File size: 71,141 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
{
    "paper_id": "O06-1010",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T08:07:01.579798Z"
    },
    "title": "",
    "authors": [],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "",
    "pdf_parse": {
        "paper_id": "O06-1010",
        "_pdf_hash": "",
        "abstract": [],
        "body_text": [
            {
                "text": "\u6cd5(maximum likelihood, ML)\uff0c\u6c7a\u5b9a\u6700\u4f73\u7684\u591a\u8a9e\u8fa8\uf9fc\u5e8f\uf99c\u3002\u4f5c\u6cd5\u4e0a\uf9d0\u4f3c\u5c0d\u8a9e\u97f3\u8fa8\uf9fc\u5e8f\uf99c\u505a\u9a57\u8b49(verification) \u4e4b\u8655\uf9e4 [3] \uff1b\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u7684\u8868\u73fe\u53d6\u6c7a\u65bc\u5f8c\u7aef\u6700\u4f73\u5e8f\uf99c\u9078\u64c7\u4e4b\u6548\u679c\u3002\uf9dd\u7528\u9078\u64c7\u6700\u5927\u4f3c\u7136\u7684\u65b9\u6cd5\u7f3a\u9ede\u5728\u65bc\uff0c \u591a\u8a9e\u8fa8\uf9fc\u7684\u6548\u679c\u6703\u53d7\u5230 ML \u65b9\u6cd5\u7684\u9650\u5236\uff0c\u4e14\u8fa8\uf9fc\u7684\u591a\u8a9e\uf906\u578b\u9700\u8981\u53e6\u5916\u8003\u616e\uff0c\ufa00\u5272\u51fa\u8a9e\uf906\u5167\uf967\u540c\u8a9e\u8a00\u7684\u6bb5\uf918\u3002 \u7b2c\u4e09\uf9d0\u4f5c\u6cd5\uff1a\u85c9\u7531\u5b9a\u7fa9\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u55ae\u5143\u96c6 [4] \uff0c\u5408\u4f75\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20\u6a21\u578b\uff0c\uf92d\u9032\ufa08\u591a\u8a9e\u8a9e\u97f3\u8fa8 \uf9fc\u3002\u672c\uf941\u6587\u4e43\u57fa\u65bc\u6b64\u65b9\u6cd5\uff0c\u63a2\u8a0e\u5982\u4f55\u5b9a\u7fa9\u51fa\u6709\u6548\u7684\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u55ae\u5143\u6a21\u578b\u3002 \u5728\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\u4e4b\u5efa\uf9f7\u53ef\u4ee5\u6b78\u7d0d\u70ba\u4e09\u7a2e\u65b9\u5f0f\u3002\u9996\u5148\uff0c\u6211\u5011\u53ef\u4ee5\u76f4\u63a5\u5408\u4f75\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20\u96c6\uff0c\u5efa\uf9f7 \u591a\u8a9e\u97f3\u7d20\u6a21\u578b\uff0c\u4f46\u662f\u9019\u7a2e\u65b9\u6cd5\u6c92\u6709\u8003\u616e\u591a\u8a9e\u97f3\u7d20\u9593\uf96b\uf969\u5206\u4eab\u7684\u7279\u6027\u3002\u7b2c\u4e8c\uff0c\u85c9\u7531\u5c0d\u7167\u570b\u969b\u97f3\u7d20\u6a19\u6e96\u5b9a\u7fa9\uff0c \u8003\u616e\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20\uff0c\u9054\u5230\u591a\u8a9e\u97f3\u7d20\u9593\uf96b\uf969\u5171\u7528\u7684\u7279\u6027\uff0c\u4f46\u662f\u6b64\u4f5c\u6cd5\u4e0a\u7f3a\u4e4f\u8cc7\uf9be\u7d71\u8a08\u7684\u5206\u6790\uff0c\u800c\u662f\u7531 \u5c08\u5bb6\u77e5\uf9fc\u6c7a\u5b9a\u5404\u97f3\u7d20\u5b9a\u7fa9\u3002\u570b\u969b\u97f3\u7d20\u6a19\u6e96\u5b9a\u7fa9\u5305\u542b\u6709\uff1aInternational Phonetic Alphabet (IPA) [5] \u3001Speech Assessment Methods Phonetic Alphabet (SAMPA) [6] \u548c Worldbet [7] \u7b49\u3002\u7b2c\u4e09\uff0c\u4f30\u8a08\u591a\u8a9e\u8a9e\u97f3\u97f3\u7d20\u9593\u76f8\u4f3c\u7a0b \ufa01\uff0c\u7531\u4e0b\u800c\u4e0a\u968e\u5c64\u5f0f\u9032\ufa08\u591a\u8a9e\u97f3\u7d20\u5408\u4f75\uff0c\u4ee5\u5b9a\u7fa9\u591a\u8a9e\u97f3\u7d20\u96c6\u3002\u591a\u8a9e\u8a9e\u97f3\u97f3\u7d20\u9593\u76f8\u4f3c\ufa01\u7684\uf97e\u6e2c\uff0c\u53ef\u4ee5\uf9dd\u7528 Bhattacharyya distance [8] \u6216\u8005\u662f Kullback-Leibler (KL) divergence [9] ",
                "cite_spans": [
                    {
                        "start": 72,
                        "end": 75,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 188,
                        "end": 191,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 451,
                        "end": 454,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 508,
                        "end": 511,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 523,
                        "end": 526,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 614,
                        "end": 617,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 655,
                        "end": 658,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "D 1 2 1 1 2 1 2 1 2 1 2 1 2 ( ) ( ) l n 8 2 2 T bha D \u03bc \u03bc \u03bc \u03bc \u2212 1 \u2211 + \u2211 \u2211 + \u2211 \u23a1 \u23a4 = \u2212 \u2212 + \u23a2 \u23a5 \u23a3 \u23a6 \u2211 \u2211 (\u5f0f 1) \u5176\u4e2d\uff0c \u03bc \u548c \u2211 \u5206\u5225\u8868\u793a\u97f3\u7d20\u6a21\u578b\u7684\u5e73\u5747\u503c\u548c\u8b8a\uf962\uf969\u5411\uf97e\uff0cT \u662f\u8f49\u7f6e\u77e9\u9663\u3002\u53e6\u5916\uff0c\u53ef\u4ee5\uf9dd\u7528 Kullback-Leibler (KL) divergence [9]\uf92d\u6c7a\u5b9a\uf978\u500b\u6a5f\uf961\u5206\u4f48\u7684\u76f8\u4f3c\ufa01 KL D \u3002\u4ee5 KL-divergence \u4f30\u7b97\uf978\u500b\u9ad8\u65af\u5206\u4f48 1 1 ( , ) N \u03bc \u2211 \u548c 2 2 ( , ) N \u03bc \u2211 \u7684\u76f8\u4f3c\ufa01\uff0c\u8868\u793a\u5982\u4e0b\uff1a ( ) ( ) ( ) 1 1 1 1 2 1 2 1 1 2 2 | | 1 ln tr 2 | | T KL D d \u03bc \u03bc \u03bc \u03bc \u2212 \u2212 \u239b \u239e \u2211 = + \u2211 \u2211 + \u2212 \u2211 \u2212 \u239c \u239f \u2211 \u239d \u23a0 \u2212 (",
                        "eq_num": "\u5f0f 2"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "( | ) i l k P x \u03c9 \uff0c\u5176\u4e2d i l x \u8868\u793a\u7b2c l \u500b\u97f3\u7d20\u4e2d\u4e4b\u7b2c \u500b\u8a13\uf996\u8cc7\uf9be\u8a08\u7b97\u97f3\u7d20\u4e4b\u9593\u53d6\u5c0d\uf969\u7528\u8ddd\uf9ea\u7684\u65b9\u5f0f\u5448\u73fe\u97f3\u7d20\u9593\u5f7c\u6b64 \u7684\u95dc\u4fc2 \uff0c\u4ee5\u5efa\uf9f7\u8072\u5b78\u76f8\u4f3c\ufa01\u77e9\u9663 i log( ( | )) i l k P x \u03c9 ( ) kl N N a \u00d7 = A \u3002\u70ba\u5efa\uf9f7\u4e00\u500b\u5c0d\u7a31\u8072\u5b78\u76f8\u4f3c\ufa01\u77e9\u9663\uff0c\u6211\u5011\u5c0d\u5176 \u8a08\u7b97\u5c0d\u89d2\u5e73\u5747\u503c\u3002 1 1 1 1 log( ( | )) log( ( | )) 2 I J i j l k k l i j kl P x P x I J a \u03c9 \u03c9 = = + = \u2211 \u2211 (",
                        "eq_num": "\u5f0f 3"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "( , 1 2 1 2 ( , ) , , . . . , , , , . . . , l l l k k k l k l k N N h v v w w w w w w = = ) (\u5f0f 4) \u8003\u616e\u97f3\u7d20\u767c\u8072\u53d7\u5230\u76f8\u9130\u97f3\u7d20\u7684\u5f71\u97ff\uff0c\u4ee5\u4e09\uf99a\u97f3\u7d20 \u70ba\u4e2d\u5fc3\u4e4b\u7a7a\u9593\u76f8\u4f3c\ufa01\u53ef\u4ee5\uf9dd\u7528\u8207\u53f3\u908a\u6587\u8108\u76f8\u95dc\u4e4b\u5411\uf97e \u53ca\u8207\u5de6\u908a\u6587\u8108\u76f8\u95dc\u4e4b\u5411\uf97e \u4e4b\u63cf\u8ff0\uff1b \u548c \u5206\u5225\u8868\u793a\uf9dd\u7528\u89c0\u6e2c\u8996\u7a97\u65bc HAL \u7a7a\u9593\u5167\u7d71\u8a08\u4e4b\u97f3\u7d20\u76f8\u95dc\u6b0a \u91cd\uff0c l \u548c k \u5206\u5225\u8868\u793a\ufa08\u8207\uf99c\u4e4b\uf96a\u5f15\u3002 , l k h l v k v l N w k N w \u5728 HAL \u7a7a\u9593\u4e2d\uff0c\u6b0a\u91cd\u4e4b\u8a08\u7b97\u9700\u8003\u616e\u6b63\u898f\u5316(normalization)\u56e0\u7d20\uff0c\u672c\uf941\u6587\uf9dd\u7528\u5728\u8cc7\u8a0a\u6aa2\uf96a\u4e2d\u76f8\u7576\u91cd\u8981\u4e4b \uf96b\uf969 tf",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "(term frequency and inverse document frequency) [13] \u5176\u4e2d\uff0c \u03b1 \u662f\u4e00\u500b\u6b0a\u91cd\u56e0\u5b50\uff0c\u8ca0\u8cac\u878d\u5408\u8072\u5b78\u76f8\u4f3c\ufa01\u548c\u524d\u5f8c\u6587\u8108\u7684\u95dc\uf997\u3002\u91dd\u5c0d\u76f8\u4f3c\ufa01\u77e9\u9663 \u548c \uff0c\uf941\u6587\u4e2d\u5c0d ",
                "cite_spans": [
                    {
                        "start": 48,
                        "end": 52,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\uff0c\u91cd\u65b0\u4f30\u8a08\u6bcf\u500b\u5411\uf97e\u7dad\ufa01\u4e4b\u6b0a\u91cd\uff0c\u8868\u793a\u5982\u4e0b\uff1a idf \u00d7 log i i i N w w C = \u00d7 (\u5f0f 5) \u5176\u4e2d\uff0c \u6307\u5728\u5411\uf97e \u6216\u5411\uf97e \u4e2d\u7b2c i \u500b\u7dad\ufa01\u4e4b\u6b0a\u91cd\uff1b \u6307\u5728\u6240\u6709\u5411\uf97e\u4e2d\uff0c\u7b2c i \u500b\u7dad\ufa01\u4e4b\u6b0a\u91cd\uf967\u70ba\uf9b2\u7684\u5411\uf97e \u500b\uf969\uff1b \u70ba\u5411\uf97e\u7e3d\u500b\uf969\u6216\u8fa8\uf9fc\u55ae\u5143\u500b\uf969\u3002 i w l v k v i C N 3.3. \u4e09\uf99a\u97f3\u7d20\u5411\uf97e\uf97e\u5316\u7fa4\u805a\u8003\u616e\u76f8\u4f3c\ufa01\u77e9\u9663\u8cc7\uf9be\u878d\u5408 \u7d93\u904e\u524d\uf978\u5c0f\u7bc0\u5206\u6790\uff0c\u4e09\uf99a\u97f3\u7d20\u53ef\u4ee5\u5728\u8072\u5b78\u7a7a\u9593\u548c\u8a9e\u8a00\u8d85\u7a7a\u9593\u4e2d\uff0c\u7528\u5411\uf97e\u7684\u65b9\u5f0f\u8868\u793a\u5728\u7a7a\u9593\u4e2d\u7684\u76f8\u4f3c\u7a0b \ufa01\u3002\u672c\uf941\u6587\u5206\u6790\u8072\u5b78\u76f8\u4f3c\ufa01\u77e9\u9663 ( ) kl N N a \u00d7 = A \u548c\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u77e9\u9663 ( ) kl N N h \u00d7 = H \uff0c\u540c\u6642\u8003\u616e\u8072\u5b78\u76f8\u4f3c\ufa01 \u548c\u524d\u5f8c\u6587\u8108\u767c\u97f3\u7684\u7279\u6027\uff0c\u57fa\u65bc\u524d\u5f8c\u6587\u8108\u76f8\u95dc\u4e4b\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\uff0c\u5408\u4f75\u76f8\u4f3c\u4e4b\u767c\u97f3\u627e\u51fa\u6700\u70ba\ufa1d\u7c21\u6709\u6548\u7684\u591a\u8a9e\u97f3 \u7d20\u6a21\u578b\u5b9a\u7fa9\u3002\u4f5c\u6cd5\u4e0a\uff0c\uf96b\u8003\u8cc7\uf9be\u878d\u5408\u7684\u65b9\u6cd5[14]\uff0c\u672c\uf941\u6587\uf9dd\u7528\u52a0\u6cd5\u878d\u5408\u7684\u6280\u8853(sum rule)\uff0c\u7d50\u5408\uf978\u76f8\u4f3c\ufa01\u77e9 \u9663 \u548c H \uff0c\u5c07\u8072\u5b78\u76f8\u4f3c\ufa01\u548c\u524d\u5f8c\u6587\u8108\u7684\u97f3\u7d20\u7279\u5fb5\u4f5c\u6574\u5408\uff0c\u8868\u793a\u5982\u4e0b\uff1a A ,",
                        "eq_num": "(1 )"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "(",
                        "eq_num": "(1 )"
                    }
                ],
                "section": "",
                "sec_num": null
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u5176\uf969\u503c\u6b63\u898f\u5283\uff0c\u5c07\u8072\u5b78\u548c\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u77e9\u9663\u7684\u5206\uf969\u7d50\u5408\uff0c\u7a31\u77e5\uf9fc\u878d\u5408\u76f8\u4f3c\ufa01\u77e9\u9663 \u70ba\u4e00\u500b\u5c0d \u7a31\u77e9\u9663\uff0c\ufa08 l \u8207\uf99c \u5747\u8868\u793a\u67d0\u4e00\u97f3\u7d20\u8207\u5176\u4ed6\u97f3\u7d20\u76f8\u4f3c\ufa01\u4e4b\u5411\uf97e\u3002\u70ba\uf9ba\u5efa\uf9f7\u6709\u6548\ufa1d\u7c21\u7684\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\u65bc\u591a\u8a9e \u8a9e \u97f3 \u8fa8 \uf9fc \u4e4b \u61c9 \u7528 \uff0c \u672c \uf941 \u6587 \uf9dd \u7528 \u5411 \uf97e \uf97e \u5316 (vector quantization, VQ) \u7684 \u65b9 \u6cd5 [12] \uff0c \u5f9e \u8cc7 \uf9be \u5206 \u6790 \u7684 \u89d2 \ufa01 (data-driven)\uff0c\u5c07\u539f\u672c\u4e09\uf99a\u97f3\u7d20\u81ea\u52d5\u5730\u4f9d\u64da\u97f3\u7d20\u76f8\u4f3c\ufa01\u5206\u6790\uff0c\u5408\u4f75\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9\u3002\u5411\uf97e\uf97e\u5316\u70ba\u662f\u4e00\u7a2e\u975e\u76e3\u7763 \u5f0f\u7684\u7fa4\u96c6\u5206\u6790\u65b9\u6cd5\uff0c\u53ef\u4ee5\u5c07\u5206\u6563\u7684\u8cc7\uf9be\u7fa4\u96c6\u6210\u6709\u610f\u7fa9\u7684\uf9d0\u5225\u3002\u4e09\uf99a\u97f3\u7d20\u5728\u76f8\u4f3c\ufa01\u77e9\u9663\u5206\u6790\u5f8c\uff0c\u53ef\u7528\u5411\uf97e\u65b9 \u5f0f\u8868\u793a\u5176\u7a7a\u9593\u5ea7\u6a19\uff0c\uf941\u6587\u5f15\u7528[15]\u5728\u77e9\u9663\u4e2d\uff0c\uf978\u5411\uf97e\u593e\u89d2\u7684\u8a08\u7b97\u65b9\u6cd5\uff0c\u56e0\u6b64\uf978\u97f3\u7d20\u7684\u76f8\u4f3c\ufa01\u8a08\u7b97\u70ba \uff0c \u8a08\u7b97\u5982\u4e0b\uff1a A H ( ) kl N N s \u00d7 = S k ( , ) l k c s s 1 2 2 1 1 ( , ) N l k i i l k i l k N N l k l k l k s s s s c s s s s s s = = = \u00d7 \u2022 = = \u22c5 \u00d7 \u2211 \u2211 \u2211 (",
                        "eq_num": "\u5f0f 7"
                    }
                ],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Automatic Segmentation and Identification of Mixed-Language Speech Using Delta-BIC and LSA-Based GMMs",
                "authors": [
                    {
                        "first": "Chung-Hsien",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Yu-Hsien",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "Chi-Jiun",
                        "middle": [],
                        "last": "Shia",
                        "suffix": ""
                    },
                    {
                        "first": "Chun-Yu",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "IEEE Transactions on audio, speech, and language processing",
                "volume": "14",
                "issue": "1",
                "pages": "266--276",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chung-Hsien Wu, Yu-Hsien Chiu, Chi-Jiun Shia, and Chun-Yu Lin, 2006. Automatic Segmentation and Identification of Mixed-Language Speech Using Delta-BIC and LSA-Based GMMs. IEEE Transactions on audio, speech, and language processing, vol. 14, no. 1, pp. 266-276.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Verbmobil: Foundations of Speech-to-Speech Translation",
                "authors": [
                    {
                        "first": "Alex",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    },
                    {
                        "first": "Hagen",
                        "middle": [],
                        "last": "Soltau",
                        "suffix": ""
                    },
                    {
                        "first": "Tanja",
                        "middle": [],
                        "last": "Schultz",
                        "suffix": ""
                    },
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Schaaf",
                        "suffix": ""
                    },
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Metze",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alex Waibel, Hagen Soltau, Tanja Schultz, Thomas Schaaf, and Florian Metze, 2000. Multilingual Speech Recognition. Chapter in Verbmobil: Foundations of Speech-to-Speech Translation, Springer-Verlag.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Vocabulary Independent Discriminative Utterance Verification for Nonkeyword Rejection in Subword based Speech Recognition",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Rafid",
                        "suffix": ""
                    },
                    {
                        "first": "Chin-Hui",
                        "middle": [],
                        "last": "Sukkar",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "IEEE Transactions on Speech and Audio Processing",
                "volume": "4",
                "issue": "6",
                "pages": "420--429",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Rafid A. Sukkar and Chin-Hui Lee, 1996. Vocabulary Independent Discriminative Utterance Verification for Nonkeyword Rejection in Subword based Speech Recognition. IEEE Transactions on Speech and Audio Processing, vol. 4, no. 6, pp. 420-429.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Generation of robust phonetic set and decision tree for Mandarin using chi-square testing",
                "authors": [
                    {
                        "first": "Yeou-Jiunn",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Chung-Hsien",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Yu-Hsien",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "Hsiang-Chuan",
                        "middle": [],
                        "last": "Liao",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Speech Communication",
                "volume": "38",
                "issue": "",
                "pages": "349--364",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yeou-Jiunn Chen, Chung-Hsien Wu, Yu-Hsien Chiu, and Hsiang-Chuan Liao, 2002. Generation of robust phonetic set and decision tree for Mandarin using chi-square testing. Speech Communication, vol. 38(3-4), pp. 349-364.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Mathews' Chinese-English Dictionary, Caves",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "H"
                        ],
                        "last": "Mathews",
                        "suffix": ""
                    }
                ],
                "year": 1975,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mathews, R. H., 1975. Mathews' Chinese-English Dictionary, Caves, 13th printing.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Computer-Coded Phonemic Notation of Individual Languages of the European Community",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "C"
                        ],
                        "last": "Wells",
                        "suffix": ""
                    }
                ],
                "year": 1989,
                "venue": "J. IPA",
                "volume": "19",
                "issue": "",
                "pages": "32--54",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. C. Wells, 1989. Computer-Coded Phonemic Notation of Individual Languages of the European Community. J. IPA, 19, pp. 32-54.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "ASCII Phonetic Symbols for the World's Languages: Worldbet",
                "authors": [
                    {
                        "first": "James",
                        "middle": [
                            "L"
                        ],
                        "last": "Hieronymus",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Journal of the International Phonetic Association",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "James L. Hieronymus, 1993. ASCII Phonetic Symbols for the World's Languages: Worldbet. Journal of the International Phonetic Association.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Phone clustering using the Bhattacharyya distance",
                "authors": [
                    {
                        "first": "Brian",
                        "middle": [],
                        "last": "Mak",
                        "suffix": ""
                    },
                    {
                        "first": "Etienne",
                        "middle": [],
                        "last": "Barnard",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Proc. ICSLP",
                "volume": "",
                "issue": "",
                "pages": "2005--2008",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Brian Mak and Etienne Barnard, 1996. Phone clustering using the Bhattacharyya distance. in Proc. ICSLP, pp. 2005-2008.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A Distance Measure Between GMMs Based on the Unsented Transform and its Application to Speaker Recognition",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Goldberger",
                        "suffix": ""
                    },
                    {
                        "first": "Hagai",
                        "middle": [],
                        "last": "Aronowitz",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of EUROSPEECH 2005",
                "volume": "",
                "issue": "",
                "pages": "1985--1988",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Goldberger and Hagai Aronowitz, 2005. A Distance Measure Between GMMs Based on the Unsented Transform and its Application to Speaker Recognition. in Proc. of EUROSPEECH 2005, pp. 1985-1988, Lisbon, Portugal.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "The Sound Pattern of English",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Chomsky",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Halle",
                        "suffix": ""
                    }
                ],
                "year": 1968,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chomsky, N. and Halle, M., 1968. The Sound Pattern of English. New York: Harper & Row.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Modelling parsing constraints with high-dimensional context space",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Burgess",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Lund",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Language and Cognitive Processes",
                "volume": "12",
                "issue": "",
                "pages": "177--210",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Burgess, C. and Lund, K., 1997. Modelling parsing constraints with high-dimensional context space. Language and Cognitive Processes, 12:177-210.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Quantization",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [
                            "L"
                        ],
                        "last": "Gray",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Neuhoff",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Transactions on Information Theory",
                "volume": "44",
                "issue": "6",
                "pages": "2325--2383",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Robert M. Gray and David L. Neuhoff, 1998. Quantization. IEEE Transactions on Information Theory, vol. 44, no. 6, pp. 2325-2383.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Term-weighting Approaches in Automatic Text Retrieval",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Salton",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Buckley",
                        "suffix": ""
                    }
                ],
                "year": 1988,
                "venue": "Information Processing Management",
                "volume": "24",
                "issue": "5",
                "pages": "513--523",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Salton and C. Buckley, 1988. Term-weighting Approaches in Automatic Text Retrieval. Information Processing Management, vol. 24, no. 5, pp. 513-523.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "On Combining Classifiers",
                "authors": [
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Kittler",
                        "suffix": ""
                    },
                    {
                        "first": "Mohamad",
                        "middle": [],
                        "last": "Hatef",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "W"
                        ],
                        "last": "Robert",
                        "suffix": ""
                    },
                    {
                        "first": "Jiri",
                        "middle": [],
                        "last": "Duin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Matason",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "IEEE Transactions on Pattern Analysis and Machine Intelligence",
                "volume": "20",
                "issue": "3",
                "pages": "226--239",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Josef Kittler, Mohamad Hatef, Robert P.W. Duin, and Jiri MatasOn, 1998. On Combining Classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-239.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Exploiting latent semantic information in statistical language modeling",
                "authors": [
                    {
                        "first": "Jerome",
                        "middle": [
                            "R"
                        ],
                        "last": "Bellegarda",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. IEEE",
                "volume": "88",
                "issue": "",
                "pages": "1279--1296",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jerome R. Bellegarda, 2000. Exploiting latent semantic information in statistical language modeling. Proc. IEEE, vol. 88, no. 8, pp. 1279-1296.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "A modified K-means clustering algorithm for use in isolated work recognition",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Jay",
                        "suffix": ""
                    },
                    {
                        "first": "Lawrence",
                        "middle": [
                            "R"
                        ],
                        "last": "Wilpon",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rabiner",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "IEEE Transactions on Acoustics, Speech, and Signal Proc",
                "volume": "33",
                "issue": "3",
                "pages": "587--594",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jay G. Wilpon and Lawrence R. Rabiner, 1985. A modified K-means clustering algorithm for use in isolated work recognition. IEEE Transactions on Acoustics, Speech, and Signal Proc., vol. 33, no. 3, pp. 587-594.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Speech feature smoothing for robust ASR",
                "authors": [
                    {
                        "first": "Chia-Ping",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Bilmes",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "W"
                        ],
                        "last": "Daniel",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ellis",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. ICASSP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chia-Ping Chen, Jeff Bilmes and Daniel P. W. Ellis, 2005. Speech feature smoothing for robust ASR. in Proc. ICASSP, Philadelphia PA.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Statistical Methods for Speech Recognition",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Johnston",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Johnston, D., 1997. Statistical Methods for Speech Recognition. The MIT Press, Cambridge, MA.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Progress in dynamic programming search for LVCSR",
                "authors": [
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Ortmanns",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proceedings of the IEEE",
                "volume": "88",
                "issue": "",
                "pages": "1224--1240",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "H. Ney and S. Ortmanns, 2000. Progress in dynamic programming search for LVCSR. Proceedings of the IEEE, vol. 88, no. 8, pp. 1224-1240.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\u4e4b\u591a\u8a9e\u8fa8\uf9fc\u97f3\u7d20\u6b63\u78ba\uf961 (\u62ec\u5f27\u5167\u8868\u8fa8\uf9fc\u55ae\u5143\u4e4b\u500b\uf969) ====================== English Across Taiwan, EAT ====================== --------------------------------------Triphone Tree-Search Results------------------------------------ACCURACY"
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "text": "\u7684\u65b9\u6cd5\uff0c\u8a08\u7b97\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\u9593\u7684\u8ddd \uf9ea\uff0c\u6c7a\u5b9a\u76f8\u4f3c\ufa01\u4ee5\u5b9a\u7fa9\u591a\u8a9e\u97f3\u7d20\u96c6\u3002\u6b64\u4f5c\u6cd5\u4e0a\uff0c\u540c\u6642\u8003\u616e\u591a\u8a9e\u97f3\u7d20\u9593\uf96b\uf969\u5206\u4eab\u7684\u7279\u6027\uff0c\u4e26\uf9dd\u7528\u8cc7\uf9be\u7d71\u8a08\u5206 \u6790\u6c7a\u5b9a\u97f3\u7d20\u5b9a\u7fa9\u3002\u4f46\u662f\u7f3a\u9ede\u5728\u65bc\u8a08\u7b97\u6a21\u578b\uf96b\uf969\u9593\u7684\u8ddd\uf9ea\uff0c\u8207\u5be6\u969b\u8fa8\uf9fc\u6f14\u7b97\u6cd5\u5728\u57f7\ufa08\u6642\uff0c\u6240\u8003\u616e\u7684\u8072\u5b78\u76f8\u4f3c \ufa01(acoustic likelihood)\uf967\u7b26\u3002 \u672c\uf941\u6587\u63a2\u8a0e\u4e2d\u82f1\u6587\u4e4b\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u7814\u7a76\uff0c\u5f9e\u4e2d\u82f1\u6587\u57fa\u672c\u97f3\u7d20\u4f5c\u5206\u6790\u3002\u4e2d\u6587\u53ef\u4ee5\u5206\u70ba 37 \u500b\u97f3\u7d20\uff0c\u82f1 \u6587\u53ef\u5206\u70ba 39 \u500b\u97f3\u7d20\u3002\u8003\u616e\u8a9e\u97f3\u767c\u97f3\u5171\u8072\u7684\u73fe\u8c61(co-articulation)\uff0c\u672c\uf941\u6587\u5b9a\u7fa9\u524d\u5f8c\u6587\u76f8\u95dc\u4e4b\u4e09\uf99a\u97f3\u7d20\u6a21\u578b (contextual tri-phone models)\uff0c\u9032\u4e00\u6b65\u5c0d\u8a9e\u97f3\u767c\u97f3\u76f8\u4f3c\ufa01\u4f5c\u8072\u5b78\u76f8\u4f3c\ufa01(acoustic likelihood)\u5206\u6790\u3002\u6b64\u5916\uf901\u5c0e\u5165 \u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u5206\u6790(hyperspace analog to language, HAL)\uff0c\u8003\uf97e\u4e09\uf99a\u97f3\u8fa8\uf9fc\u55ae\u5143\u524d\u5f8c\u6587\u8108\u4e4b\u95dc\u4fc2\uff0c\u4ee5\u6539 \u5584\u904e\u53bb\u55ae\u7d14\u8003\uf97e\u6a21\u578b\uf96b\uf969\u8072\u5b78\u76f8\u4f3c\ufa01\uf92d\uf97e\u6e2c\u8a9e\u97f3\u97f3\u7d20\u9593\u76f8\u4f3c\ufa01\u4e4b\u65b9\u5f0f\uff0c\u4ee5\u6c7a\u5b9a\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\uff0c\u7b26\u5408\u8a9e\u97f3\u767c \u97f3\u4e2d\u53d7\u524d\u5f8c\u6587\u5f71\u97ff\u4e4b\u7279\u6027\u3002\u6700\u5f8c\uff0c\u4ee5\u8cc7\uf9be\u878d\u5408\u7684\u6280\u8853\u5408\u4f75\u5b9a\u7fa9\u767c\u97f3\u76f8\u4f3c\u7684\u97f3\u7d20\u3002\u5be6\u9a57\u8a55\u4f30\uff0c\uf9dd\u7528\u81ea\ufa08\u958b\u767c \u7684\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u7cfb\u7d71\uff0c\u4f7f\u7528\u96b1\u85cf\u5f0f\u99ac\u53ef\u592b\u6a21\u578b(hidden Markov model, HMM)\uff0c\u5efa\uf9f7\u4ee5\u97f3\u7d20\u70ba\u57fa\u790e\u7684\u8072\u5b78\u6a21",
                "content": "<table><tr><td colspan=\"3\">\u5b9a\u7fa9\u548c 39 \u500b\u82f1\u6587\u97f3\u7d20\u5b9a\u7fa9\u3002\u6b64\u65b9\u6cd5\u7d50\u5408\u4e2d\u82f1\uf978\u7a2e\u8a9e\u8a00\u4e4b\u97f3\u7d20\uff0c\u5efa\uf9f7\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u8072\u5b78\u6a21\u578b\u3002\u4f5c\u6cd5\u4e0a\u7684</td></tr><tr><td colspan=\"3\">\u7f3a\u9ede\uff0c\u5728\u65bc\u5404\u76ee\u6a19\u8a9e\u8a00\u4e2d\u76f8\u4f3c\u4e4b\u97f3\u7d20\uff0c\u6a21\u578b\uf96b\uf969\u7121\u6cd5\u5206\u4eab\uff0c\u800c\u4e14\u7576\u9700\u8981\u7d50\u5408\u7684\u76ee\u6a19\u8a9e\u8a00\u8b8a\u591a\u7684\u6642\u5019\uff0c\u6240\u9700</td></tr><tr><td colspan=\"2\">\u8981\u5b9a\u7fa9\u7684\u97f3\u7d20\u6a21\u578b\u6703\u5927\uf97e\u96a8\u4e4b\u589e\u52a0\u3002</td><td/></tr><tr><td colspan=\"2\">2.2. \u4ee5 IPA \u70ba\u57fa\u6e96\u5b9a\u7fa9\u591a\u8a9e\u97f3\u7d20</td><td/></tr><tr><td colspan=\"3\">\u7b2c\u4e8c\u7a2e\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9\u65b9\u5f0f\u662f\u57fa\u65bc\u5c08\u5bb6\u7684\u77e5\uf9fc\uff0c\u5c07\u500b\u5225\u7368\uf9f7\u7684\u55ae\u4e00\u8a9e\u8a00\u5c0d\u61c9\u5230 IPA \u6a19\u6e96\u7684\u7b26\u865f\u5b9a\u7fa9\uff0c\u85c9</td></tr><tr><td colspan=\"3\">\u6b64\u5404\u8a9e\u8a00\u9593\u53ef\u4ee5\u5206\u4eab\u76f8\u540c\u7684\u97f3\u7d20\u5b9a\u7fa9\u3002\u5982(\u8868 2)\u6240\u793a\u662f\u4ee5 IPA \u70ba\u6a19\u6e96\u4e4b\u4e2d\u82f1\u591a\u8a9e\u97f3\u7d20\u7684\u5b9a\u7fa9\u3002</td></tr><tr><td/><td>\u8868 2. \u4ee5 IPA \u70ba\u6a19\u6e96\u4e4b\u4e2d\u82f1\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9</td><td/></tr><tr><td>\u97f3\u7d20\uf9d0\u5225</td><td colspan=\"2\">IPA \u70ba\u6a19\u6e96\u4e4b\u4e2d\u82f1\u591a\u8a9e\u97f3\u7d20</td></tr><tr><td>\u6709\u8072\u7834\uf9a0\u97f3</td><td>B, D, G</td><td/></tr><tr><td>\u7121\u8072\u7834\uf9a0\u97f3</td><td>P, T, K</td><td/></tr><tr><td>\u6469\u64e6\u97f3</td><td>F, S, SH, H, X, V, TH, DH</td><td/></tr><tr><td>\uf96c\u64e6\u97f3</td><td>Z, ZH, C, CH, J, Q, CH, JH</td><td/></tr><tr><td>\u9f3b\u97f3</td><td>M, N, NG</td><td/></tr><tr><td>\uf9ca\u97f3</td><td>R, L</td><td/></tr><tr><td>\uf904\u97f3</td><td>W, Y</td><td/></tr><tr><td>\u524d\u90e8\u6bcd\u97f3</td><td>I, ER, V, EI, IH, EH, AE</td><td/></tr><tr><td colspan=\"3\">\u4e2d\u90e8\u6bcd\u97f3 \u578b\uff0c\u4e26\u914d\u5408\u591a\u8a9e\u8a9e\u8a00\u6a21\u578b\u548c\u591a\u8a9e\u767c\u97f3\u8fad\u5178\u6587\u6cd5\u6a39\uff0c\u9032\ufa08\uf99a\u7e8c\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u3002 ENG, AN, ANG, EN, AH, UH \u63a5\u4e0b\uf92d\u7684\u6587\u7ae0\u7d50\u69cb\u5c07\u5206\u5225\u63a2\u8a0e\u5982\u4e0b\uff1a\u7b2c\u4e8c\u7bc0\uff0c\u63a2\u8a0e\u904e\u53bb\u5c0d\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u7814\u7a76\u3002\u7b2c\u4e09\u7bc0\uff0c\uf96f\u660e\uf941\u6587\u65b9 \u80cc\u90e8\u5713\u5507\u6bcd\u97f3 O</td></tr><tr><td colspan=\"3\">\u6cd5\u5efa\uf9f7\ufa1d\u7c21\u6709\u6548\u7684\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\u65bc\u81ea\u52d5\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u61c9\u7528\u3002\u7b2c\u56db\u7bc0\uff0c\u91dd\u5c0d\u672c\uf941\u6587\u6240\u63d0\u65b9\u6cd5\u5efa\uf9f7\u4e4b\u591a\u8a9e\u97f3\u7d20\u6a21 \u80cc\u90e8\u975e\u5713\u5507\u6bcd\u97f3 A, U, OU, AI, AO, E, EE, OY, AW</td></tr><tr><td colspan=\"3\">\u578b\u9032\ufa08\u8fa8\uf9fc\u7d50\u679c\u8a55\u4f30\uff0c\u5be6\u9a57\u4e26\u8207\u4e4b\u524d\u65b9\u6cd5\u6bd4\u8f03\u3002\u7b2c\u4e94\u7bc0\u662f\u8a0e\uf941\uf96f\u660e\u8207\u7d50\uf941\u3002</td></tr><tr><td colspan=\"3\">(\u8868 2) \u5167\u4e4b\u97f3\u7d20\uf9d0\u5225\uf96b\u8003 Chomsky \u5b9a\u7fa9[10]\u3002\u5982\u6b64\u898f\u5247\u5730\u5c07\u4e2d\u82f1\uf978\u7a2e\u8a9e\u8a00\u7684\u97f3\u7d20\u7d50\u5408\uff0c\u5171\u8a08\u6709 52 \u500b\u4e2d\u82f1\u96d9 2. \u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u97f3\u7d20\u5b9a\u7fa9\u76f8\u95dc\u7814\u7a76 \u8a9e\u97f3\u7d20\u5b9a\u7fa9\u3002\u4f5c\u6cd5\u4e0a\u53ef\u4ee5\u6709\u6548\u5730\u5c07\u90e8\u5206\u7684\u4e2d\u82f1\u6587\u97f3\u7d20\u5408\u4f75\uff0c\u5171\u4eab\u8a9e\u8a00\u9593\u5f7c\u6b64\u7684\u5171\u540c\u97f3\u7d20\uff0c\u6e1b\u5c11\u8a9e\u97f3\u97f3\u7d20\u6a21</td></tr><tr><td colspan=\"3\">\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u97f3\u7d20\u5b9a\u7fa9\u7684\u65b9\u6cd5\uff0c\u4e3b\u8981\u53ef\u5206\u70ba\u4e09\u7a2e\u65b9\u5f0f\uff1a(\u4e00)\u76f4\u63a5\u7d50\u5408\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20\u5b9a\u7fa9\uff1b(\u4e8c) \u578b\u7684\u5b9a\u7fa9\u548c\u8a13\uf996\u3002\u4f46\u6b64\u4f5c\u6cd5\u7684\u7f3a\u9ede\u662f\u5efa\u69cb\u5728\u5c08\u5bb6\u77e5\uf9fc\u7684\u5206\u6790\uff0c\u800c\u975e\u5f9e\u8cc7\uf9be\u7279\u6027\u7d71\u8a08\u7684\u89d2\ufa01\u5b9a\u7fa9\u3002\u4e5f\u5c31\u662f\uf96f\uff0c</td></tr><tr><td colspan=\"3\">\u4f9d\u64da\u570b\u969b\u97f3\u7d20\u6a19\u6e96\u5b9a\u7fa9\uff0c\u627e\u51fa\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20\uf997\u96c6\uff1b(\u4e09)\u5f9e\u8cc7\uf9be\u5206\u6790\u7684\u89d2\ufa01(data-driven)\uff0c\u5408\u4f75\u500b\u5225\u55ae \u76f4\u63a5\u5c0d\u7167 IPA \u5b9a\u7fa9\u7522\u751f\u7684\u591a\u8a9e\u97f3\u7d20\u96c6\uff0c\u4e26\u6c92\u6709\u8003\u616e\u5230\u97f3\u7d20\u6a21\u578b\u9593\u983b\u8b5c\u7279\u6027\u3002\u5c08\u5bb6\u77e5\uf9fc\u5206\u6790\u7684\u591a\u8a9e\u97f3\u7d20\u96c6\uff0c</td></tr><tr><td colspan=\"3\">\u4e00\u8a9e\u8a00\u4e4b\u76f8\u4f3c\u97f3\u7d20\u3002\u73fe\u5206\u5225\u4ecb\u7d39\u5982\u4e0b\uff1a \u8207\u6700\u5f8c\u9032\ufa08\u8a9e\u97f3\u8fa8\uf9fc\uff0c\u5f9e\u8cc7\uf9be\u5206\u6790\u89d2\ufa01\u5efa\uf9f7\u7684\u7d71\u8a08\u6a21\u578b\u8a08\u7b97\uf967\u4e00\u81f4\u3002\u56e0\u6b64\uff0c\u63a1\u7528\u76f4\u63a5\u5c0d\u7167 IPA \u5b9a\u7fa9\u4e4b\u591a\u8a9e</td></tr><tr><td colspan=\"2\">2.1. \u76f4\u63a5\u7d50\u5408\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20 \u97f3\u7d20\u6a21\u578b\u4e26\uf967\u80fd\u78ba\u5be6\u5730\u5448\u73fe\u7d71\u8a08\u8a13\uf996\u8cc7\uf9be\u4e0a\u7684\u5206\u4f48\u3002</td><td/></tr><tr><td colspan=\"2\">\u5982(\u8868 1)\u6240\u793a\uff0c\u6bd4\u7167\u4e2d\u6587\u548c\u82f1\u6587\u55ae\u4e00\u8a9e\u8a00\u97f3\u7d20\u7684\u5b9a\u7fa9\u3002 2.3. \uf97e\u6e2c\u97f3\u7d20\u76f8\u4f3c\ufa01\u5b9a\u7fa9\u591a\u8a9e\u97f3\u7d20\u96c6</td><td/></tr><tr><td colspan=\"3\">\u9664\uf9ba\u76f4\u63a5\u6df7\u5408\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9\uff0c\u4ee5\u53ca\uf9dd\u7528 IPA \u570b\u969b\u6a19\u6e96\u5b9a\u7fa9\u7684\u591a\u8a9e\u97f3\u7d20\uff0c\u904e\u53bb\u7814\u7a76\u4e5f\u66fe\uf9dd\u7528\u4f30\u6e2c\u4e09\uf99a\u97f3 \u8868 1. \u7d50\u5408\u4e2d\u82f1\u6587\u97f3\u7d20\u5b9a\u7fa9 \u7d20\u6a21\u578b\u9593\u7684\u76f8\u4f3c\ufa01\uff0c\u4ee5 HMM \u6a21\u578b\uf96b\uf969\u8ddd\uf9ea\u8a08\u7b97\uff0c\uf9dd\u7528\u905e\u8ff4\u65b9\u6cd5\u5408\u4f75\u4e09\uf99a\u97f3\u7d20\u6a21\u578b (triphone)\uff0c\u5efa\u69cb\u51fa\u591a</td></tr><tr><td colspan=\"3\">\u97f3\u7d20\uf9d0\u5225 \u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u7684\u97f3\u7d20\u96c6[8][9]\u3002\uf978\u500b\u9ad8\u65af\u5206\u4f48\u7684\u76f8\u4f3c\u53ef\u4ee5\uf9dd\u7528\u5e73\u5747\u503c\u548c\u8b8a\uf962\uf969\u51fd\uf969\uff0c\uf92d\u63cf\u8ff0\u5f7c\u6b64\u7684\u76f8\u4f3c\u7a0b\ufa01\u3002 \u4e2d\u6587 \u82f1\u6587 \u6709\u8072\u7834\uf9a0\u97f3 b_M, d_M, g_M b, d, g \uf9dd\u7528 Bhattacharyya distance [8]\uf92d\u8a08\u7b97\u97f3\u7d20\u6a21\u578b\u9593\u7684\u8ddd\uf9ea \uff0c\u8868\u793a\u5982\u4e0b\uff1a bha</td></tr><tr><td>\u7121\u8072\u7834\uf9a0\u97f3</td><td>p_M, t_M, k_M</td><td>p, t, k</td></tr><tr><td>\u6469\u64e6\u97f3</td><td>f_M, s_M, sh_M, h_M, x_M</td><td>f, v, th, dh, s, sh, hh</td></tr><tr><td>\uf96c\u64e6\u97f3</td><td>c_M, ch_M, j_M, q_M, z_M, zh_M</td><td>ch, jh, z, zh</td></tr><tr><td>\u9f3b\u97f3</td><td>m_M, n_M</td><td>m, n, ng</td></tr><tr><td>\uf9ca\u97f3</td><td>r_M, l_M</td><td>r, l</td></tr><tr><td>\uf904\u97f3</td><td/><td>w, y</td></tr><tr><td>\u524d\u90e8\u6bcd\u97f3</td><td>i_M, v_M, ei_M, er_M</td><td>ih, eh, ae, iy, ey</td></tr><tr><td>\u4e2d\u90e8\u6bcd\u97f3</td><td>an_M, ang_M, en_M, eng_M</td><td>ah, uh, er</td></tr><tr><td>\u80cc\u90e8\u5713\u5507\u6bcd\u97f3</td><td>o_M</td><td>ao</td></tr></table>",
                "num": null
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "\u9ea5\u514b\u98a8\u8a9e\uf9be\uf93f\u88fd 16KHz \u53d6\u6a23\u983b\uf961 16bits \u7684\u53d6\u6a23\u9ede\u97f3\u6a94\uff0c\u96fb\u8a71\u8a9e\uf9be\uf93f\u88fd 8KHz \u53d6\u6a23\u983b\uf961 16bits \u7684\u53d6\u6a23\u9ede\u97f3\u6a94\uff0c \u5176\u4e2d\u96fb\u8a71\u8a9e\uf9be\u53c8\u53ef\u7d30\u5206\u70ba\u56fa\u5b9a\u5f0f\u96fb\u8a71(PSTN)\u8a9e\uf9be\u53ca\ufa08\u52d5\u96fb\u8a71(GSM )\u8a9e\uf9be\uff0c\u96fb\u8a71\u8a9e\uf9be\u90e8\u4efd\u662f\u900f\u904e Dialogic \u96fb \u8a71\u8a9e\u97f3\u4ecb\u9762\u5361\uff0c\uf93f\u5f97\u7684 8KHz\uff0c8Bits\uff0cMulaw \u683c\u5f0f\u7684\u53d6\u6a23\u9ede,\u7d93\u7a0b\u5f0f\u8f49\u6210 8KHz\uff0c16bits\uff0cpcm \u683c\u5f0f\u7684\u53d6\u6a23\u9ede\uff1b \u9ea5\u514b\u98a8\u8a9e\uf9be\u662f\u7531\u500b\u4eba\u96fb\u8166\u53ca\u9ea5\u514b\u98a8\uff0c\u76f4\u63a5\u5f9e\u500b\u4eba\u96fb\u8166\u7684\u97f3\u6548\u5361\uf93f\u88fd 16KHz\uff0c16bits \u7684\u8072\u97f3\u8a0a\u865f\u3002\u6700\u5f8c\u5c07\u6240 \u6709\u53d6\u6a23\u9ede\u4ee5 \u8868\u793a\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9\u7684 HMM \u6a21\u578b\uff0c\u7814\u7a76\u4e0a\u61c9\u7528 3 \u500b\uf9fa\u614b(state)\uf92d\u63cf\u8ff0\u6bcf\u4e00\u500b HMM \u6a21\u578b\uff0c\u6bcf \u4e00\u500b\uf9fa\u614b\u5305\u542b\u6709 16 \u500b\u9ad8\u65af(mixture)\u3002\u6b64\u591a\u8a9e\u4e4b\u6a39\uf9fa\u7d50\u69cb\u767c\u97f3\u8fad\u5178\u8209\uf9b5\u5171\u6709\uff1asay(sil_S_EY, S_EY_sil)\u3001\u5df4\uf989 (sil_B_IY, B_IY_L, B_L_IY, L_IY_sil)\u3001top(sil_T_AA, T_AA_P, AA_P_sil)\u7b49\u8a5e\u7d44\u3002\u672c\u5be6\u9a57\u5408\u4f75\u82f1\u6587\u767c\u97f3\u8fad\u5178 \u8207\u4e2d\u6587\u767c\u97f3\u8fad\u5178\uff0c\u5efa\uf9f7\u5305\u542b 29,104 \u500b\u4e2d\u82f1\u6587\u8a5e\u4e4b\u591a\u8a9e\u767c\u97f3\u8fad\u5178\u3002\u672c\u5716\u793a\u8209\uf9b5\uf96f\u660e\u7531\u975c\u97f3(silence, sil)\u70ba\u8d77\u9ede\uff0c \u8fa8\uf9fc\u591a\u8a9e\u8a9e\uf906\"say (sil_S_EY, S_EY_sil) \u5df4\uf989 (sil_B_IY, B_IY_L, IY_L_IY, L_IY_sil)\"\u70ba\uf9b5\uff0c \u70ba\u6a39\u7684\u6839\u7bc0 \uf9dd\u7528\u524d\u5f8c\u6587\u8108\u5206\u6790\u65b9\u6cd5 HAL \u6bd4\u8072\u5b78\u76f8\u4f3c\ufa01\u65b9\u6cd5 ACL \u6709\u8f03\u9ad8\u7684\u6e96\u78ba\uf961\uff0c\u800c\u540c\u6642\u7d50\u5408\u8072\u5b78\u76f8\u4f3c\ufa01\u8207\u524d\u5f8c\u6587\u8108 \u5206\u6790 FUN \u53ef\u4ee5\u6709\u6700\u4f73\u7684\u8fa8\uf9fc\u6548\u679c\u3002\u7576\u7fa4\u96c6\uf969 16 Y = \u6642\uff0c\uf941\u6587\u6240\u63d0\u4e4b\u65b9\u6cd5(FUN)\u53ef\u4ee5\u6709\u6700\u597d\u7684\u8fa8\uf9fc\u6548\u679c\u3002\u56e0 \u6b64\uff0c\uf941\u6587\u8a2d\u5b9a\u7fa4\u96c6\u5206\u6790 16 Y = \uff0c\u7fa4\u96c6\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\uff0c\u5206\u6790\u5982(\u5716 5)\u6240\u793a\u3002\u7d93\u904e\u5206\uf9d0\u5b8c\u5f8c\uff0c\u5404\u500b IPA \u5b9a\u7fa9\u4e4b\u97f3 \u7d20\u4e2d\uff0c\u6240\u5305\u542b\u4e4b\u4e09\uf99a\u97f3\u500b\uf969\u3002\u7531\u4e0a\u5716\u53ef\u77e5\uff0c\u4ee5 55 \u500b IPA \u6a19\u6e96\u5b9a\u7fa9\u6240\u7522\u751f\u4e4b 997 \u500b\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\uff0c\uf9dd\u7528\u8cc7 \uf9be\u878d\u5408\u65b9\u6cd5\u53ef\u4ee5\u5408\u4f75\u70ba 260 \u500b\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\u3002",
                "content": "<table><tr><td colspan=\"4\">\u900f\u904e\u591a\u8a9e\u767c\u97f3\u8fad\u5178\uff0c\u53ef\u4ee5\u5efa\u69cb\u51fa\u591a\u8a9e\u767c\u97f3\u4e4b\u6587\u6cd5\u6a39(grammar tree) [20]\u3002\u5982\u4e0b(\u5716 4)\u6240\u793a\u3002\u5728\u8fa8\uf9fc\u7684\uf9ca\u7a0b\u4e0a\uff0c</td></tr><tr><td colspan=\"4\">wav \u683c\u5f0f\u97f3\u6a94\u5132\u5b58\u3002\u672c\uf941\u6587\u7814\u7a76\u63a1\u7528\u9ea5\u514b\u98a8\u8a9e\uf9be\u90e8\u5206\u3002 \u6bcf\u4f4d\u8a9e\u8005\u6536\uf93f 80 \uf906\u8a9e\u97f3\u8a9e\uf9be\uff0c\u8a9e\uf9be\u5167\u5bb9\u8a2d\u8a08\u6709\u82f1\u6587\uf969\u5b57\uf99a\u7e8c\u8a9e\u97f3\u3001\u82f1\u6587\u5b57\u6bcd\uf99a\u7e8c\u8a9e\u97f3\u3001\u4e2d\u82f1\u6587\u6df7\u5408 \uf906\u3001\u82f1\u6587\u55ae\u5b57\u3001\u7247\u8a9e\u6216\uf906\u5b50\u7b49\uff0c\u5982(\u8868 5)\u6240\u793a\u3002\uf941\u6587\u4e3b\u8981\u63a2\u8a0e\u4e2d\u82f1\u593e\u96dc\u7684\u591a\u8a9e\u61c9\u7528\uff0c\u5be6\u9a57\u62bd\u53d6\u8a9e\uf9be\u5167\u4e2d\u82f1\u6587 \u6df7\u5408\uf906\u578b (\u8868 5 \u4e4b 6 \u548c 7)\uff0c\u8a9e\uf9be\u7de8\u865f#58 \u81f3#70 \u7684\u97f3\u6a94\u8cc7\u8a0a\u3002 4.4. \u8072\u5b78\u8207\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u5206\u6790\u65bc\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc \u6bcf\u4e00\u500b\u5206\u652f(arc)\u9ede\uff1b \u7dda\u689d\u8868\u793a\u591a\u8a9e\u97f3\u7d20\u4e5f\u5c31\u662f\u8a13\uf996\u7684\u8072\u5b78\u6a21\u578b\uff0c \u6307\u97f3\u7d20\u7684\u7bc0\u9ede\uff1b \u8868\u793a\uf96e\u7d50\u9ede\uff0c\u6307\u51fa\u5f9e\u6839\u7bc0\u9ede\u5230\u6b64 \u672c\uf941\u6587\u7814\u7a76\u63a2\u8a0e\u4e2d\u6587\u548c\u82f1\u6587\u7684\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u61c9\u7528\uff0c\u5be6\u9a57\u9996\u5148\u6e2c\u8a66\u4f7f\u7528\u55ae\u97f3\u7d20\u6a21\u578b(monophone)\u7684\u5b9a</td></tr><tr><td colspan=\"4\">\uf96e\u7d50\u9ede\u4e4b\u767c\u8072\u97f3\u7d20\u53ef\u80fd\u69cb\u6210\u7684\u6240\u6709\u591a\u8a9e\u8a5e\u5f59\uff1b \u7fa9\uff0c\u4f9d\u64da(\u8868 1)\u548c(\u8868 2)\u7b49\uf967\u540c\u6a19\u8a18\u65b9\u6cd5\u7684\u5167\u5bb9\uff0c\u5206\u5225\u53ef\u4ee5\u5b9a\u7fa9\uff1a (\u4e00) \u76f4\u63a5\u7d50\u5408\u500b\u5225\u55ae\u4e00\u8a9e\u8a00\u4e4b\u97f3\u7d20(MIX)\uff1b \u8868\u793a\u6a39\u8207\u6a39\u4e4b\u9593\uf99a\u7d50\u7684\u8a9e\u8a00\u6a21\u578b\u3002 \u8868 5. EAT \u8a9e\uf9be\u4e2d\u591a\u8a9e\uf906\u578b\u7bc4\uf9b5 4.3. \uf9dd\u7528\u8072\u5b78\u8207\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u5206\u6790\u7fa4\u805a\u4e09\uf99a\u97f3\u7d20\u6a21\u578b (\u4e8c) \u4ee5 IPA \u70ba\u57fa\u6e96\u5b9a\u7fa9\u591a\u8a9e\u97f3\u7d20\u4e4b\u65b9\u6cd5 (IPA)\u3002\u5be6\u9a57\u7d50\u679c\u5982(\u8868 7)\u6240\u793a\uff1a</td></tr><tr><td colspan=\"4\">EAT \u8a9e\uf9be\uf906\u578b 100% four eight three zero one two nine for instance Safe len ins del sub len \u2212 \u2212 \u00d7 \u2212 \u8a9e\u97f3\u8fa8\uf9fc\u53ef\u80fd\u767c\u751f\u7684\u932f\u8aa4\u6709\u4e09\u7a2e\u578b\u614b\uff0c\u5206\u5225\u662f\u63d2\u5165\u932f\u8aa4(insertion)\u3001\u522a\u9664\u932f\u8aa4(deletion)\u4ee5\u53ca\u66ff\u63db\u932f\u8aa4 1 2 3 Accuracy = (\u5f0f 9) (substitution)\u3002\u5be6\u9a57\u4e2d\u97f3\u7d20\u6b63\u78ba\uf961(accuracy)\u7684\u8a08\u7b97[21]\uff0c\u65b9\u5f0f\u5982\u4e0b\uff1a \u8868 7. \u55ae\u97f3\u7d20\u6a21\u578b\u4e4b\u591a\u8a9e\u8fa8\uf9fc\u97f3\u7d20\u6b63\u78ba\uf961 (\u62ec\u5f27\u5167\u8868\u8fa8\uf9fc\u55ae\u5143\u4e4b\u500b\uf969)</td></tr><tr><td colspan=\"3\">4 \u5176\u4e2d\uff0c le \u70ba\u8fa8\uf9fc\u7d50\u679c\uff0c\u97f3\u7d20\u5e8f\uf99c\u7684\u9577\ufa01\u3002 in \u70ba\u6bd4\u8f03\u8f03\u6b63\u78ba\u7d50\u679c\u591a\u8fa8\uf9fc\u51fa\u7684\u97f3\u7d20\uff0c\u5c6c\u65bc\u63d2\u5165\u932f\u8aa4\uff0c Silicon Graphics n s</td><td>del</td><td>\u70ba</td></tr><tr><td colspan=\"4\">5 \u6bd4\u8f03\u6b63\u78ba\u7d50\u679c\u5c11\u8fa8\uf9fc\u5230\u7684\u97f3\u7d20\uff0c\u5c6c\u65bc\u522a\u9664\u932f\u8aa4\u3002 R. S. R. T. E. K. 6 \u6790\uf967\u540c\u7fa4\u96c6\u689d\u4ef6\u4e0b\u7684\u7fa4\u805a\u97f3\u7d20\u500b\uf969\uff0c\uf9dd\u7528\u8abf\u6574 k \u7fa4\u805a(modified k-means, MKM)\u5206\uf9d0\u65b9\u6cd5[16]\uff0c\u7fa4\u805a\u4e09\uf99a\u97f3 sub \u70ba\u6bd4\u8f03\u6b63\u78ba\u7d50\u679c\u8fa8\uf9fc\u932f\u8aa4\u7684\u97f3\u7d20\uff0c\u5c6c\u65bc\u66ff\u63db\u932f\u8aa4\u3002\u5206 \u51a0\u8ecd\u5bb6\u5ead T.V.\u79c0\u5165\u570d\uf90a\u9418\u734e 7 \u7d20\u6a21\u578b\u70ba\u6709\u6548\u591a\u8a9e\u8fa8\uf9fc\u6a21\u578b\u3002\u5be6\u9a57\u8072\u5b78\u76f8\u4f3c\ufa01\u8a08\u7b97(ACL)\u3001\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u8a08\u7b97(HAL)\u53ca\u8cc7\uf9be\u878d\u5408\u6280\u8853 \u5e6b\u6211\u67e5\u4e00\u4e0b Bryan \u7684\u5206\u6a5f (FUN)\u7b49\uf967\u540c\u65b9\u6cd5\uff0c\u5728\u6536\u6582\u9580\u6abb\u503c\u70ba 0.01 \u03b8 = \u7684\u60c5\u6cc1\u4e0b\uff0c\u5be6\u9a57\uf967\u540c\u6700\u5927\u7fa4\u96c6\uf969 Y \u3002(\u8868 6)\u5be6\u9a57\u5206\u6790\u5404\u7a2e\uf967\u540c</td></tr><tr><td colspan=\"3\">8 \u65b9\u6cd5\u7fa4\u96c6\u4e4b\u591a\u8a9e\u97f3\u7d20\u500b\uf969\u53ca\u97f3\u7d20\u8fa8\uf9fc\u7684\u6b63\u78ba\uf961\uff0c\u5982\u4e0b\u6240\u793a\uff1a The vote at the September meeting was eleven zero</td></tr><tr><td colspan=\"4\">\u539f\u672c\u97f3\u6a94\u5167\u5bb9\u7686\u5c6c\u65bc raw \u683c\u5f0f\uff0c\u56e0\u6b64\u6211\u5011\u4e8b\u5148\u5c0d\u97f3\u6a94\u4f5c dc-offset \u53ca silence removal \u7684\u8655\uf9e4\u3002\u4e26\u4e14\u6839\u64da\u82f1\u6587 \u8868 6. \uf967\u540c\u7fa4\u96c6\uf969\u76ee\u9650\u5236\u689d\u4ef6\u4e0b\u7fa4\u805a\u97f3\u7d20\u500b\uf969\u53ca\u8fa8\uf9fc\u6b63\u78ba\uf961 (Y :\u6700\u5927\u7fa4\u96c6\uf969\u76ee, 0.01 \u03b8 = )</td></tr><tr><td colspan=\"4\">) \u767c\u97f3\u8fad\u5178\u8207\u4e2d\u6587\u767c\u97f3\u8fad\u5178\uff0c\u5c07\u6587\u5b57\u8a3b\u89e3\u8f49\u6210\u97f3\u7d20\u6a19\u8a18\u3002\u7531\u65bc\u8a9e\uf9be\u5167\u6709\u90e8\u4efd\u97f3\u6a94\u53ca\uf93f\u97f3\u54c1\u8cea\uf967\uf97c\uff0c\u5be6\u9a57\u4ee5\u4eba \u5de5\u7684\u65b9\u5f0f\u5148\ufa08\u6821\u5c0d\u3002\u6700\u5f8c\uff0c\uf941\u6587\u6240\u63a1\u7528\u4e4b\u5be6\u9a57\u8a9e\uf9be\u5305\u542b\u6709\u8a13\uf996\u7528\u4e2d\u82f1\u6587\u6df7\u5408\uf906\u578b\u5171\u6709 2,018 \uf906\uff0c\u5be6\u9a57\u8a55\u4f30 8 Y = 16 Y = 32 Y =</td></tr><tr><td colspan=\"4\">\u5176\u4e2d\uff0c\u5411\uf97e l s \u8868\u793a\u76ee\u524d\u76f8\u4f3c\ufa01\u77e9\u9663\u5728\ufa08\uf96a\u5f15 l \u7684\u97f3\u7d20\uff0c\u5411\uf97e k s \u8868\u793a\u76f8\u4f3c\ufa01\u77e9\u9663\u5728\uf99c\uf96a\u5f15 \u7684\u97f3\u7d20\uff0c\u5168\u90e8\u97f3 \u7d20\u7e3d\u5171\u6709 n \u540d\u3002\u672c\u7814\u7a76\uf9dd\u7528\u8abf\u6574\u6027 k \u7fa4\u805a(modified k-means, MKM)\u5206\uf9d0\u65b9\u6cd5[16]\uff0c\u5b9a\u7fa9\u6536\u6582\u689d\u4ef6\u70ba\u5206\u7fa4\u5167 \u7684\u8cc7\uf9be\u8b8a\uf962\ufa01\u4f4e\u65bc\u5b9a\u7fa9\u4e4b\u9580\u6abb\u503c\uff0c\u5247\u9054\u6210\u5206\u7fa4\u7d42\u6b62\uff0c\u6700\u5f8c\u5b8c\u6210\uf941\u6587\u6240\u63d0\u4e4b\u6709\u6548\u591a\u8a9e\u97f3\u7d20\u96c6\uff0c\u5176\u4e2d\u6536\u6582\u689d\u4ef6 \u70ba\uff1a \u6e2c\u8a66\u5171\u6709 100 \uf906\u3002 \u6b63\u78ba\uf961 \u97f3\u7d20\u500b\uf969 \u6b63\u78ba\uf961 \u97f3\u7d20\u500b\uf969 \u6b63\u78ba\uf961 \u97f3\u7d20\u500b\uf969 k 1 1 1 1 1 ( ) / Y Y 4.2. \u97f3\u7d20\u70ba\u57fa\u6e96\u4e4b\u81ea\u52d5\u8a9e\u97f3\u8fa8\uf9fc\u67b6\u69cb ACL 62.22% 161 63.12% 288 64.37% 531 \u70ba\uf9ba\u8a55\u4f30\u97f3\u7d20\u5b9a\u7fa9\u7684\u597d\u58de\uff0c\u672c\uf941\u6587\u4f7f\u7528\u81ea\ufa08\u958b\u767c\u7684\u591a\u8a9e\u97f3\u7d20\u8fa8\uf9fc\u7cfb\u7d71\uff0c\u63a2\u8a0e\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u3002\u63a1\u7528\u4e0a\u8ff0 HAL 62.52% 159 64.23% 286 64.57% 530 \u4e4b\u5be6\u9a57\u8a9e\uf9be\u4e2d\uff0c\u6211\u5011\uf9dd\u7528 IPA \u97f3\u7d20\u6a19\u6e96\u5b9a\u7fa9\uff0c\u627e\u51fa\u591a\u8a9e\u97f3\u7d20\u4e4b\uf997\u96c6\u3002\u5b9a\u7fa9\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\u5171 N=997 \u500b\uff0c\u8a13\uf996 FUN 64.44% 119 66.07% 260 64.74% 515 \u8a9e\uf9be\u5c11\u65bc 5 \u6b21\u7684\u4e09\uf99a\u97f3\u7d20\uf967\u4e88\u8003\u616e\u3002\u5728\u8a9e\u97f3\uf96b\uf969\u64f7\u53d6\u7684\u90e8\u4efd\uff0c\u5c0d\u65bc\u8f38\u5165\u7684\u8a9e\u97f3\u8a0a\u865f\u8a08\u7b97 26 \u7dad\u7684\u6885\u723e\u5012\u983b Y t t t y y y y y y \u03b8 \u2212 \u2212 = = = \u0394 \u2212 \u0394 \u0394 &lt; \u2211 \u2211 \u2211 (\u5f0f 8) \u5176\u4e2d\uff0c \u8868\u793a\u5728\u7b2c \u6b21\u905e\u8ff4\u4e2d\uff0c \u7fa4\u96c6\u4e2d\u7b2c \u7fa4\u4e4b\u96c6\u5408\u5167\u500b\uf969\u5206\uf969\u503c t y \u0394 t Y y ( , ) t y l k c s s \u0394 = \u2211 \uff0c \u8868\u793a\u904b \u7b97\u905e\u8ff4\u6b21\uf969\uff0c \u6307\u8a2d\u5b9a\u4e4b\u6700\u5927\u905e\u8ff4\u6b21\uf969\uff0c max 1,..., t t \u8b5c\uf96b\uf969(mel-frequency ceptral coefficient, MFCC)\uff0c\u5176\u4e2d\u5305\u542b 12 \u968e\u7684\u6885\u723e\u5012\u983b\u8b5c\uf96b\uf969\uff0c\u52a0\u4e0a 12 \u968e\u7684\u4e00\u6b21\u5fae\u5206 \u5be6\u9a57\u8003\u616e\u8072\u5b78\u76f8\u4f3c\ufa01\u77e9\u9663\u5206\uf969\u8a08\u7b97\uff0c\uf9dd\u7528\u8072\u5b78\u76f8\u4f3c\ufa01\u7fa4\u805a\u65b9\u6cd5 ACL\uff0c\u5728 8, 16, 32 Y = \u7684\u60c5\u6cc1\u4e0b\uff0c\u5206\u5225\u53ef\u4ee5 \u6885\u723e\u5012\u983b\u8b5c\uf96b\uf969\uff0c\u4ee5\u53ca\u4e00\u968e\u7684\u80fd\uf97e\u548c\u5176\u4e00\u6b21\u5fae\u5206\uf96b\uf969\uff0c\u4e26\u4e14\u5c0d\uf96b\uf969\u505a MVA [18]\u8655\uf9e4\u4ee5\u589e\u52a0\u8fa8\uf9fc\u7684\u5f37\u5065\u6027\u3002 \u7fa4\u805a\u70ba 161\uff0c288 \u53ca 531 \u500b\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\uff0c\u5176\u97f3\u7d20\u8fa8\uf9fc\u6b63\u78ba\uf961\u5206\u5225\u70ba 62.22%\uff0c63.12%\u53ca 64.37%\u3002\uf9dd\u7528\u8a9e\u8a00 = max t \u8d85\u7a7a\u9593\u5206\u6790\u65b9\u6cd5 HAL\uff0c\u5728 \u7684\u60c5\u6cc1\u4e0b\uff0c\u5206\u5225\u53ef\u4ee5\u7fa4\u805a\u70ba 159\uff0c286 \u53ca 530 \u500b\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\uff0c\u5176 8, 16, 32 Y = \u03b8 \u70ba\u6536\u6582\u4e4b\u9580\u6abb\u503c\u3002 \u97f3\u7d20\u8fa8\uf9fc\u6b63\u78ba\uf961\u5206\u5225\u70ba 62.52%\uff0c64.23%\u53ca 64.57%\u3002\uf9dd\u7528\u8cc7\uf9be\u878d\u5408\u65b9\u6cd5 FUN\uff0c\u5728 \u7684\u60c5\u6cc1\u4e0b\uff0c 8, 16, 32 Y =</td></tr><tr><td colspan=\"4\">\u5206\u5225\u53ef\u4ee5\u7fa4\u805a\u70ba 159\uff0c286 \u53ca 530 \u500b\u591a\u8a9e\u97f3\u7d20\u6a21\u578b\uff0c\u5176\u97f3\u7d20\u8fa8\uf9fc\u6b63\u78ba\uf961\u5206\u5225\u70ba 64.44%\uff0c66.07%\u53ca 64.74%\u3002 4. \u5be6\u9a57\u8a55\u4f30 \u70ba\uf9ba\u8a55\u4f30\u7814\u7a76\u65b9\u6cd5\uff0c\uf941\u6587\u63d0\u51fa\u5e7e\u9805\u5be6\u9a57\u9a57\u8b49\uff1a\u9996\u5148\uff0c\u5be6\u9a57\u55ae\u7368\u8003\u616e\u8072\u5b78\u76f8\u4f3c\ufa01\u3001\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u8207 16</td></tr><tr><td colspan=\"4\">\u672c\uf941\u6587\u6240\u63d0\u7d50\u5408\u8072\u5b78\u8207\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u5206\u6790\u4e4b\u65b9\u6cd5\uff0c\u6bd4\u8f03\u5176\u8fa8\uf9fc\u7d50\u679c\u3002\u518d\u8005\uff0c\u6bd4\u8f03\u8207\u524d\u5f8c\u6587\u8108\u7368\uf9f7\u4e4b\u97f3 14</td></tr><tr><td colspan=\"4\">\u7d20\u96c6\u548c\uf941\u6587\u6240\u63d0\u8207\u524d\u5f8c\u6587\u8108\u76f8\u95dc\u4e4b\u97f3\u7d20\u96c6\u5728\u591a\u8a9e\u8fa8\uf9fc\u6e96\u78ba\uf961\u7684\u5dee\u5225\u3002 4.1. \u591a\u8a9e\u8a9e\u97f3\u8a9e\uf9be\u5206\u6790 \u672c\uf941\u6587\u4f7f\u7528\u7684\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u8a13\uf996\u8a9e\uf9be\uff0c\u53f0\u7063\u8154\u82f1\u6587(English Across Taiwan, EAT)\u8a9e\uf9be\u5eab\uff0c\u5176\u4e2d\u5305\u542b\u82f1 \u6587\u9577\uf906,\u82f1\u6587\u77ed\uf906,\u82f1\u6587\u55ae\u8a5e\u53ca\u4e2d\u82f1\u593e\u96dc\uf906\u7b49[17]\u3002\u5f9e 2004 \uf98e 5 \u6708\u958b\u59cb\u6536\u96c6\uff0c\u81f3 2005 \uf98e 1 \u6708\u521d\u6b65\u5b8c\u6210\u6536\u96c6\uff0c \u7531\u5e2b\u5927\u3001\u4ea4\u5927\u3001\u6e05\u5927\u3001\u6210\u5927\u548c\u53f0\u5927\u7b49\u4e94\u6240\u5b78\u6821\uf96b\u8207\u8a9e\uf9be\u4e4b\uf93f\u88fd\u6536\u96c6\uff0c\u7d93\u5de5\u7814\u9662\u96fb\u901a\u6240\u5f59\u6574\u3002\u5206\u5225\u7531\u82f1\u8a9e\u7cfb \u53ca\u975e\u82f1\u8a9e\u7cfb\u5b78\u751f\uf93f\u88fd\uff0c\u8a9e\uf9be\u4f9d\u6027\u5225\u505a\u5206\uf9d0\uff0c\uf93f\u88fd\u6709\u9ea5\u514b\u98a8\u8a9e\uf9be\u53ca\u96fb\u8a71\u8a9e\uf9be\uff0c\u6b78\u7d0d\u5982\u4e0b\u8868\u6240\uf99c\uff1a \u8868 4. EAT \u8a9e\uf9be\u9ea5\u514b\u98a8\u97f3\u6a94\u8cc7\uf9be\u7d71\u8a08 MIC 16khz 16bits \u8a9e\uf9be 4 6 8 10 Number of clustered tri-phones 12</td></tr><tr><td>2</td><td>\u82f1\u8a9e\u7cfb</td><td>\u975e\u82f1\u8a9e\u7cfb</td></tr><tr><td colspan=\"4\">\u7537\u6027 11,977 \u5716 4. \uf9dd\u7528\u6a39\uf9fa\u7d50\u69cb\u767c\u97f3\u8fad\u5178\u6587\u6cd5\u6a39\u65bc\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u67b6\u69cb\u5716 \uf981\u6027 \u7537\u6027 \uf981\u6027 \uf906\uf969 30,094 25,432 0 10 20 30 40 50 15,540 \u4eba\uf969 166 406 368 \u672c\uf941\u6587\u8abf\u6574\u4e00\u822c\u8a9e\u97f3\u8fa8\uf9fc\u4f7f\u7528\u7684\u8a9e\u8a00\u6a21\u578b(language model)\uff0c\u5728\u8a08\u7b97\u4e0a\uf9dd\u7528\u5747\u7b49\u6a5f\uf961(equal probability) IPA phone model 224 \u7684\u65b9\u6cd5[19]\uff0c\u78ba\u4fdd\u53ef\u4ee5\u771f\u6b63\u5448\u73fe\uf967\u540c\u591a\u8a9e\u97f3\u7d20\u5b9a\u7fa9\u7684\u8072\u5b78\u6a21\u578b(acoustic model)\uff0c\u5c0d\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u7684\u5f71\u97ff\u3002\u5728 \u591a\u8a9e\u8a9e\u97f3\u97f3\u7d20\u8fa8\uf9fc\uff0c\u9700\u8981\u4f9d\u64da\u5b9a\u7fa9\u7684\u591a\u8a9e\u97f3\u7d20\u7d50\u5408\u5404\u500b\u76ee\u6a19\u8a9e\u8a00\u7684\u767c\u97f3\u8fad\u5178\uff0c\u5efa\u69cb\u51fa\u4e00\u500b\u591a\u8a9e\u767c\u97f3\u8fad\u5178\u3002 \u5716 5. \uf9dd\u7528\u8072\u5b78\u76f8\u4f3c\ufa01\u53ca\u524d\u5f8c\u6587\u8108\u5206\u6790\u7fa4\u96c6\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\u5206\u4f48\u5716\uff0c 16 Y =</td></tr></table>",
                "num": null
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "text": "Triphone sets)\u7684\u591a\u8a9e\u8fa8\uf9fc\u6548\u679c\u53ef\u9054 68.07%\u7684\u6b63\u78ba\uf961\u3002\uf9dd\u7528\u8072\u5b78\u76f8 \u4f3c\ufa01\u77e9\u9663\u7fa4\u96c6\u97f3\u7d20\u5b9a\u7fa9(ACL phone sets) \uff0c\u5728\u591a\u8a9e\u8fa8\uf9fc\u6548\u679c\u4e0a\u53ef\u9054 63.12%\u7684\u6b63\u78ba\uf961\uff0c\u800c\uf9dd\u7528\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8 \u4f3c\ufa01\u77e9\u9663\u7fa4\u96c6\u97f3\u7d20\u5b9a\u7fa9(HAL phone sets) \uff0c\u5728\u4e2d\u82f1\u6587\u591a\u8a9e\u8fa8\uf9fc\u6548\u679c\u4e0a\u53ef\u9054 64.23%\u7684\u6b63\u78ba\uf961\u3002\u9032\u4e00\u6b65\uf9dd\u7528\u8cc7 \uf9be\u878d\u5408\u65b9\u6cd5\u65bc\u8072\u5b78\u53ca\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u77e9\u9663\u7fa4\u96c6\u5206\u6790\u4e4b\u97f3\u7d20\u5b9a\u7fa9(FUN phone sets) \uff0c\u5728\u591a\u8a9e\u8fa8\uf9fc\u6548\u679c\u53ef\u4ee5 \u63d0\u5347\u81f3 66.07%\u7684\u6b63\u78ba\uf961\u3002\u6574\u9ad4\u800c\u8a00\uff0c\u63a1\u7528\u4e09\uf99a\u97f3\u7d20\u7684\u8fa8\uf9fc\u6548\u679c\u6bd4\u55ae\u97f3\u7d20(IPA \u6216 MIX)\u5b9a\u7fa9\u597d\u3002\u53c8\u5f9e\u8a9e\u8a00\u5206 \u6790(HAL)\u6548\u679c\u6703\u8f03\u8072\u5b78\u5206\u6790(ACL)\u6548\u679c\uf92d\u5f97\u986f\u8457\uff0c\u4e14\uf9dd\u7528\u8cc7\uf9be\u878d\u5408\u65b9\u6cd5\u7d50\u5408\u8072\u5b78\u76f8\u4f3c\ufa01\u53ca\u524d\u5f8c\u6587\u8108\u5206\u6790\uff0c\u5c0d \u65bc\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u53ef\u4ee5\u6709\u660e\u986f\u7684\u63d0\u5347\u3002",
                "content": "<table><tr><td/><td/><td>INSERTION</td><td colspan=\"2\">DELETION SUBSTITUTION</td></tr><tr><td>Triphone sets (997)</td><td>68.07%</td><td>15.87%</td><td>4.43%</td><td>11.63%</td></tr><tr><td>ACL phone sets (288)</td><td>63.12%</td><td>19.73%</td><td>4.88%</td><td>12.32%</td></tr><tr><td>HAL phone sets (286)</td><td>64.23%</td><td>20.67%</td><td>4.75%</td><td>10.48%</td></tr><tr><td>FUN phone sets (260)</td><td>66.07%</td><td>16.94%</td><td>4.41%</td><td>12.71%</td></tr><tr><td colspan=\"5\">====================== English Across Taiwan, EAT ======================</td></tr><tr><td>\u7531\u5be6\u9a57\u7d50\u679c\u53ef\u77e5\uff0c\u5408\u4f75\u524d\u7684\u4e09\uf99a\u97f3\u7d20\u6a21\u578b(5. \u7d50\uf941\u53ca\u672a\uf92d\u5c55\u671b</td><td/><td/><td/><td/></tr><tr><td colspan=\"5\">\u672c\uf941\u6587\u63d0\u51fa\u61c9\u7528\u8072\u5b78\u76f8\u4f3c\ufa01\u53ca\u524d\u5f8c\u6587\u8108\u5206\u6790\u65bc\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u4e4b\u6709\u6548\u97f3\u7d20\u5b9a\u7fa9\uff0c\u4ee5 EAT \u4e2d\u82f1\u6587\u96d9\u8a9e\u8a9e</td></tr><tr><td colspan=\"5\">\uf9be\u70ba\uf9b5\u3002\u57fa\u65bc IPA \u6a19\u6e96\u5b9a\u7fa9\u4e4b\u591a\u8a9e\u55ae\u97f3\u7d20\u96c6\uff0c\u672c\u7814\u7a76\u8003\u616e\u4ee5\u767c\u97f3\u524d\u5f8c\u6587\u76f8\u4f9d\u4e09\uf99a\u97f3\u7d20\u6a21\u578b\u3002\u4ee5\u6b64\u5b9a\u7fa9\uff0c\u6211</td></tr><tr><td colspan=\"5\">\u5011\u5206\u5225\u4ee5\u8072\u5b78\u76f8\u4f3c\ufa01\u53ca\u524d\u5f8c\u6587\u8108\u5206\u6790\uff0c\u97f3\u7d20\u9593\u76f8\u4f3c\ufa01\u9ad8\u7684\u97f3\u7d20\u5408\u4f75\uff0c\u671f\u671b\u627e\u51fa\ufa1d\u7c21\u6709\u6548\u7684\u591a\u8a9e\u8a9e\u97f3\u8fa8\uf9fc\u97f3</td></tr><tr><td colspan=\"5\">\u7d20\u96c6\u3002\uf9dd\u7528\u97f3\u7d20 HMM \u6a21\u578b\uff0c\u4ee5\u76f4\u63a5\u6821\u6e96\u65b9\u6cd5\ufa00\u97f3\u4e26\u8a08\u7b97\u4e8b\u5f8c\u6a5f\uf961\u503c\uff0c\u5efa\uf9f7\u8072\u5b78\u76f8\u4f3c\ufa01\u77e9\u9663\u3002\uf9dd\u7528\u8a9e\u8a00\u8d85</td></tr><tr><td colspan=\"5\">\u7a7a\u9593\u76f8\u4f3c\ufa01\u5206\u6790(hyperspace analog to language, HAL)\uff0c\u627e\u51fa\u97f3\u7d20\u524d\u5f8c\u767c\u97f3\u7279\u6027\u6240\u9020\u6210\u7684\u8b8a\u97f3\u5f71\u97ff\uff0c\u5efa\uf9f7\u8a9e</td></tr><tr><td colspan=\"5\">\u8a00\u767c\u97f3\u4e0a\u76f8\u4f3c\ufa01\u77e9\u9663\u3002\u4e4b\u5f8c\uff0c\u4ee5\u8cc7\uf9be\u878d\u5408\u65b9\u6cd5\uff0c\u540c\u6642\u8003\u616e\u8072\u5b78\u548c\u8a9e\u8a00\u8d85\u7a7a\u9593\u76f8\u4f3c\ufa01\u77e9\u9663\u3002\uf9dd\u7528\u5411\uf97e\uf97e\u5316\u7fa4</td></tr><tr><td colspan=\"5\">\u96c6\u5206\u6790\uff0c\u627e\u51fa\u540c\u4e00\uf9d0\u5225\u4e4b\u97f3\u7d20\u5b9a\u7fa9\uff0c\u5efa\uf9f7\u6709\u6548\u800c\ufa1d\u7c21\u7684\u591a\u8a9e\u97f3\u7d20\u96c6\u3002\u5be6\u9a57\u8b49\u660e\uf9dd\u7528\u7d50\u5408\u8072\u5b78\u548c\u8a9e\u8a00\u8d85\u7a7a\u9593</td></tr><tr><td colspan=\"5\">\u76f8\u4f3c\ufa01\u77e9\u9663\u5206\u6790\u65b9\u6cd5\uff0c\u53ef\u4ee5\u9054\u5230\uf97c\u597d\u7684\u591a\u8a9e\uf99a\u7e8c\u8a9e\u97f3\u8fa8\uf9fc\u7684\u6548\u679c\u3002\u672a\uf92d\u53ef\u4ee5\u5c07\u65b9\u6cd5\u61c9\u7528\u5728\u55ae\u4e00\u8a9e\u8a00\u8a9e\u97f3\u8fa8</td></tr></table>",
                "num": null
            }
        }
    }
}