uf9e4\u3002 \u9996\u5148\uff0c\u6211\u5011\u5c0d\u65bc\u5168\u983b\u5e36\u8207\u5404\u7a2e\u5206\u983b\u5e36\u4e4b MVN \u6cd5\u7684\u8655\uf9e4\u7d50\u679c\u52a0\u4ee5\u8a0e\uf941\u3002\u5716\u4e03 (a)(b)(c)(d)\u5206\u5225\u8868\u793a\u70ba\u539f\u59cb\u672a\u8655\uf9e4\u4e4b\u7b2c\u4e00\u7dad MFCC( 1 c )\u7279\u5fb5\u5e8f\uf99c\u3001FB-MVN\u3001SB-MVN (1,2) \u8207 SB-MVN (1,2,3,4) \u8655\uf9e4\u5f8c\u4e4b 1 c \u5e8f\uf99c\u4e4b\u529f\uf961\u983b\u8b5c\u5bc6\ufa01(power spectral density, PSD)\u66f2\u7dda\u3002 \u5728\u5716\u4e03(a)\u4e2d\uff0c\u53ef\u770b\u51fa\uf967\u540c SNR \u503c\u4e0b(clean, 10 dB \u8207 0dB)\u4e4b\u672a\u8655\uf9e4\u904e\u7684 1 c \u5e8f\uf99c\uff0c\u5176 PSD \u66f2\u7dda\uff0c\u53d7\u5230\u52a0\u6210\u6027\u96dc\u8a0a(additive noise) \u7684\u5f71\u97ff\uff0c\u5b58\u5728\u56b4\u91cd\u7684\u5931\u771f\u60c5\u5f62\u3002\u800c\u7d93\u7531\u5716\u4e03 (b)\u53ef\u770b\u51fa\uff0cFB-MVN \u8655\uf9e4\u5f8c\u4e4b 1 c \u5e8f\uf99c\uff0c\u5728\u8f03\u4f4e\u7684\u8abf\u8b8a\u983b\uf961[0, 10 Hz]\u4e4b\u9593\uff0c\u5176 PSD \u5931\u771f \u7684\u60c5\u6cc1\u5f88\u660e\u986f\ufa09\u4f4e\uff0c\u4f46\u5728\u9ad8\u8abf\u8b8a\u983b\uf961\u7bc4\u570d[10Hz, 50 Hz]\uff0cPSD \u5931\u771f\u7684\u60c5\u5f62\u4e26\u6c92\u6709\u592a\u5927\u7684 \u6539\u5584\u3002\u5716\u4e03(c)\u70ba SB-MVN (1,2) \u6240\u5f97\u4e4b\u7279\u5fb5\u5e8f\uf99c\u4e4b PSD \u5716\uff0c\u5176\u6240\u8655\uf9e4\u7684\u983b\u5e36\u5206\u5225\u70ba[0, 6.25 Hz]\u548c[6.25 Hz, 12.5 Hz] \uff0c\u5f9e\u6b64\u5716\u53ef\u4ee5\u767c\u73fe\uff0c\u7d04\u5728\u8abf\u8b8a\u983b\uf961 20 Hz \u4ee5\u4e0b\uff0c\u5176 PSD \u5931\u771f\u60c5 \u5f62\u76f8\u5c0d\u6e1b\u4f4e\uff0c\u4f46\u5728\u672a\u8655\uf9e4\u7684\u8abf\u8b8a\u983b\uf961\u7bc4\u570d[12.5 Hz, 50 Hz]\uff0c\u540c\u6a23\u5b58\u6709\u660e\u986f\u7684\u5931\u771f\u60c5\u6cc1\u3002 \u5716\u4e03(d)\u70ba SB-MVN (1,2,3,4) \u6240\u5f97\u4e4b\u7279\u5fb5\u5e8f\uf99c\u4e4b PSD \u5716\uff0c\u5176\u6240\u8655\uf9e4\u7684\u983b\u5e36\u5206\u5225\u70ba[0, 6.25 Hz]\u3001[6.25 Hz, 12.5 Hz]\u3001[12.5 Hz, 25 Hz]\u8207[25 Hz, 50 Hz]\uff0c\u5f88\u660e\u986f\u53ef\u770b\u51fa\u5728\u5168\u90e8\u7684\u8abf\u8b8a \u983b\uf961\u7bc4\u570d\uff0c\u5176 PSD \u5931\u771f\u7684\u60c5\u6cc1\u7686\u6709\u6548\ufa09\u4f4e\u3002 \u63a5 \u4e0b \uf92d \uff0c \u5716 \u516b (a)(b)(c)(d) \u5206 \u5225 \u8868 \u793a \u70ba \u539f \u59cb \u672a \u8655 \uf9e4 \u4e4b \u7b2c \u4e00 \u7dad MFCC( 1 c ) \u7279 \u5fb5 \u5e8f \uf99c \u3001 FB-HEQ\u3001SB-HEQ (1,2) \u8207 SB-HEQ (1,2,3,4) \u8655\uf9e4\u5f8c\u4e4b 1 c \u5e8f\uf99c\u4e4b PSD \u66f2\u7dda\uff0c\u5176\u4e2d\u62ec\u5f27\u4e2d\u7684\uf969\u5b57 \u8868\u793a\u6240\u8655\uf9e4\u7684\u983b\u5e36\u3002\u6bd4\u8f03\u5716\u516b(a)\u8207\u5716\u516b(b)\u53ef\u77e5\uff0c\u5c0d\u65bc\u8f03\u4f4e\u7684\u8abf\u8b8a\u983b\uf961\u7bc4\u570d[0, 10 Hz] \uff0c \u7686\u5df2\u6709\u6548\ufa09\u4f4e\u3002\uf9d0\u4f3c\u4e4b\u524d\u7684\uf9fa\u6cc1\uff0c\u7576\u6bd4\u8f03\u5716\u516b(d)\u8207\u5716\u4e03(d)\u6642\uff0c\u53ef\u770b\u51fa SB-HEQ (1,2,3,4) \u5728 \ufa09\u4f4e PSD \u5931\u771f\u7684\u6027\u80fd\u4e0a\u512a\u65bc SB-MVN (1,2,3,4) \u3002 \u5716\u516b (a) \u539f\u59cb 1 c \u7279\u5fb5\u5e8f\uf99c\u3001(b)FB-HEQ\u3001(c)SB-HEQ (1,2) \u8207(d)SB-HEQ (1,2,3,4) \u4f5c\u7528\u5728\uf967\u540c\u8a0a \u96dc\u6bd4\u4e0b\u4e4b 1 c \u7279\u5fb5\u5e8f\uf99c\u4e4b\u529f\uf961\u983b\u8b5c\u5bc6\ufa01\u66f2\u7dda\u5716 \u4e94\u3001\u8abf\u8b8a\u983b\u8b5c\u5206\u983b\u5e36\u6b63\u898f\u5316\u6cd5\u7684\u8fa8\uf9fc\u5be6\u9a57\u7d50\u679c\u8207\u8a0e\uf941 \u672c\u7ae0\u4e3b\u8981\u5167\u5bb9\u70ba\u5448\u73fe\u4e26\u5206\u6790\u4e00\u7cfb\uf99c\u7684\u5f37\u5065\u6027\u7279\u5fb5\u6280\u8853\u6240\u5f97\u4e4b\u8a9e\u97f3\u8fa8\uf9fc\u7684\u6548\u679c\uff0c\u9019 \u4e9b\u6280\u8853\u5305\u62ec\uf9ba\u50b3\u7d71\u7684\u5168\u983b\u5f0f\u7279\u5fb5\u7d71\u8a08\u6b63\u898f\u5316\u6cd5\u3001\u6211\u5011\u6240\u65b0\u63d0\u51fa\u7684\u5206\u983b\u5f0f MVN(SB-MVN) \u6cd5\u8207\u5206\u983b\u5f0f HEQ(SB-HEQ)\u6cd5\u3002 (\u4e00)\u5be6\u9a57\u74b0\u5883\u8207\u67b6\u69cb\u8a2d\u5b9a \u672c \u8fa8 \uf9fc \u5be6 \u9a57 \u6240 \u63a1 \u7528 \u7684 \u8a9e \u97f3 \u8cc7 \uf9be \u5eab \u70ba \u6b50 \u6d32 \u96fb \u4fe1 \u6a19 \u6e96 \u5354 \u6703 (European \u8fa8\uf9fc\u7684\u5f71\u97ff\u3002\u7531\u65bc\u96dc\u8a0a\u7684\uf967\u540c\uff0c\u6e2c\u8a66\u74b0\u5883\u53ef\u5206\u70ba Set A\u3001Set B \u8207 Set C \u4e09\u7d44\u3002 \u5728\u8fa8\uf9fc\u4e2d\u6240\u4f7f\u7528\u7684\u8072\u5b78\u6a21\u578b\u662f\u7531\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b\u5de5\u5177(Hidden Markov Model Tool Kit, HTK)[17] (\u4e8c)\u5168\u983b\u5e36\u88dc\u511f\u6cd5\u8207\u5404\u7a2e\u5206\u983b\u5e36\u6b63\u898f\u5316\u6cd5\u4e4b\u5be6\u9a57\u7d50\u679c SB-MVN(1,2,3) SB-MVN(1,2,3,4) \u6211\u5011\u5448\u73fe\uf9ba\u57fa\u790e\u5be6\u9a57(baseline)\u8868\u4e09\u3001\u5404\u5206\u983b\u5e36\u65b9\u6cd5\u8207\u5168\u983b\u5e36\u65b9\u6cd5\u7684\u5e73\u5747\u8fa8\uf9fc\uf961(%)\u8207\u76f8\u5c0d\u932f\u8aa4\ufa09\u4f4e\uf961(%) Method Set A Set B Set C Avg. RR1 RR2 Baseline 71.92 68.22 77.61 71.58 --FB-MVN 85.03 85.56 85.60 85.36 48.49 -SB-MVN (1) 86.87 87.90 87.37 87.38 55.59 13.80 SB-MVN (1,2) 87.28 90.23 89.44 88.89 60.91 24.11 SB-MVN (1,2,3) 89.44 90.31 89.61 89.82 64.18 30.46 SB-MVN (1,2,3,4) 89.47 90.31 89.62 89.84 64.25 30.60 FB-HEQ 87.59 88.84 87.64 88.10 58.13 -SB-HEQ (1) 87.70 89.31 87.81 88.37 59.08 2.27 SB-HEQ (1,2) 89.22 90.55 90.23 89.95 64.64 15.55 SB-HEQ (1,2,3) 89.51 90.75 89.54 90.01 64.85 16.05 SB-HEQ (1,2,3,4) 89.51 90.83 89.57 90.05 64.99 16.39 \u8868\u56db\u3001\u6240\u6709\uf967\u540c SNR \u503c\u96dc\u8a0a\u74b0\u5883\u4e0b\u7684\u5e73\u5747\u8fa8\uf9fc\uf961(%) Method clean 20dB 15dB 10dB 5dB 0dB -5dB Baseline 99.79 95.80 88.15 73.81 56.32 43.82 40.13 FB-MVN 99.82 98.73 96.83 91.88 79.52 59.80 46.70 SB-MVN (1) 99.79 98.67 96.98 92.24 82.42 66.60 51.95 SB-MVN (1,2) 99.80 98.97 97.76 94.33 86.40 70.99 53.80 SB-HEQ (1,2,3,4) 99.64 98.85 97.69 94.74 87.15 71.83 54.01 84 85 86 87 88 89 90 91 Reccognition Accuracy(%) FB-MVN SB-MVN(1) SB-MVN(1,2) (b) \uf967\u540c\u5f62\u5f0f\u4e4b\u7d71\u8a08\u5716\u7b49\u5316\u6cd5\u7684\u8fa8\uf9fc\uf961\u6bd4\u8f03 84 85 86 87 88 89 90 91 Recognition Accuracy(%) FB-HEQ SB-HEQ (1) SB-HEQ (1,2) SB-HEQ(1,2,3) SB-HEQ (1,2,3,4) \u5716\u4e5d \u5404\u5206\u983b\u5e36\u65b9\u6cd5\u8207\u5168\u983b\u5e36\u65b9\u6cd5\u7684\u5e73\u5747\u8fa8\uf9fc\uf961(%)\u4e4b\u7d9c\u5408\u6bd4\u8f03\u5716 \u65b9\u6cd5\u7684\u6548\u80fd\u3002\u6211\u5011\u4f7f\u7528 AURORA-2 Hz, 25 \u5716\u4e03 (a) \u539f\u59cb 1 c \u7279\u5fb5\u5e8f\uf99c\u53ca(b)FB-MVN\u3001(c)SB-MVN (1,2) \u8207(d)SB-MVN (1,2,3,4) \u4f5c\u7528\u5728\uf967\u540c \u8a0a\u96dc\u6bd4\u4e0b\u4e4b 1 15 dB\u300110 dB\u30015 dB\u30010 dB \u8207-5 dB\uff0c\u56e0\u6b64\u6211\u5011\u53ef\u4ee5\u89c0\u5bdf\u5206\u6790\uf967\u540c\u96dc\u8a0a\u74b0\u5883\u4e0b\u5c0d\u65bc\u8a9e\u97f3 SB-HEQ (1,2,3) 99.66 98.84 97.70 94.68 87.09 71.74 53.78 c \u7279\u5fb5\u5e8f\uf99c\u4e4b\u529f\uf961\u983b\u8b5c\u5bc6\ufa01\u66f2\u7dda\u5716 Telecommunication S tandard Institute, ETSI) \u6240\u767c\ufa08\u7684\u8a9e\uf9be\u5eab AURORA-2[16]\uff0c\u5167\u5bb9\u662f\u4ee5 \u7f8e\u570b\u6210\uf98e\u7537\uf981\u6240\uf93f\u88fd\u7684\u4e00\u7cfb\uf99c\uf99a\u7e8c\u7684\u82f1\u6587\uf969\u5b57\u5b57\uf905\uff0c\u6e2c\u8a66\u8a9e\u97f3\u672c\u8eab\u52a0\u4e0a\u5404\u7a2e\u52a0\u6210\u6027\u96dc\u8a0a SB-MVN (1,2,3) 99.78 98.99 97.75 94.57 86.59 71.19 53.69 SB-MVN (1,2,3,4) 99.81 98.97 97.75 94.51 \u5f9e\u8868\u4e09\u3001\u8868\u56db\u548c\u5716\u4e5d\u53ef\u767c\u73fe\uff0c\u6211\u5011\u6240\u65b0\u63d0\u51fa\u7684\u5206\u983b\u5e36\u6b63\u898f\u5316\u6cd5\uff0c\u78ba\u5be6\u80fd\u6709\u6548\u63d0\u6607\u5176 86.60 71.34 53.72 \u96dc\u8a0a\u74b0\u5883\u4e0b\u7684\u5f37\u5065\u6027\uff0c\u5176\u8a73\u7d30\u73fe\u8c61\u5982\u4ee5\u4e0b\u5e7e\u9ede\uff1a \u6216\u901a\u9053\u6548\u61c9\u7684\u5e72\u64fe\u3002\u52a0\u6210\u6027\u96dc\u8a0a\u5171\u6709\u516b\u7a2e\uff0c\u5206\u5225\u662f\u5730\u4e0b\u9435(subway)\u3001\u4eba\u8072(babble)\u3001\u6c7d\uf902 \u6de8\u7121\u96dc\u8a0a\u7684\uf9fa\u614b(clean)\uff0c\u4ee5\u53ca\uf9d1\u7a2e\uf967\u540c\u96dc\u8a0a\u6bd4(signal to noise ratio, SNR)\uff0c\u5206\u5225\u662f 20 dB\u3001 SB-HEQ (1,2) 99.64 98.84 97.64 94.50 87.52 71.28 53.65 station)\u96dc\u8a0a\u7b49\uff1b\u800c\u901a\u9053\u6548\u61c9\u6709\uf978\u7a2e\uff0c\u5206\u5225\u70ba G712 \u548c MIRS\u3002\u96dc\u8a0a\u6bd4\uf9b5\u7684\u5927\u5c0f\u5305\u542b\uf9ba\u4e7e SB-HEQ (1) 99.72 98.72 97.31 93.34 83.98 68.49 52.70 (car)\u3001\u5c55\u89bd\u6703\u9928(exhibition)\u3001\u9910\u5ef3(restaurant)\u3001\u8857\u9053(street)\u3001\u98db\u6a5f\u5834(airport)\u548c\u706b\uf902\u7ad9(train FB-HEQ 99.77 99.01 97.76 94.22 84.30 65.21 48.96 1.</td></tr><tr><td>\u672c\u7ae0\u7bc0\u5be6\u9a57\u63a1\u7528\u6885\u723e\u5012\u983b\u8b5c\u4fc2\uf969(mel-frequency cepstral coefficients, MFCC)</td></tr></table>",
                "num": null,
                "text": "\u8cc7\uf9be\u5eab[20]\uf9e8\u7684 MAH_27O6571A \u8a9e\u97f3\u6a94\uff0c\u7136\u5f8c\u52a0\u5165 \uf967\u540c\u8a0a\u96dc\u6bd4(SNR)\u7684\u5730\u4e0b\u9435(subway)\u96dc\u8a0a\uff0c\u7e7c\u800c\u52a0\u4ee5\u8655\uf9e4\u3002 \u5728\u6211\u5011\u6240\u63d0\u51fa\u4e4b\u65b9\u6cd5\u4e2d\uff0c\u521d\u6b65\u4f7f\u7528\uf9ba\u4e09\u968e\u7684 DWT \u8f49\u63db\uff0c\u5c07\u6574\u500b\u8abf\u8b8a\u983b\u5e36[0, 50 Hz] \ufa00\u5272\u51fa\u56db\u7a2e\u5206\u983b\u5e36\u7bc4\u570d\uff0c\u5206\u5225\u662f[0, 6.25 Hz] \u3001[6.25 Hz, 12.5 Hz] \u3001[12.5 Hz, 25 Hz]\u548c[25 Hz, 50 Hz]\uff0c (\u7531\u65bc\u7279\u5fb5\u97f3\u6846\u53d6\u6a23\uf961\u70ba 100 Hz\uff0c\u56e0\u6b64\u7279\u5fb5\u5e8f\uf99c\u6db5\u84cb\u4e4b\u983b\uf961\u7bc4\u570d\u70ba[0, 50 Hz]) \u3002 \u5728\u4e4b\u5f8c\u8a0e\uf941\u7684\u6bcf\u500b\u983b\u5e36\u4e4b\u6b63\u898f\u6cd5\u4e2d\uff0c\u6211\u5011\u5728\u65b9\u6cd5\u540d\u7a31\u53f3\u4e0b\u65b9\u4f7f\u7528\u4e0b\u6a19\uf969\u5b57\uf92d\u8868\u793a\u88ab\u6b63\u898f \u5316\u7684\u983b\u5e36\uff0c\uf9b5\u5982 SB-MVN (1,2) \u8207 SB-HEQ (1,2) \u8868\u793a\uf9ba\u7b2c\u4e00\u500b\u5206\u983b\u5e36([0, 6.25 Hz] )\u8207\u7b2c\u4e8c \u500b\u5206\u983b\u5e36([6.25 Hz, 12.5 Hz])\u4f7f\u7528\uf9ba MVN \u6216 HEQ \u8655\uf9e4\uff0c\u5269\u9918\u7684\uf978\u500b\u9ad8\u983b\u5e36([12.5 FB-HEQ \u53ef\u6709\u6548\ufa09\u4f4e PSD \u4e4b\u5931\u771f\uff0c\u4f46\u5c0d\u65bc\u5176\u4ed6\u8abf\u8b8a\u983b\uf961\u7bc4\u570d[10 Hz, 50 Hz] \uff0cPSD \u5931\u771f \u7684\u60c5\u5f62\u4e26\u6c92\u6709\u7372\u5f97\u592a\u5927\u7684\u6539\u5584\u3002\u5716\u516b(c)\u70ba SB-HEQ (1,2) \u6240\u5f97\u4e4b\u7279\u5fb5\u5e8f\uf99c\u4e4b PSD \u5716\uff0c\u5176\u6240 \u8655\uf9e4\u7684\u983b\u5e36\u5206\u5225\u70ba[0, 6.25 Hz] \u8207[6.25 Hz, 12.5 Hz] \uff0c\u5728\u6b64\u5716\u4e2d\uff0c\u53ef\u4ee5\u767c\u73fe\u7d04\u5728\u8abf\u8b8a\u983b\uf961 20 Hz \u4ee5\u4e0b\u4e4b PSD \u5931\u771f\u73fe\u8c61\u76f8\u5c0d\u88ab\u6e1b\u4f4e\uff0c\u4f46\u5728\u5176\u4ed6\u8abf\u8b8a\u983b\uf961\u7bc4\u570d\uff0c\u4ecd\u6709\u660e\u986f\u7684\u5931\u771f\u60c5 \u6cc1\u3002\u8ddf\u4e4b\u524d\u5716\u4e03(c)SB-MVN (1,2) \u7684\u6548\u679c\u6bd4\u8f03\uff0c\u53ef\u770b\u51fa SB-HEQ (1,2) \u512a\u65bc SB-MVN (1,2) \uff0c\uf901 \u6709\u6548\ufa09\u4f4e\u7d04\u5728\u983b\uf961 20 Hz \u4ee5\u4e0b\u7684 PSD \u5931\u771f\ufa01\u3002\u5716\u516b(d)\u70ba SB-HEQ (1,2,3,4) \u6240\u5f97\u4e4b\u7279\u5fb5\u5e8f\uf99c \u4e4b PSD \u5716\uff0c\u5176\u6240\u8655\uf9e4\u7684\u983b\u5e36\u500b\u5225\u70ba[0, 6.25 Hz]\u3001[6.25 Hz, 12.5 Hz]\u3001[12.5 Hz, 25 Hz]\u8207 [25 Hz, 50 Hz] \uff0c\u5f9e\u6b64\u5716\u5f88\u660e\u986f\u53ef\u770b\u51fa\u5168\u90e8\u7684\u8abf\u8b8a\u983b\uf961\u7bc4\u570d\u4e4b PSD \u66f2\u7dda\uff0c\u5176\u5931\u771f\u7684\u60c5\u6cc1 \u8a13\uf996\u800c\u5f97\uff0c\u5305\u62ec\uf9ba 11 \u500b\uf969\u5b57\u6a21\u578b(zero, one, two,\u2026, nine \u53ca oh)\u4ee5\u53ca\u975c\u97f3 (silence)\u6a21\u578b\uff0c\u6bcf\u500b\uf969\u5b57\u6a21\u578b\u5247\u6709 16 \u500b\uf9fa\u614b\uff0c\u5404\uf9fa\u614b\u5305\u542b 20 \u500b\u9ad8\u65af\u5bc6\ufa01\u6df7\u5408\u3002 \u3001\u5404\u7a2e\u5206\u983b\u5f0f SB-MVN \u8207 SB-HEQ\u3001\u5168\u983b\u5f0f FB-MVN \u548c FB-HEQ \u4f5c\u7528\u5728\u539f\u59cb MFCC \u7279\u5fb5\u4e0a\u6240\u5f97\u7684\u5e73\u5747\u8fa8\uf9fc\u7d50\u679c(\uf967\u540c\u7a2e\u8fa8\uf9fc\u74b0\u5883\u7684\u5e73\u5747\u8fa8\uf9fc \uf961\u53ca\u76f8\u5c0d\u6539\u5584\uf961) \uff0c\u5176\u4e2d RR1\u548c RR2\u5206\u5225\u70ba\u76f8\u8f03\u65bc\u57fa\u790e\u5be6\u9a57\u548c\u5168\u983b\u5e36\u6cd5\u4e4b\u76f8\u5c0d\u932f\u8aa4\ufa09\u4f4e \uf961(relative error rate reductions)\u3002\u8868\u56db\uf99c\u51fa\u5728\u5404\u7a2e\uf967\u540c\u7684 SNR \u503c\u4e0b\u7684\u5404\u7a2e\u65b9\u6cd5\u7684\u5e73\u5747\u8fa8 \uf9fc\uf961\uff0c\u800c\u5716\u4e5d\u7c21\u8981\u756b\u51fa\u5404\u65b9\u6cd5\u5e73\u5747\u8fa8\uf9fc\uf961\u7684\u6bd4\u8f03\u5716\u3002 \u7121\uf941\u5168\u983b\u5e36\u8207\u5206\u983b\u5e36\u6b63\u898f\u5316\u65b9\u6cd5\uff0c\u76f8\u8f03\u65bc\u57fa\u672c\u5be6\u9a57\u800c\u8a00\uff0c\u90fd\u6709\uf97c\u597d\u7684\u6539\u5584\u6548\u80fd\uff0c\u76f8 \u5c0d\u932f\u8aa4\ufa09\u4f4e\uf961\u90fd\u5728 48%\u4ee5\u4e0a\uff0c\u9664\u6b64\u4e4b\u5916\uff0c\u6bcf\u4e00\u7a2e HEQ \u7684\u6548\u679c\u90fd\u6bd4\u5176\u76f8\u540c\u5f62\u5f0f\u7684 MVN \uf92d\u7684\u597d\u3002\u76f8\u8f03\u65bc MVN\uff0cHEQ \u984d\u5916\u5c0d\u65bc\u7279\u5fb5\u9ad8\u968e\u52d5\u5dee\u505a\u88dc\u511f\u8655\uf9e4\uff0c\u6240\u4ee5\u6574\u9ad4 \uf92d\uf96f\uff0cHEQ \uf901\u6709\u52a9\u65bc\u6539\u5584\u96dc\u8a0a\u74b0\u5883\u6240\u9020\u6210\u7684\u7279\u5fb5\u5931\u771f\u3002 2. SB-MVN \u7684\u56db\u7a2e\u5206\u983b\u6a21\u5f0f\u6548\u80fd\u90fd\u512a\u65bc\u539f\u59cb\u5168\u983b\u5f0f\u7684 FB-MVN\uff0c\u6b64\u60c5\u6cc1\u5728 SB-HEQ \u8207 FB-HEQ \u4e4b\u9593\u7684\u6bd4\u8f03\u4e5f\u662f\u5982\u6b64\u3002\u800c SB-MVN \u548c SB-HEQ \u76f8\u8f03\u65bc\u539f\u59cb FB-MVN \u548c FB-HEQ \u7684\u76f8\u5c0d\u932f\u8aa4\ufa09\u4f4e\uf961\u5206\u5225\u9ad8\u9054 30.60%\u8207 16.39%\uff0c\u6b64\u7d50\u679c\u986f\u793a\u6240\u63d0\u51fa\u7684\u65b0\u5206 \u983b\u8655\uf9e4\u6280\u8853\u512a\u65bc\u50b3\u7d71\u5168\u983b\u5e36\u7684\u8655\uf9e4\uff0c\u56e0\u6b64\u6211\u5011\u6210\u529f\u7684\u9a57\u8b49\uf9ba\u4e4b\u524d\u7ae0\u7bc0\u7684\u63a8\uf941\uff0c\u5373\uf967 \u540c\u7684\u8abf\u8b8a\u983b\u8b5c\u6210\u4efd\u5c0d\u65bc\u8a9e\u97f3\u8fa8\uf9fc\u6709\uf967\u540c\u7684\u91cd\u8981\u6027\uff0c\u5c0d\uf967\u540c\u983b\u5e36\u5206\u5225\u4f5c\u88dc\u511f\u53ef\u5e36\uf92d\uf901 \u597d\u7684\u6548\u80fd\u3002 3. \u5f9e\u8868\u56db\u4e2d\u89c0\u5bdf\u5728\uf967\u540c SNR \u503c\u60c5\u6cc1\u4e0b\u7684\u5e73\u5747\u8fa8\uf9fc\uf961\uff0c\u6211\u5011\u53ef\u77e5\u5728\uf967\u53d7\u4efb\u4f55\u96dc\u8a0a\u5e72\u64fe",
                "html": null,
                "type_str": "table"
            }
        }
    }
}