File size: 45,990 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
{
    "paper_id": "O09-1002",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:11:22.484075Z"
    },
    "title": "Wavelet Energy-Based Support Vector Machine for Noisy Word Boundary Detection With Speech Recognition Application",
    "authors": [
        {
            "first": "Chia-Feng",
            "middle": [],
            "last": "Juang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Engineering National Chung-Hsing University",
                "location": {
                    "postCode": "402",
                    "settlement": "Taichung",
                    "country": "Taiwan, R.O.C"
                }
            },
            "email": "cfjuang@dragon.nchu.edu.tw"
        },
        {
            "first": "Chun-Nan",
            "middle": [],
            "last": "Cheng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Engineering National Chung-Hsing University",
                "location": {
                    "postCode": "402",
                    "settlement": "Taichung",
                    "country": "Taiwan, R.O.C"
                }
            },
            "email": ""
        },
        {
            "first": "Chiu-Chuan",
            "middle": [],
            "last": "Tu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Engineering National Chung-Hsing University",
                "location": {
                    "postCode": "402",
                    "settlement": "Taichung",
                    "country": "Taiwan, R.O.C"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Word boundary detection in variable noise-level environments by support vector machine (SVM) using Low-band Wavelet Energy (LWE) and Zero Crossing Rate (ZCR) features is proposed in this paper. The Wavelet Energy is derived based on Wavelet transformation; it can reduce the affection of noise in a speech signal. With the inclusion of ZCR, we can robustly and effectively detect word boundary from noise with only two features. For detector design, a Gaussian-kernel SVM is used. The proposed detection method is applied to detection word boundaries for an isolated word recognition system in variable noisy environments. Experiments with different types of noises and various signal-to-noise ratios are performed. The results show that using the LWE and ZCR parameters-based SVM, good performance is achieved. Comparison with another robust detection method has also verified the performance of the proposed method.",
    "pdf_parse": {
        "paper_id": "O09-1002",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Word boundary detection in variable noise-level environments by support vector machine (SVM) using Low-band Wavelet Energy (LWE) and Zero Crossing Rate (ZCR) features is proposed in this paper. The Wavelet Energy is derived based on Wavelet transformation; it can reduce the affection of noise in a speech signal. With the inclusion of ZCR, we can robustly and effectively detect word boundary from noise with only two features. For detector design, a Gaussian-kernel SVM is used. The proposed detection method is applied to detection word boundaries for an isolated word recognition system in variable noisy environments. Experiments with different types of noises and various signal-to-noise ratios are performed. The results show that using the LWE and ZCR parameters-based SVM, good performance is achieved. Comparison with another robust detection method has also verified the performance of the proposed method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "For speech recognition, the detection of speech affects recognition performance. A robust word boundary detection method in the presence of variable-label noises is necessary and is studied in this paper. Depending on the characteristics of speech, a variety of parameters have been proposed for boundary detection. They include the time energy (the magnitude in time domain), zero crossing rate (ZCR) [1] and pitch information [2] . These parameters usually fail to detect word boundary when signal-to-noise ratio (SNR) is low.",
                "cite_spans": [
                    {
                        "start": 402,
                        "end": 405,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 428,
                        "end": 431,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "INTRODUCTION",
                "sec_num": "1."
            },
            {
                "text": "Another parameter concerning frequency domain has also been recently proposed. According to the frequency energy, the time-frequency (TF) parameter [3] which sums the energy in time domain and the frequency energy was presented. The TF-based algorithm may work well for fixed-level background noise. However, its detection performance degrades for background noise of various levels. For this problem, some modified TF parameters are proposed [4] . In [5] , the idea of using Wavelet transform features as speech detection features was proposed. In this paper, we present a new Low-band Wavelet Energy (LWE) parameter which separates the speech from noise in the domain of Wavelet transform. Computation of the WE parameter is easier than the modified TF parameters, and it is shown in the experiment section that a better detection performance is achieved.",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 151,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 443,
                        "end": 446,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 452,
                        "end": 455,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "INTRODUCTION",
                "sec_num": "1."
            },
            {
                "text": "After the features for detection have been extracted, the next step is to determine thresholds and decision rules. Many decision methods based on computational intelligence techniques have been proposed, such as fuzzy neural networks (FNNs) [4] and neural networks (NNs) [6] . Generalization performance may be poor when FNNs and NNs are over-trained. To cope with the low generalization ability problem, a new learning method, the Support Vector Machine (SVM), has been proposed [7, 8] . SVM is a new and useful learning method whose formulation is based on the principle of structural risk minimization. Instead of minimizing an objective function based on training, SVM attempts to minimize a bound on the generalization error. SVM has gained wide acceptance due to its high generalization abilities for a wide range of applications. For this reason, this paper used a SVM as a detector.",
                "cite_spans": [
                    {
                        "start": 241,
                        "end": 244,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 271,
                        "end": 274,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 480,
                        "end": 483,
                        "text": "[7,",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 484,
                        "end": 486,
                        "text": "8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "INTRODUCTION",
                "sec_num": "1."
            },
            {
                "text": "The rest of the paper is organized as follows. Section II introduces the derivation and analysis of the WE and ZCR parameters. Section III describes the SVM detector.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "INTRODUCTION",
                "sec_num": "1."
            },
            {
                "text": "Experiments on word boundary detection for noisy speech recognition are studied in Section IV. Finally, Section V draws conclusions.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "INTRODUCTION",
                "sec_num": "1."
            },
            {
                "text": "Wavelet Transform (WT) is a technique for analyzing the time-frequency domain that is most suited for a non-stationary signal [9] . For short-time analysis and discrete speech signal, discrete-time WT (DTWT) is used. Let the amplitude of the k th point in the i th frame of a noisy speech signal be denoted by ( , ) s i k and the frame length in sample number be represented by N . The DTWT of the i -th speech frame is as follows,",
                "cite_spans": [
                    {
                        "start": 126,
                        "end": 129,
                        "text": "[9]",
                        "ref_id": null
                    },
                    {
                        "start": 310,
                        "end": 315,
                        "text": "( , )",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "0 0 1 0 1 DTWT( , ) ( , ) ( ) N m m k m n s i k a k n a \u03c8 \u03c4 \u2212 = = \u2212 \u2211 ,",
                        "eq_num": "(1)"
                    }
                ],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "where ( ) \u03c8 \u22c5 represents a wavelet basis function, 0 m a is the scale and 0 \u03c4 is a translation parameter which is set to 0 m a \u2212 in this paper. The commonly used value 0 a =2 is used in this paper, resulting in a binary dilation. Thus, Eq. (1) can be written as",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 1 DTWT( , ) ( , ) [2 ( )] 2 N m m k m n s i k k n \u03c8 \u2212 = = \u2212 \u2211 .",
                        "eq_num": "(2)"
                    }
                ],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "In this paper, the Harr wavelet is used in Eq. 2, where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "1 1 , 0 2 ( ) 2 1 [2 ( )] 1 , 2 ( ) 1 2 0 , otherwise m m m k n k n k n \u03c8 \u2212 \u2212 \u2212 \u23a7 \u2264 \u2212 \u2264 \u23aa \u23aa \u23aa \u2212 = \u2212 \u2264 \u2212 \u2264 \u23a8 \u23aa \u23aa \u23aa \u23a9 (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "Generally, the DTWT is computed at scales 0 scales contain different amounts of speech and noise information, and only the crucial scale(s) that contains maximum word signal information and is robust to noise should be used. Therefore, energy of the crucial scale is adopted as detection parameter for distinction between speech and noise in this paper.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "To find the crucial scale, some observations on the effect of additive noise are made on different scales of DTWT. It is found that at the scale of the next step is to find an energy parameter to stand for the amount of word signal information at this scale. It is found the speech section corresponds to large DTWT amplitude values. Thus, summation of the amplitudes over n can be used as a parameter to stand for the amount of word signal information. It is also found that the amplitudes of noise tend to become larger when translation index n is larger than 0.8N . Thus, summation is performed only from n =0 to 0.8 n N =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": ". This novel detection parameter, called low-band Fig. 2 . Distributions of speech/non-speech frames in the LWE-ZCR plane with noise ranging from SNR20 to SNR0, where \"\u00d7 \" and \" +\" denote non-speech and speech, respectively.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 50,
                        "end": 56,
                        "text": "Fig. 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "wavelet energy (LWE), is computed as follows,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "0.8 6 3 0 1 1 LWE | ( , ) (2 ( )) 2 N N n k s i k k n \u03c8 \u2212 \u2212 = = = \u2212 \u2211 \u2211",
                        "eq_num": "(4)"
                    }
                ],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "For illustration, a clean speech and its corresponding WE parameters of each frame are shown in Fig. 1(a) . The speech with white noise and its corresponding WE parameters at SNR5 is shown in Fig. 1(b) . This example shows that the WE parameter can robustly represent the energy of speech signal at different SNRs.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 96,
                        "end": 105,
                        "text": "Fig. 1(a)",
                        "ref_id": "FIGREF0"
                    },
                    {
                        "start": 192,
                        "end": 201,
                        "text": "Fig. 1(b)",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "In addition to the WE parameter which is used to measure speech energy, the other parameter used for speech detection is the Zero Crossing Rate (ZCR). The reason for using the ZCR is that it is particularly suitable for un-voiced detection due to the high-frequency nature of the majority of fricatives. Figure 2 shows distributions of speech/non-speech frames in the LWE-ZCR plane with noise levels SNR=20, 15, 10, and 5. The results show that the speech frames locate in a certain region of the two dimensional feature space.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 304,
                        "end": 312,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "ROBUST DETECTION PARAMETERS",
                "sec_num": "2."
            },
            {
                "text": "SVM is based on the statistical learning theory developed by Vapnik [7] . SVM first maps the input points into a high dimensional feature space and finds a separating hyperplane that maximizes the margin between two classes in this space. Suppose we are given a set S of labeled training set, Considering that the training data is linearly non-separable, the goal of SVM is to find an optimal hyperplane such that To find an optimal hyperplane is to solve the following constrained optimization problem:",
                "cite_spans": [
                    {
                        "start": 68,
                        "end": 71,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": ", 1 1 Min 2 Subject to ( ) 1 N T w i i T i i i w w C y w x b \u03be \u03be \u03be = + + \u2265 \u2212 \u2211",
                        "eq_num": "(6)"
                    }
                ],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "where C is a user defined positive cost parameter and i \u03be \u2211 is an upper bound on the number of training errors. After solving Eq. (2), the final hyperplane decision function is achieved, and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 ( ) sign( ) sign( , ) sign( , ) N T i i i i i i i i S V f x w x b y x x b y x x b \u03b1 \u03b1 = \u2208 = + = < >+ = < >+ \u2211 \u2211",
                        "eq_num": "(7)"
                    }
                ],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "where i \u03b1 is a Lagrange multiplier and the training samples for which 0 i \u03b1 \u2260 are support vectors (SVs). A detailed derivation process can be found in [8] .",
                "cite_spans": [
                    {
                        "start": 151,
                        "end": 154,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "The above linear SVM can be readily extended to a nonlinear classifier by first using a nonlinear operator \u03a6 to map the input data into a higher dimensional feature space. In this way, it can solve nonlinear problems. By replacing x in Eqs. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "is achieved, where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "( , ) ( ) ( ) j j K x x x x = \u03a6 \u22c5\u03a6",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "is called a kernel function. This paper uses a Gaussian-kernel SVM with ( , )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "j K x x = 2 exp( / ) j x x \u03b3 \u2212 \u2212",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": ", where \u03b3 is the width of a Gaussian-kernel. The two-dimensional inputs of the Gaussian-kernel SVM detector are ZER and LWE. For SVM, there is only one output and the desired output is \"1\" and \" 1 \u2212 \" if the input frame is speech and non-speech, respectively. During test, the SVM output indicates where or not the input frame is speech.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "SUPPORT VECTOR MACHINE DETECTOR",
                "sec_num": "3."
            },
            {
                "text": "The wave files of speech are recorded by 11.025 kHz sample rate, mono channel and 16-bit resolution. For SVM training, the training sequence length is 13 seconds and is shown in Fig.  3 . It consists of 20 words and is corrupted by white noise whose energy level increases from the start to SNR=0 and then decreases till the end of the sequence. For testing, the speech database is built of sequences of transcriptions from the same male speaker, where each sequence consists of ten isolated Mandarin words \"0\", \"1\", , \"9\". There are a total of 50 test sequences used for playing the judicial role in performance comparison. The noise added to the speech sequence is of variable noise level during the sequence. . Training performance of C in the range in the range [1, 85] , where the range is spaced to 17 equal scales. Classification rate Correctly detected frame number total frame number in training sequance =",
                "cite_spans": [
                    {
                        "start": 766,
                        "end": 769,
                        "text": "[1,",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 770,
                        "end": 773,
                        "text": "85]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 185,
                        "text": "Fig.  3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "EXPERIMENTS",
                "sec_num": "4."
            },
            {
                "text": "For SVM, the value of C influences the training performance. Fig. 5 shows the training performance of C in the range [1, 85] , where the range is spaced to 17 equal scales. The cost value C is set to 40 in the following experiments, where there are a total of 1050 SVs in the trained SVM.",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 120,
                        "text": "[1,",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 121,
                        "end": 124,
                        "text": "85]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 61,
                        "end": 67,
                        "text": "Fig. 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "EXPERIMENTS",
                "sec_num": "4."
            },
            {
                "text": "To get a quick view on the test performance, some illustrative examples are experimented and shown in Fig. 6 , where white noise with sharp variation in amplitude is added to the clean speech. Most word boundaries are correctly detected. For comparison, Fig.  6 also shows the performance of refined time-frequency (RTF) feature -based recurrent self-organizing neural fuzzy inference network (RTF-based RSONFIN) [4] detection method. The result shows that RTF-based RSONFIN almost fails to detect most of the words, and the performance of LWE-based SVM shows much better performance than RTF-based",
                "cite_spans": [
                    {
                        "start": 413,
                        "end": 416,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 102,
                        "end": 108,
                        "text": "Fig. 6",
                        "ref_id": "FIGREF6"
                    },
                    {
                        "start": 254,
                        "end": 261,
                        "text": "Fig.  6",
                        "ref_id": "FIGREF6"
                    }
                ],
                "eq_spans": [],
                "section": "EXPERIMENTS",
                "sec_num": "4."
            },
            {
                "text": "Next, the ten Mandarin digital words in each sequence of transcriptions in the test database are to be recognized. The words in each sequence are detected by the two methods respectively. When the number of successive frames being detected as speech is larger than 0.1 second, we regard it as word for recognition, otherwise these frames are discarded. So the number of words detected in each sequence of transcription may be larger or smaller than exact ten words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RSONFIN.",
                "sec_num": null
            },
            {
                "text": "Considering this phenomenon, we define the following recognition rate",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "RSONFIN.",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "T E U S recognition rate 100% T \u2212 \u2212 \u2212 = \u00d7 ,",
                        "eq_num": "(10)"
                    }
                ],
                "section": "RSONFIN.",
                "sec_num": null
            },
            {
                "text": "where T is the total number of words in the reference transcriptions, E is the number of words recognized incorrectly, U is un-detect words of reference transcriptions, and S is surplus words of reference transcriptions. For the recognizer, the hierarchical singleton-type recurrent neural fuzzy network (HSRNFN) [9] that put SNR20 white noise as training data is used. The reason we use HRNFN is that it achieves high recognition rate and is robust to different types of noise under different SNR. With HSRNFN recognizer, the recognition results by hand-segment, LWE-based SVM, and RTF-based RSONFIN methods under white and factory noise are shown in Fig. 7 . The results show that recognition rate of the LWE-based SVM method is slightly lower than that of hand segmentation, but is much larger than that of the RTF-RSONFIN method.",
                "cite_spans": [
                    {
                        "start": 313,
                        "end": 316,
                        "text": "[9]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 652,
                        "end": 658,
                        "text": "Fig. 7",
                        "ref_id": "FIGREF7"
                    }
                ],
                "eq_spans": [],
                "section": "RSONFIN.",
                "sec_num": null
            },
            {
                "text": "Two research results on robust speech detection in variable noise-level environment have been presented this paper, one is the robust LWE-based parameters, and the other is detector design by SVM. Variable noise-level instead of fixed noise-level is added to each sequence of transcript. Distributions of the LWE-based parameters in the 2-dimensional feature space for different SNRs have shown that the LWE-based parameters are feasible for speech detection over variable level noise. The LWE-based SVM can be applied to a speech recognition system as demonstrated in the experiments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSIONS",
                "sec_num": "5."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A robust algorithm for accurate end-pointing of speech signals",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "H"
                        ],
                        "last": "Savoji",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "Speech Communication",
                "volume": "8",
                "issue": "1",
                "pages": "45--60",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. H. Savoji, A robust algorithm for accurate end-pointing of speech signals, Speech Communication, vol. 8. no. 1, 1989, pp. 45-60.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Pitch determination and voiced/unvoiced decision algorithm for noisy speech",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Rouat",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [
                            "C"
                        ],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Morissette",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Speech Communication",
                "volume": "21",
                "issue": "3",
                "pages": "191--207",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. Rouat, Y. C. Liu, and D. Morissette, Pitch determination and voiced/unvoiced decision algorithm for noisy speech, Speech Communication, vol. 21, no. 3, 1997, pp. 191-207.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A robust algorithm for word boundary detection in the presence of noise",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Junqua",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Mak",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Reaves",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "IEEE Trans. Speech and Audio Processing",
                "volume": "2",
                "issue": "",
                "pages": "406--412",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. C. Junqua, B. Mak, and B. Reaves, A robust algorithm for word boundary detection in the presence of noise, IEEE Trans. Speech and Audio Processing, vol. 2, 1994, pp. 406-412.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Lin A recurrent neural fuzzy network for word boundary detection in variable noise-level environments",
                "authors": [
                    {
                        "first": "G",
                        "middle": [
                            "D"
                        ],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "T"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "IEEE Transactions on systems, Man, and cybernetics",
                "volume": "31",
                "issue": "1",
                "pages": "84--97",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. D. Wu and C. T. Lin A recurrent neural fuzzy network for word boundary detection in variable noise-level environments, IEEE Transactions on systems, Man, and cybernetics, vol. 31, no. 1, 2001, pp. 84-97.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A C/V segmentation algorithm for mandarin speech signal based on Wavelet transforms",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "F"
                        ],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "H"
                        ],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proc. of ICASSP",
                "volume": "1",
                "issue": "",
                "pages": "417--420",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. F. Wang and S. H. Chen, \"A C/V segmentation algorithm for mandarin speech signal based on Wavelet transforms,\" Proc. of ICASSP, vol.1, pp.417-420, March 1999.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Voiced-unvoiced-silence classification of speech using hybrid features and a network classifier",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Qi",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "R"
                        ],
                        "last": "Hunt",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "IEEE Trans. Speech and Audio Processing",
                "volume": "1",
                "issue": "",
                "pages": "250--255",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Qi and B. R. Hunt, Voiced-unvoiced-silence classification of speech using hybrid features and a network classifier, IEEE Trans. Speech and Audio Processing, vol. 1, 1993, pp. 250-255.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Support vector networks",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Cortes",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "International Journal on Machine Learning",
                "volume": "20",
                "issue": "",
                "pages": "1--25",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Cortes, and V. Vapnik, \"Support vector networks,\" International Journal on Machine Learning, vol. 20, pp. 1-25, 1995.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "An Introduction to Support Vector Machines And Other Kernel-based Learning Methods",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Cristianini",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "S"
                        ],
                        "last": "Taylor",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Cristianini and J. S.-Taylor, An Introduction to Support Vector Machines And Other Kernel-based Learning Methods, Cambridge University Press, 2000.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition",
                "authors": [
                    {
                        "first": "C",
                        "middle": [
                            "F"
                        ],
                        "last": "Juang",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "T"
                        ],
                        "last": "Chiou",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [
                            "L"
                        ],
                        "last": "Lai",
                        "suffix": ""
                    }
                ],
                "year": 2007,
                "venue": "IEEE Trans. Neural Networks",
                "volume": "18",
                "issue": "3",
                "pages": "833--843",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. F. Juang, C. T. Chiou, and C. L. Lai, \"Hierarchical singleton-type recurrent neural fuzzy networks for noisy speech recognition,\" IEEE Trans. Neural Networks, vol. 18, no. 3, pp. 833-843, May 2007.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "m a for, theoretically, all m . The output of DTWT can be regarded as finding the output of a bank of band-pass filters, where different values of scales corresponds to different band-pass filters. The outputs of DTWT at different (a) The LWEs of clean speech (b) The LWEs of speech with white noise added at SNR5.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "text": "distribution of the STWT amplitudes matches well with the speech interval.After computing DTWT for each time frame of a speech signal at the scale",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "text": "The sequence of speech used for SVM training. the data are misclassified.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "uris": null,
                "text": "(1) and(2) with the feature space ( ) x \u03a6 and solving the constrained optimization problem, the decision function 1",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "uris": null,
                "text": "(a) Flowchart of SVM training. (b) Flowchart of LWE-based SVM for test data. SVM SVM",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "uris": null,
                "text": "Word boundary results by LWE-based SVM and RTF-based RSONFIN in variable noise level environment. LWE-based SVM is shown, andFig.4 (b)shows test of LWE-based SVM.The classification rate defined in Eq. (9) is used as training performance index.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF7": {
                "uris": null,
                "text": "Noisy speech recognition results by different word boundary detection methods. (a) white noise (b) factory noise.",
                "num": null,
                "type_str": "figure"
            }
        }
    }
}