File size: 105,988 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:05:52.021100Z"
    },
    "title": "Plug-and-Blend: A Framework for Controllable Story Generation with Blended Control Codes",
    "authors": [
        {
            "first": "Zhiyu",
            "middle": [],
            "last": "Lin",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Georgia Institute of Technology North Ave NW",
                "location": {
                    "postCode": "30332",
                    "settlement": "Atlanta",
                    "region": "GA"
                }
            },
            "email": "zhiyulin@gatech.edu"
        },
        {
            "first": "Mark",
            "middle": [
                "O"
            ],
            "last": "Riedl",
            "suffix": "",
            "affiliation": {},
            "email": "riedl@cc.gatech.edu"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We describe a Plug-and-Play controllable language generation framework, Plug-and-Blend, that allows a human user to input multiple control codes (topics). In the context of automated story generation, this allows a human user loose or fine grained control of the topics that will appear in the generated story, and can even allow for overlapping, blended topics. We show that our framework, working with different generation models, controls the generation towards given continuous-weighted control codes while keeping the generated sentences fluent, demonstrating strong blending capability. Blending generative model Planner Decoder Generative Language Model Control Model John realized that basketballs fall to the ground like apples Apple Line Context Control codes 3 John was playing basketball 70% sports 30% science",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We describe a Plug-and-Play controllable language generation framework, Plug-and-Blend, that allows a human user to input multiple control codes (topics). In the context of automated story generation, this allows a human user loose or fine grained control of the topics that will appear in the generated story, and can even allow for overlapping, blended topics. We show that our framework, working with different generation models, controls the generation towards given continuous-weighted control codes while keeping the generated sentences fluent, demonstrating strong blending capability. Blending generative model Planner Decoder Generative Language Model Control Model John realized that basketballs fall to the ground like apples Apple Line Context Control codes 3 John was playing basketball 70% sports 30% science",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Recent advancement in very large pre-trained neural language models (e.g. (Radford et al., 2019; Brown et al., 2020) ) have enabled a new generation of applications that make use of the text generation capability they provide, ranging from autocompletion of e-mails to solving complicated math equations. However these very large pre-trained neural language models are also difficult to control beyond providing a prompt for a generated continuation. This makes very large language models ill-suited for co-creative tasks wherein a human works with a language model in an iterative fashion to produce novel content, such as stories or poems. Co-creative tasks require an ability to not only prompt the language model but to guide the generation with, for example, style, context, or topic constraints.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 96,
                        "text": "(Radford et al., 2019;",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 97,
                        "end": 116,
                        "text": "Brown et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Conditional generation is a family of text generation methods that attempt to provide controllability by either directly modifying the model to accept control signals or posing constraints in the generation process. Conditional text generation techniques add an extra input feature (Ficler and Goldberg, 2017) and fine-tuning with additional information embedded (Fang et al., 2021; Hosseini-Asl et al., 2020; Keskar et al., 2019; Khalifa et al., 2020; Hu et al., 2017; Wu et al., 2020; Ficler and Goldberg, 2017; Chan et al., 2020) , or by sideloading additional discriminators along with a pre-trained model, without changing base model parameters holisticly (Dathathri et al., 2020; Madotto et al., 2020; Duan et al., 2020; Mai et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 282,
                        "end": 309,
                        "text": "(Ficler and Goldberg, 2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 363,
                        "end": 382,
                        "text": "(Fang et al., 2021;",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 383,
                        "end": 409,
                        "text": "Hosseini-Asl et al., 2020;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 410,
                        "end": 430,
                        "text": "Keskar et al., 2019;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 431,
                        "end": 452,
                        "text": "Khalifa et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 453,
                        "end": 469,
                        "text": "Hu et al., 2017;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 470,
                        "end": 486,
                        "text": "Wu et al., 2020;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 487,
                        "end": 513,
                        "text": "Ficler and Goldberg, 2017;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 514,
                        "end": 532,
                        "text": "Chan et al., 2020)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 661,
                        "end": 685,
                        "text": "(Dathathri et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 686,
                        "end": 707,
                        "text": "Madotto et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 708,
                        "end": 726,
                        "text": "Duan et al., 2020;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 727,
                        "end": 744,
                        "text": "Mai et al., 2020)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We seek \"plug-and-play\" approaches to controllable text generation wherein new language models can be slotted into existing generative systems; new language models are being developed and it becomes intractable to update and retrain controlled generation architectures. Plug-and-play techniques such as (Krause et al., 2020; Pascual et al., 2020) aim to only intervene with the outputs-a vector of logits-of a generative language model. This becomes especially important as the latest iteration of very large pre-trained language models such as GPT-3 (Brown et al., 2020) restrict access to the hidden states and layer weights of models. As language models improve, they can be easily incorporated into existing, controllable generation frameworks.",
                "cite_spans": [
                    {
                        "start": 303,
                        "end": 324,
                        "text": "(Krause et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 325,
                        "end": 346,
                        "text": "Pascual et al., 2020)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 551,
                        "end": 571,
                        "text": "(Brown et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We present Plug-and-Blend 1 , an efficient plugand-play generative framework for controllable text generation that (a) works with the logit outputs of any language model; (b) facilitates fine control of generated sentences by allowing continuous bias towards specific control codes; and (c) allows multiple control codes representing style and topic constraints to be provided in overlapping contexts. These control codes can be blended together to generate content that meets multiple style or topic constraints. We describe that these key capabilities empower latent space walking in the hyperspace of generated sentences, and show a simple content planning technique that utilizes this feature to generate paragraphs regarding user intentions in a co-authoring. We present our work in the context 1 Code available at https://github.com/ xxbidiao/plug-and-blend 10 sentence story Topic: sports, lines 1-5 Topic: science, lines 5-10 User Figure 1 : Illustration of overall architecture of our framework of automated story generation wherein a human author provides a prompt as well as a high-level control specification for topics.",
                "cite_spans": [
                    {
                        "start": 800,
                        "end": 801,
                        "text": "1",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 939,
                        "end": 947,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Researchers aim for \"plug-and-play\" (PnP) frameworks (Dathathri et al., 2020) which can be used along an existing generative LM (referred to as the \"base LM\") with minimum or no interference between the PnP components and the base LM.",
                "cite_spans": [
                    {
                        "start": 53,
                        "end": 77,
                        "text": "(Dathathri et al., 2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Plug-and-Play Conditional Generation",
                "sec_num": "2.1"
            },
            {
                "text": "Comparing to non-plug-and-play methods (\"white-box\" approaches), these frameworks can be roughly classified into three categories. Graybox approaches access and modify some non-inputoutput layer computations, usually the hidden representation, hence \"plugging\" an additional model in the middle of the base LM (Dathathri et al., 2020; Madotto et al., 2020; Duan et al., 2020; Mai et al., 2020) . Black-box approaches including \"Prompt Engineering\" that aim to change the prompts fed into the base LM at inference time (Wallace et al., 2019; Li and Liang, 2021) . Guided generation targets at building a controllable \"guiding\" model that shifts the output from base LM at inference time (Krause et al., 2020; Pascual et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 310,
                        "end": 334,
                        "text": "(Dathathri et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 335,
                        "end": 356,
                        "text": "Madotto et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 357,
                        "end": 375,
                        "text": "Duan et al., 2020;",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 376,
                        "end": 393,
                        "text": "Mai et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 518,
                        "end": 540,
                        "text": "(Wallace et al., 2019;",
                        "ref_id": "BIBREF20"
                    },
                    {
                        "start": 541,
                        "end": 560,
                        "text": "Li and Liang, 2021)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 686,
                        "end": 707,
                        "text": "(Krause et al., 2020;",
                        "ref_id": null
                    },
                    {
                        "start": 708,
                        "end": 729,
                        "text": "Pascual et al., 2020)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Plug-and-Play Conditional Generation",
                "sec_num": "2.1"
            },
            {
                "text": "The generation model we propose is an extension of GeDi (Krause et al., 2020) . Adding to the complete decoupling of generation and controlling, we enhanced it with additional capabilities to support multi-topic generation with continuous weighting, supporting the downstreaming applications while keeping its capability to transfer to different base LMs.",
                "cite_spans": [
                    {
                        "start": 56,
                        "end": 77,
                        "text": "(Krause et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Plug-and-Play Conditional Generation",
                "sec_num": "2.1"
            },
            {
                "text": "Neural story generation systems train or fine-tune a language model on story data. Sampling from a language model trained on story data tends to result in text output that looks like stories as well. However, sampling from P \u03b8 (x t |x <t ) (See Section 3) is uncontrolled in the sense that one does not have any influence over the output after the initial context prompt.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Controllable Story Generation",
                "sec_num": "2.2"
            },
            {
                "text": "A number of story generation systems have attempted to condition the generation with some form of high-level plan. Storytelling systems such as (Akoury et al., 2020; Yao et al., 2019) embeds topic constraints directly into the model. These system extract a set of topics from a dataset that must be incorporated into the story. PlotMachines (Rashkin et al., 2020) allows a human user to specify topics that can be incorporated into a story in any order. generate a story by interpolating between a start event and an end event in a slot filling fashion, targeted the same goal. Our work differs in two ways. First, we allow blending of topics such that a single line in a story can meet more than one topic provided by a human user. Second, we have developed a black-box plug-and-play system that works with different LMs.",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 165,
                        "text": "(Akoury et al., 2020;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 166,
                        "end": 183,
                        "text": "Yao et al., 2019)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Controllable Story Generation",
                "sec_num": "2.2"
            },
            {
                "text": "Generative Language Models (LMs), specifically continuation models, take a context (\"prompt\") and generate a continuation by predicting the next tokens. This is achieved by optimizing the model parameters \u03b8 that best estimates the probability density of a sequence of word tokens x 1:T = {x 1 , . . . , x T } represented as an auto-regressive factorization",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03b8 (x 1:T ) = T t=1 P \u03b8 (x t | x <t ) .",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "By iteratively predicting a distribution on the next token given the previous tokens, a continuation can be generated by repeatedly sampling",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "P \u03b8 (x t | x <t )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "and attach the selected token back to the \"previous\" tokens for the next step. Sequences generated this way are not controlled; To control the generated sequence, an attribute represented as a class variable (Keskar et al., 2019) that could describe sentiment or topics can be introduced to equation 1to form a Class-Conditional Language Model (CC-LM):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P \u03b8 (x 1:T | c) = T t=1 P \u03b8 (x t | x <t , c)",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "where c represents the class variable, or \"control code\", that describes an attribute of the sequence x 1:T . However, since c and x 1:T are entangled in equation 2, naively optimizing P \u03b8 requires a new CC-LM to be trained.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "To decouple the conditional generation component, c, from the unconditional part, P LM (x 1:T ), (Krause et al., 2020) proposed the GeDi framework and an algorithm to enable a separate controlling model to guide the generation process of a base language model. Instead of tackling P \u03b8 (x 1:T | c) directly, they train a contrastive discriminator model on the side to estimate",
                "cite_spans": [
                    {
                        "start": 97,
                        "end": 118,
                        "text": "(Krause et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "P \u03b8 (c | x 1:t ) = \u03b1P (c) t j=1 P \u03b8 (x j | x <j , c) (3)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "where \u03b1 is the normalization constant \u03b1 = 1/( c \u2208{c,c}",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "t j=1 P (c ) P \u03b8 (x j | x <j , c ))",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": ", and c and c are contrastive control codes (c and not-c). At the decoding stage of the generation process, one can guide the generation by using P \u03b8 (c | x 1:t ) as a posterior to the output probability distribution of the base LM:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "P (x t | x <t , c) \u221d P LM (x t | x <t ) P \u03b8 (c | x t , x <t ) \u03c9 (4)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "where \u03c9 is a parameter for control strength, with larger values biasing generation more strongly towards c. CC-LMs trained this way do not require access to any internal data of the base LM, and works independently of it.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Preliminaries",
                "sec_num": "3"
            },
            {
                "text": "Our Plug-and-Blend framework consists of two components (See figure 1): (1) a blending generative Model that is responsible for plug-and-play controlled continuations using the control specifications; and (2) a planner that plans and assigns control specifications based on control sketches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Plug-and-Blend Framework",
                "sec_num": "4"
            },
            {
                "text": "A control sketch is a high-level specification of what topics should be present in the story and what portions of the story each topic should approximately appear in. This provides a human co-creator the ability to guide the generator loosely, with a broad range per topic, or tightly, with a narrow range per topic. We envision a co-creative loop wherein the human user provides a control sketch and iteratively updates the control sketch based on generation results, refining the topics and refining the ranges for the topics. The user interface for eliciting control sketches from a human is outside the scope of this paper and experiments about the co-creative loop are left for future work. The next sections provide the algorithmic support for control sketches.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The Plug-and-Blend Framework",
                "sec_num": "4"
            },
            {
                "text": "The blending generative model generates the sentence continuation. It consists of two parts, a (1) plug-and-play language model and (2) a control model. Given a prompt x <t , the plug-andplay language model produces a vector of logits P LM (x t | x <t ). The control model biases the output of the language model toward particular tokens associated with the topics of the control codes c \u2208 C based on the desired strengths of each topic \u03c9 * c\u2208C \u2208 \u2126. Together the two models iteratively find the best token x t that reflects both natural language composition and control bias presented by c and \u03c9. A larger \u03c9 * c means more steering towards the topic represented by control code c.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "Inspired by the application of generative adversarial networks to latent space walking, we treat P \u03b8 (c | x t , x <t ) (described in section 3) as a heuristic of direction that increases P (x t | x <t , c) in a |V |-dimensional latent space, where V is the language model's vocabulary. For example, consider two different control codes c 1 and c 2 instantiating equation (4). To apply both control codes in the generation process, we use the heuristic",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P (x t | x <t , c 1 , c 2 ) \u221d P LM (x t | x <t ) \u00d7 P \u03b8 (c 1 | x t , x <t ) \u03c9 1 P \u03b8 (c 2 | x t , x <t ) \u03c9 2",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "to combine the effect of both posterior distributions into one universal posterior. \u03c9 1 and \u03c9 2 in this case represents control strength for each control code, c 1 and c 2 respectively, and can be different, enabling continuous blending between topics. This process can be repeated with a set of control codes C = {c 1 , . . . , c n } with weights \u2126 = {\u03c9 1 , . . . , \u03c9 n }.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "Formally, at the decoding stage of the generation process, a control model compute controlled probability using the following equation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "P (x t | x <t , C) = P LM (x t | x <t ) c * \u2208C P \u03b8 (c * | x t , x <t ) \u03c9 * c (6)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "where the control strengths of individual control codes are normalized with c \u03c9 * c = \u03c9, where \u03c9 is total control strength. 2 This can be efficiently computed by batching input sequences appended by different control codes, with little overhead compared to the original GeDi (Krause et al., 2020) framework.",
                "cite_spans": [
                    {
                        "start": 275,
                        "end": 296,
                        "text": "(Krause et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Generative Model",
                "sec_num": "4.1"
            },
            {
                "text": "The human user provides a high-level control sketch of the story, consisting of the number of sentences, N , a set of topics, C, and a range of lines to which to apply the topic, r := (s, e) where s \u2264 e. See figure 2 for example sketches. Sketches can have their range r overlap such that multiple topics can be applied to the same lines of the story.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "Given the control sketch, the planner produces a control configuration C n , \u2126 n for each sentence position n = {0, . . . , N \u2212 1}. The control configuration for each sentence is passed to the blending generative model along with previous generated sentences as prompt.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "We interpret a control sketch as story arc on a specific topic, which typically contains a transition, an engagement and a phase-out, the planner should give highest control strength to the midpoint of the area, m := (s + e)/2, and lower strength towards the start and end of the span of the area; We capture this as a Gaussian distribution.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "Formally, the following equation translates the sketch into a control configuration for each position n \u2208 N :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "\u03c9 + c,n = f (N (m, (\u03c3/(e \u2212 s + ) 2 ))(n \u2212 m) (7) where f (\u2022) indicates probability density function,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "is an infinitesimal, and \u03c3 is a tunable parameter representing overall transition smoothness, where higher \u03c3 grants smoother transitions in the cost of reduced topic engagement for midpoint. Since there can be multiple control sketches and they can be of the same control code, we apply each individual sketch in the order they are presented and normalize after each application so that \u03a3 n \u03c9 c,n = 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner",
                "sec_num": "4.2"
            },
            {
                "text": "For our experiments, we use the GPT2-large model fine-tuned on ROCStories (Mostafazadeh et al., 2016) as our base language model. Fine-tuning GPT2 on ROCStories results in a model that generates short stories about common everyday situations. We pair the language model with a pretrained GeDi (which in turn is based on GPT-2-medium) trained on AG-news 3 as the guiding model. Across all setups, at generation time, we use greedy decoding with repetition penalty described in Keskar et al. 2019, and only use the first sentence generated as the output, discarding every token after it if any.",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 101,
                        "text": "(Mostafazadeh et al., 2016)",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "Since there is no ground truth for any generated sequence, metrics such as BLEU and other n-grambased metrics are not applicable. This poses a unique challenge in evaluating our system, limiting us to unsupervised metrics. In this section, we report evaluation of our blending generative model from two aspects:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Fluency: measuring how our generated sequence forms natural language; and",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "\u2022 Control fidelity: measuring how our generated sequence respects the requested control codes and strength.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiments",
                "sec_num": "5"
            },
            {
                "text": "To evaluate fluency of sequences generated by our blending generation model, we use perplexity of base language model. The intuition is that if generated sentences have low average perplexity when evaluated by the base LM then they are consistent with sentences we would find in the English language, as represented by the data used to train the base LM. This in turn results in fluent-appearing sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Blending Fluency",
                "sec_num": "5.1"
            },
            {
                "text": "To generate sequences from our model, we used 100 sentences from a held-out evaluation set of ROCStories not seen at fine-tuning time. ROC-Stories contains five-sentence stories; we always pick the first sentence. That sentence becomes our prompt and is paired with all possible combinations of two topic choices chosen from \"Business\", \"Science\", \"Sports\", or \"World\". These are the topics that the GeDi model are optimized for. Our control sketch gives equal blending weighting for all topics. We vary the control strength using the following Figure 2 : Perplexity (lower is better) of generated sequences with 2 topics. Baseline performance set at 1x of (Krause et al., 2020)-suggested control strength. increments: [0, 0.5, 1, 1.5, 2, 3, 4]x, where 0 represents an uncontrolled base LM and 4x represents 400% of the control strength hyperparameter used by Krause et al. (2020) . Figure 2 shows the average perplexity of generated sequences, measured by the Base LM. We observe that average perplexity increases with stronger control, signaling a departure of generated sequences from what the base LM would generate, and a potential decrease in fluency. This is to be expected as the control is biasing the generated text more and more toward the use of words that are consistent with a particular topic and away from general word frequency. While perplexity increase is more or less linear in the range of 0 to 2x strength, once above 2x strength, it can be better described as exponential, hinting a stabler capability to generate fluent sentences in the region of 0 to 2x control strength.",
                "cite_spans": [
                    {
                        "start": 860,
                        "end": 880,
                        "text": "Krause et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 545,
                        "end": 553,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 883,
                        "end": 891,
                        "text": "Figure 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Blending Fluency",
                "sec_num": "5.1"
            },
            {
                "text": "Control fidelity is how well the generator responds to multiple control codes applied at once (see Krause et al. (2020) for experiments applying one control code at a time; we do not replicate them in this paper). For story generation, multiple control codes can be applied to the same sentence in a story at different weights. We perform experiments in a latent space walking setting, to measure content changes of generated sentences under the same prompt, same control codes but different relative control strength, in an unsupervised way.",
                "cite_spans": [
                    {
                        "start": 99,
                        "end": 119,
                        "text": "Krause et al. (2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Control Fidelity",
                "sec_num": "5.2"
            },
            {
                "text": "Given a particular prompt line in a story and two control topics c 1 and c 2 , we re-generate the same line multiple times under different control strengths for each topic. Specifically we set \u03c9 c 1 to 0%, 25%, 50%, 75% or 100% and \u03c9 c 2 = 1 \u2212 \u03c9 c 1 to represent a range of different possible blends of topics in the same line. See table 1 for an example. Since we know the control parameters used to generate these sentences, in which c 1 receives more and more control strength relative to c 2 , we expect to see sentences that are increasingly about topic c 1 and decreasingly about topic c 2 . These sentences do not comprise a story sequence, but are different alternative sentences for the same line in a story under different topic control specifications.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Control Fidelity",
                "sec_num": "5.2"
            },
            {
                "text": "To determine whether a given generated sentence was representative of a topic, we score each generated sentence with an off-the-shelf BART-based zero-shot classifier (Wolf et al., 2020) 4 with c 1 and c 2 , in raw text form, as possible classes. We then compare the order of the sentences as determined by the classifier to the ground truth order of increasing control strength of c 1 . We report the correlation of order between these two sequences using Kendall's \u03c4 -a metric. A perfectly strictly increasing classifier score will grant a \u03c4 -a score of 1 for a sequence. If the sentences have some reordering based on classification score, \u03c4 -a is reduced. A score of 0 indicates a random ordering and and a score of \u22121 indicates a sequence that is exactly in opposite order. Table 1 shows the classifier scores for the possible next sentences under different control strengths; the classifier scores are not monotonically decreasing, resulting in a \u03c4 -a score of 0.8. Figure 3 shows a heat-map of the average \u03c4 -a score of sequences of sentences generated with different control code pairs and different total control strength (percentages). For each combination of parameters, 100 sequences of 5 sentences are generated and evaluated. Comparing to the baseline, which is the evaluation metric applied to orderrandomized stories in ROCStories dataset, we observe universal statistical significance (p < .01) in improvement in \u03c4 -a metric. That is, without a control bias, rank ordering is random. As we increase the total control strength, the rank order of generated sentences more closely matches the ground truth order.",
                "cite_spans": [
                    {
                        "start": 166,
                        "end": 185,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 778,
                        "end": 785,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 971,
                        "end": 979,
                        "text": "Figure 3",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Control Fidelity",
                "sec_num": "5.2"
            },
            {
                "text": "Some topic combinations (For example, Science-Sports) work better than others (For example, Science-World); the \"World\" category appears to include a lot of overlapping vocabulary usage with Prompt: The people gathered to protest the court's ruling last week. c1 = Sports c2 = Business Generated Sentence Classifier score \u03c9c 1 \u03c9c 2 c1 c2 100% 0% Coach Leeman was in a wheelchair and had been taken to hospital for treatment. 86% 14%",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Control Fidelity",
                "sec_num": "5.2"
            },
            {
                "text": "Coach Reebok was one of them. 65% 35% 50% 50% The players were joined by a few of them. 84% 16%",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "75% 25%",
                "sec_num": null
            },
            {
                "text": "The company that owns the team was fined $1,000 for violating a rule prohibiting employees from using their own equipment. 37% 63%",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "25% 75%",
                "sec_num": null
            },
            {
                "text": "Bankruptcy Judge William H. said that the bank had failed to pay its creditors and was in default on $1 billion of loans it owed them.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "0% 100%",
                "sec_num": null
            },
            {
                "text": "Comparing column 1 with column 4, Kendall's \u03c4 -a = 0.8 for this generated sequence. Table 1 : An example sequence of sentences generated for evaluation of control fidelity. The first two columns indicate the requested control strengths for two topics, sports and business. The generated sentence results from the prompt and the control weights (all numbers are 2x the default control strength). The last two columns indicate the probability that each line is either Sports or Business based on a BART-based topic classifier. We expect to see the classifier score for c 1 decrease as the classifier score for c 2 increases.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 84,
                        "end": 91,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "24% 76%",
                "sec_num": null
            },
            {
                "text": "the other categories. Note that a perfect Kendall's \u03c4 -a of 1.0 is likely impossible because our zeroshot topic classifier will introduce some noise to the ranking. However, the results show us that the plug-and-blend technique (a) significantly increases the likelihood that topics will be incorporated into sentences, and (b) is sensitive to blended topics. Figure 4 shows the same experiment as above, but with a non-fine-tuned version of GPT2-large. This shows that the plug-and-blend technique works on language models that haven't been finetuned on ROCStories. The prompts are still selected from ROCStories, however, for comparison, but are not as representative of the untuned model. In this condition, the text generated will not read as sentences in stories. We observe similar improvements over the baseline, demonstrating the ability of our method in keeping the strong adaptation capability.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 360,
                        "end": 368,
                        "text": "Figure 4",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "24% 76%",
                "sec_num": null
            },
            {
                "text": "In this section, we qualitatively demonstrate the capability of our pipeline by analyzing the generated paragraphs using simulated user inputs described as sets of control sketches. Table 2 (left column) shows three sets of control sketches with overlapping topic ranges. For example, sketch 1 requests a 10-line story that covers the topic of sports for the first 6 lines and covers the topic of science for the last 6 lines (topics overlap in the middle). For each control sketch we generate 10-line stories (N = 10) using the hyper-parameter \u03c3 = 1 (see Equation 7). We use a neutral prompt consisting of only the word \"Recently\" as the con-text to generate the first line or if the generator ever generates an empty line. The remainder of lines use up to 2 sentences generated for the previous context. Table 2 (right column) shows the generated stories for each control sketch. We bold the sentence where it is most clear that the topic has changed. Figure 5 shows how the heuristic transforms each control sketch into bias weights. The figure shows \u03c9 c 1 for c 1 = Sports showing how the planner decreases the probability density bias for the topic (the probability density for the second topic, \u03c9 c 2 , is the mirror image).",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 182,
                        "end": 189,
                        "text": "Table 2",
                        "ref_id": null
                    },
                    {
                        "start": 806,
                        "end": 828,
                        "text": "Table 2 (right column)",
                        "ref_id": null
                    },
                    {
                        "start": 954,
                        "end": 962,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Planner Experiments",
                "sec_num": "5.3"
            },
            {
                "text": "With slight differences in the input control sketches, we observe very different generated stories, with the transition between sports and science happening later. One can see from Figure 5 why this would be the case: the probability density for the first topic becomes increasingly stronger for the first lines of the story as the control sketch requests the second topic later.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 181,
                        "end": 189,
                        "text": "Figure 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Planner Experiments",
                "sec_num": "5.3"
            },
            {
                "text": "Because each sentence is biased by the previous sentences in addition to the control sketch, the sentence where the topic appears to switch often comes later than the point of earliest topic overlap. The requirement that each sentence continue the previous context creates a sense of momentum from the previous context and thus from the previous topic.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Planner Experiments",
                "sec_num": "5.3"
            },
            {
                "text": "Incoherent transitions may still happen. In the story in Table 2 for sketch 3 shows one such incoherent transition due to the generation of an endof-text token. Our implementation uses the initial prompt in this case, causing a portion of the story to not be contextualized by the earlier story sentences. Our ROCStories-tuned language model, based on 5-sentence stories, tends to predict end-of-text earlier than models trained on longer stories.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 57,
                        "end": 64,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Planner Experiments",
                "sec_num": "5.3"
            },
            {
                "text": "Our experiments suggest that there is a trade-off between control fidelity and fluency. As Figures 2  and 3 show, a higher total control strength results in overall better \u03c4 -a scores, meaning more sensitivity and ability to correctly differentiate between topic blends, but worse perplexity, risking less fluent language. In practice, an iterative deepening algorithm where multiple control strengths are used to generate multiple candidate sentences per line, can be used. Control strength modifiers of 1x, 2x, 3x, 4x, etc. can be tried and the best generated sentence, as measured by perplexity (or any other task-specific metric), is selected. This can, just like how multiple control codes are handled, be implemented very efficiently. The current planner is heuristic. Empirically we find the heuristic to create good blends. We envision a planner that can be parameterized and learn from demonstrations. Reinforcement learning, in which the context and control sketches work as world states, can choose control configurations as actions. Feedback (reward) from the user would be necessary. This would incorporate the plug-andblend technique into a human-in-the-loop creative Figure 5 : Control strength generated by the planner for the first control code used for each control sketch in Table 2 . The control strength for the second control code is the mirror of each. process wherein the generator learns blending preferences from the human creator (Guzdial et al., 2018) .",
                "cite_spans": [
                    {
                        "start": 1457,
                        "end": 1479,
                        "text": "(Guzdial et al., 2018)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 91,
                        "end": 107,
                        "text": "Figures 2  and 3",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1182,
                        "end": 1190,
                        "text": "Figure 5",
                        "ref_id": null
                    },
                    {
                        "start": 1294,
                        "end": 1301,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "In this paper we have made no assumptions about how control sketches are acquired from the human user. We envision a processes whereby the human co-creator has an idea of what the final product-in this case a story-should be and can express that vision at the level of how topics manifest through the story. Supporting a co-creative",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "6"
            },
            {
                "text": "This is not the only way to formalize this heuristic; We found this to be effective and efficient.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://groups.di.unipi.it/~gulli/AG_ corpus_of_news_articles.html",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "pipeline(\"zero-shot-classifier\")",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Generated Paragraph Sketch 1 c1 = Sports, {0 \u2192 5} c2 = Science, {4 \u2192 10} Jackie Robinson was playing in the NBA. He had just been drafted by the Cleveland Cavaliers. He decided to play for a team that was trying to win a championship. \"I'm gonna go out there and beat them,\" he said \"They're going to be great.\" \"Yeah, they're good,\" he said \"they'll be great.\" He added that his wife had been working on the project for about a year. He was happy to see her progress. She was able to get some work done and she started getting more comfortable with it. She had a lot of fun doing it! She also got her own computer, which is now in the living room.Sketch 2 c1 = Sports, 0 \u2192 5 c2 = Science, 5 \u2192 10 Jackie Robinson was playing in the NBA. He had just played basketball for a few years. He was looking forward to his first game of the season. He decided to play with his friends and play against them in the court. He got a lot of feedback from everyone who played against him, including some that were very excited about it! I was really happy when I saw how he played. I also had to admit that my favorite player was the guy who beat me in the finals. The computer game Super Mario 64 is a great game, but it's not perfect. I played it on my laptop and found that I couldn't play it properly because of some bugs. The problem was that the graphics were bad, so I had to use an emulator instead of playing the game.Sketch 3 c1 = Sports, 0 \u2192 5 c2 = Science, 6 \u2192 10 Jackie Robinson was playing in the NBA. He had just played basketball for a few years. He was looking forward to his first game of the season. He decided to play with his friends and play against them in the court. He had a lot of fun playing against them, but he didn't want to lose any time. So he played with his friends for about an hour before going home and playing again. He was very happy when they got home and started playing again! I think it's a good idea to have some fun with your kids, especially if you're not too busy. I'm sure that you'll enjoy this post as much as I did! my daughter was diagnosed with a rare form of cancer. human-AI interaction, the human user can update the control sketch and re-generate parts (or all) of the story by changing the range of topics or choosing different topics. The control model will need to support different topics at different levels of granularity; currently the control model only supports four topics, which is sufficient for conducting experiments to characterize the plug-and-blend technique but not for full co-creativity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Control Sketches",
                "sec_num": null
            },
            {
                "text": "In this paper, we present Plug-and-Blend, a plugand-play framework that enhances a base LM, enables controllable generation with continuousweighted control codes, along with capability of generating paragraphs based on control sketches, all without access to internal knowledge of this base LM. These capabilities will fuel a new generation of controllable generation applications with the key assets of decoupling between the controllable component and the generative component, and easiness of adapting to new advancements in the field of generative LMs.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "7"
            },
            {
                "text": "This material is based upon work supported by the Office of Naval Research (ONR) under Grant #N00014-14-1-0003.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgment",
                "sec_num": "8"
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "STO-RIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation",
                "authors": [
                    {
                        "first": "Nader",
                        "middle": [],
                        "last": "Akoury",
                        "suffix": ""
                    },
                    {
                        "first": "Shufan",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Whiting",
                        "suffix": ""
                    },
                    {
                        "first": "Stephen",
                        "middle": [],
                        "last": "Hood",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "6470--6484",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.525"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nader Akoury, Shufan Wang, Josh Whiting, Stephen Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO- RIUM: A Dataset and Evaluation Platform for Machine-in-the-Loop Story Generation. In Proceed- ings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6470-6484, Online. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "CoCon: A Self-Supervised Approach for Controlled Text Generation",
                "authors": [
                    {
                        "first": "Alvin",
                        "middle": [],
                        "last": "Chan",
                        "suffix": ""
                    },
                    {
                        "first": "Yew-Soon",
                        "middle": [],
                        "last": "Ong",
                        "suffix": ""
                    },
                    {
                        "first": "Bill",
                        "middle": [],
                        "last": "Pung",
                        "suffix": ""
                    },
                    {
                        "first": "Aston",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Jie",
                        "middle": [],
                        "last": "Fu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2006.03535[cs].ArXiv:2006.03535"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, and Jie Fu. 2020. CoCon: A Self- Supervised Approach for Controlled Text Genera- tion. arXiv:2006.03535 [cs]. ArXiv: 2006.03535.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Plug and Play Language Models: A Simple Approach to Controlled Text Generation",
                "authors": [
                    {
                        "first": "Sumanth",
                        "middle": [],
                        "last": "Dathathri",
                        "suffix": ""
                    },
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Madotto",
                        "suffix": ""
                    },
                    {
                        "first": "Janice",
                        "middle": [],
                        "last": "Lan",
                        "suffix": ""
                    },
                    {
                        "first": "Jane",
                        "middle": [],
                        "last": "Hung",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    },
                    {
                        "first": "Piero",
                        "middle": [],
                        "last": "Molino",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Yosinski",
                        "suffix": ""
                    },
                    {
                        "first": "Rosanne",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, and Rosanne Liu. 2020. Plug and Play Language Mod- els: A Simple Approach to Controlled Text Genera- tion. International Conference on Learning Repre- sentations, (2020). ArXiv: 1912.02164.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Pre-train and Plug-in: Flexible Conditional Text Generation with Variational Auto-Encoders",
                "authors": [
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Duan",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Jiaxin",
                        "middle": [],
                        "last": "Pei",
                        "suffix": ""
                    },
                    {
                        "first": "Jialong",
                        "middle": [],
                        "last": "Han",
                        "suffix": ""
                    },
                    {
                        "first": "Chenliang",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "253--262",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yu Duan, Canwen Xu, Jiaxin Pei, Jialong Han, and Chenliang Li. 2020. Pre-train and Plug-in: Flexible Conditional Text Generation with Variational Auto- Encoders. Proceedings of the 58th Annual Meet- ing of the Association for Computational Linguistics, (2020):253-262. ArXiv: 1911.03882.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Transformerbased Conditional Variational Autoencoder for Controllable Story Generation",
                "authors": [
                    {
                        "first": "Le",
                        "middle": [],
                        "last": "Fang",
                        "suffix": ""
                    },
                    {
                        "first": "Tao",
                        "middle": [],
                        "last": "Zeng",
                        "suffix": ""
                    },
                    {
                        "first": "Chaochun",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Liefeng",
                        "middle": [],
                        "last": "Bo",
                        "suffix": ""
                    },
                    {
                        "first": "Wen",
                        "middle": [],
                        "last": "Dong",
                        "suffix": ""
                    },
                    {
                        "first": "Changyou",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2101.00828"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Le Fang, Tao Zeng, Chaochun Liu, Liefeng Bo, Wen Dong, and Changyou Chen. 2021. Transformer- based Conditional Variational Autoencoder for Con- trollable Story Generation. arXiv:2101.00828 [cs].",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Controlling Linguistic Style Aspects in Neural Language Generation",
                "authors": [
                    {
                        "first": "Jessica",
                        "middle": [],
                        "last": "Ficler",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Workshop on Stylistic Variation",
                "volume": "",
                "issue": "",
                "pages": "94--104",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jessica Ficler and Yoav Goldberg. 2017. Controlling Linguistic Style Aspects in Neural Language Gen- eration. Proceedings of the Workshop on Stylistic Variation, (2017):94-104. ArXiv: 1707.02633.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Co-Creative Level Design via Machine Learning",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Guzdial",
                        "suffix": ""
                    },
                    {
                        "first": "Nicholas",
                        "middle": [],
                        "last": "Liao",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Riedl",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Fifth Experimental AI in Games Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew Guzdial, Nicholas Liao, and Mark Riedl. 2018. Co-Creative Level Design via Machine Learn- ing. Fifth Experimental AI in Games Workshop. ArXiv: 1809.09420.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "A Simple Language Model for Task-Oriented Dialogue",
                "authors": [
                    {
                        "first": "Ehsan",
                        "middle": [],
                        "last": "Hosseini-Asl",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Mccann",
                        "suffix": ""
                    },
                    {
                        "first": "Chien-Sheng",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Semih",
                        "middle": [],
                        "last": "Yavuz",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Advances in Neural Information Processing Systems",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ehsan Hosseini-Asl, Bryan McCann, Chien-Sheng Wu, Semih Yavuz, and Richard Socher. 2020. A Simple Language Model for Task-Oriented Dialogue. Ad- vances in Neural Information Processing Systems, 33.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Toward Controlled Generation of Text",
                "authors": [
                    {
                        "first": "Zhiting",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Zichao",
                        "middle": [],
                        "last": "Yang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodan",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Salakhutdinov",
                        "suffix": ""
                    },
                    {
                        "first": "Eric",
                        "middle": [
                            "P"
                        ],
                        "last": "Xing",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the 34th International Conference on Machine Learning",
                "volume": "70",
                "issue": "",
                "pages": "1587--1596",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P. Xing. 2017. Toward Con- trolled Generation of Text. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Re- search, pages 1587-1596, International Convention Centre, Sydney, Australia. PMLR.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "CTRL: A Conditional Transformer Language Model for Controllable Generation",
                "authors": [
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Nitish Shirish Keskar",
                        "suffix": ""
                    },
                    {
                        "first": "Lav",
                        "middle": [
                            "R"
                        ],
                        "last": "Mccann",
                        "suffix": ""
                    },
                    {
                        "first": "Caiming",
                        "middle": [],
                        "last": "Varshney",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Xiong",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1909.05858"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh- ney, Caiming Xiong, and Richard Socher. 2019. CTRL: A Conditional Transformer Language Model for Controllable Generation. arXiv:1909.05858 [cs].",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Hady Elsahar, and Marc Dymetman. 2020. A Distributional Approach to Controlled Text Generation",
                "authors": [
                    {
                        "first": "Muhammad",
                        "middle": [],
                        "last": "Khalifa",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2012.11635[cs].ArXiv:2012.11635"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Muhammad Khalifa, Hady Elsahar, and Marc Dymet- man. 2020. A Distributional Approach to Controlled Text Generation. arXiv:2012.11635 [cs]. ArXiv: 2012.11635.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Shafiq Joty, Richard Socher, and Nazneen Fatema Rajani. 2020. GeDi: Generative Discriminator Guided Sequence Generation",
                "authors": [
                    {
                        "first": "Ben",
                        "middle": [],
                        "last": "Krause",
                        "suffix": ""
                    },
                    {
                        "first": "Akhilesh",
                        "middle": [],
                        "last": "Deepak Gotmare",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Mc-Cann",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2009.06367[cs].ArXiv:2009.06367"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ben Krause, Akhilesh Deepak Gotmare, Bryan Mc- Cann, Nitish Shirish Keskar, Shafiq Joty, Richard Socher, and Nazneen Fatema Rajani. 2020. GeDi: Generative Discriminator Guided Sequence Genera- tion. arXiv:2009.06367 [cs]. ArXiv: 2009.06367.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Prefix-Tuning: Optimizing Continuous Prompts for Generation",
                "authors": [
                    {
                        "first": "Lisa",
                        "middle": [],
                        "last": "Xiang",
                        "suffix": ""
                    },
                    {
                        "first": "Percy",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Liang",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2101.00190[cs].ArXiv:2101.00190"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Xiang Lisa Li and Percy Liang. 2021. Prefix-Tuning: Optimizing Continuous Prompts for Generation. arXiv:2101.00190 [cs]. ArXiv: 2101.00190.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Sumanth Dathathri, and Pascale Fung. 2020. Plug-and-Play Conversational Models",
                "authors": [
                    {
                        "first": "Andrea",
                        "middle": [],
                        "last": "Madotto",
                        "suffix": ""
                    },
                    {
                        "first": "Etsuko",
                        "middle": [],
                        "last": "Ishii",
                        "suffix": ""
                    },
                    {
                        "first": "Zhaojiang",
                        "middle": [],
                        "last": "Lin",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2010.04344"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andrea Madotto, Etsuko Ishii, Zhaojiang Lin, Sumanth Dathathri, and Pascale Fung. 2020. Plug-and-Play Conversational Models. arXiv:2010.04344 [cs].",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Plug and Play Autoencoders for Conditional Text Generation",
                "authors": [
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Mai",
                        "suffix": ""
                    },
                    {
                        "first": "Nikolaos",
                        "middle": [],
                        "last": "Pappas",
                        "suffix": ""
                    },
                    {
                        "first": "Ivan",
                        "middle": [],
                        "last": "Montero",
                        "suffix": ""
                    },
                    {
                        "first": "Noah",
                        "middle": [
                            "A"
                        ],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Henderson",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "6076--6092",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.491"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Florian Mai, Nikolaos Pappas, Ivan Montero, Noah A. Smith, and James Henderson. 2020. Plug and Play Autoencoders for Conditional Text Generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6076-6092, Online. Association for Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "A Corpus and Evaluation Framework for Deeper Understanding of Commonsense Stories",
                "authors": [
                    {
                        "first": "Nasrin",
                        "middle": [],
                        "last": "Mostafazadeh",
                        "suffix": ""
                    },
                    {
                        "first": "Nathanael",
                        "middle": [],
                        "last": "Chambers",
                        "suffix": ""
                    },
                    {
                        "first": "Xiaodong",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "Devi",
                        "middle": [],
                        "last": "Parikh",
                        "suffix": ""
                    },
                    {
                        "first": "Dhruv",
                        "middle": [],
                        "last": "Batra",
                        "suffix": ""
                    },
                    {
                        "first": "Lucy",
                        "middle": [],
                        "last": "Vanderwende",
                        "suffix": ""
                    },
                    {
                        "first": "Pushmeet",
                        "middle": [],
                        "last": "Kohli",
                        "suffix": ""
                    },
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Allen",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "",
                "issue": "",
                "pages": "839--849",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vanderwende, Pushmeet Kohli, and James Allen. 2016. A Cor- pus and Evaluation Framework for Deeper Under- standing of Commonsense Stories. Proceedings of the 2016 Conference of the North {A}merican Chap- ter of the Association for Computational Linguis- tics: Human Language Technologies, pages 839- 849. ArXiv: 1604.01696.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Directed Beam Search: Plug-and-Play Lexically Constrained Language Generation",
                "authors": [
                    {
                        "first": "Damian",
                        "middle": [],
                        "last": "Pascual",
                        "suffix": ""
                    },
                    {
                        "first": "Beni",
                        "middle": [],
                        "last": "Egressy",
                        "suffix": ""
                    },
                    {
                        "first": "Florian",
                        "middle": [],
                        "last": "Bolli",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Wattenhofer",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2012.15416"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Damian Pascual, Beni Egressy, Florian Bolli, and Roger Wattenhofer. 2020. Directed Beam Search: Plug-and-Play Lexically Constrained Language Generation. arXiv:2012.15416 [cs].",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Language Models are Unsupervised Multitask Learners",
                "authors": [
                    {
                        "first": "Alec",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Rewon",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Lan- guage Models are Unsupervised Multitask Learners. page 24.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "PlotMachines: Outlineconditioned generation with dynamic plot state tracking",
                "authors": [
                    {
                        "first": "Asli",
                        "middle": [],
                        "last": "Hannah Rashkin",
                        "suffix": ""
                    },
                    {
                        "first": "Yejin",
                        "middle": [],
                        "last": "Celikyilmaz",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Choi",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "4274--4295",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.349"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hannah Rashkin, Asli Celikyilmaz, Yejin Choi, and Jianfeng Gao. 2020. PlotMachines: Outline- conditioned generation with dynamic plot state tracking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Process- ing (EMNLP), pages 4274-4295, Online. Associa- tion for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Universal Adversarial Triggers for Attacking and Analyzing NLP",
                "authors": [
                    {
                        "first": "Eric",
                        "middle": [],
                        "last": "Wallace",
                        "suffix": ""
                    },
                    {
                        "first": "Shi",
                        "middle": [],
                        "last": "Feng",
                        "suffix": ""
                    },
                    {
                        "first": "Nikhil",
                        "middle": [],
                        "last": "Kandpal",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Singh",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "2153--2162",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard- ner, and Sameer Singh. 2019. Universal Adver- sarial Triggers for Attacking and Analyzing NLP. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Lan- guage Processing (EMNLP-IJCNLP), (2019):2153- 2162. ArXiv: 1908.07125.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Narrative Interpolation for Generating and Understanding Stories",
                "authors": [
                    {
                        "first": "Su",
                        "middle": [],
                        "last": "Wang",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Durrett",
                        "suffix": ""
                    },
                    {
                        "first": "Katrin",
                        "middle": [],
                        "last": "Erk",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2008.07466"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Su Wang, Greg Durrett, and Katrin Erk. 2020. Nar- rative Interpolation for Generating and Understand- ing Stories. arXiv:2008.07466 [cs].",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "2020. HuggingFace's Transformers: State-of-the-art Natural Language Processing",
                "authors": [
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Teven Le Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "Quentin",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    },
                    {
                        "first": "Alexander",
                        "middle": [
                            "M"
                        ],
                        "last": "Lhoest",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Rush",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1910.03771"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2020. HuggingFace's Transformers: State-of-the-art Nat- ural Language Processing. arXiv:1910.03771 [cs].",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Hannaneh Hajishirzi, Mari Ostendorf, and Bill Dolan. 2020. A Controllable Model of Grounded Response Generation",
                "authors": [
                    {
                        "first": "Zeqiu",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Michel",
                        "middle": [],
                        "last": "Galley",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Brockett",
                        "suffix": ""
                    },
                    {
                        "first": "Yizhe",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Xiang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "Chris",
                        "middle": [],
                        "last": "Quirk",
                        "suffix": ""
                    },
                    {
                        "first": "Rik",
                        "middle": [],
                        "last": "Koncel-Kedziorski",
                        "suffix": ""
                    },
                    {
                        "first": "Jianfeng",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.00613[cs].ArXiv:2005.00613"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Zeqiu Wu, Michel Galley, Chris Brockett, Yizhe Zhang, Xiang Gao, Chris Quirk, Rik Koncel-Kedziorski, Jianfeng Gao, Hannaneh Hajishirzi, Mari Ostendorf, and Bill Dolan. 2020. A Controllable Model of Grounded Response Generation. arXiv:2005.00613 [cs]. ArXiv: 2005.00613.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Plan-And-Write: Towards Better Automatic Storytelling",
                "authors": [
                    {
                        "first": "Lili",
                        "middle": [],
                        "last": "Yao",
                        "suffix": ""
                    },
                    {
                        "first": "Nanyun",
                        "middle": [],
                        "last": "Peng",
                        "suffix": ""
                    },
                    {
                        "first": "Ralph",
                        "middle": [],
                        "last": "Weischedel",
                        "suffix": ""
                    },
                    {
                        "first": "Kevin",
                        "middle": [],
                        "last": "Knight",
                        "suffix": ""
                    },
                    {
                        "first": "Dongyan",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Rui",
                        "middle": [],
                        "last": "Yan",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the AAAI Conference on Artificial Intelligence",
                "volume": "33",
                "issue": "",
                "pages": "7378--7385",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin Knight, Dongyan Zhao, and Rui Yan. 2019. Plan- And-Write: Towards Better Automatic Storytelling. Proceedings of the AAAI Conference on Artificial In- telligence, 33(1):7378-7385. ArXiv: 1811.05701.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "text": "(a) Baseline on order-shuffled stories in ROCStories dataset. (b) Total control strength 1x. (c) Total control strength 2x. (d) Total control strength 4x.",
                "num": null
            },
            "FIGREF1": {
                "uris": null,
                "type_str": "figure",
                "text": "average \u03c4 -a (higher meaning better control fidelity) under different Total control strength for the tuned model with topics: (c1) Business, (c2) Science, (c3) Sports, (c4) World, comparing to uncontrolled baseline. Heat map strength is given as percentages (\u2212100% . . . 100%).(a) Perplexity of generated sequences. (b) Total control strength 1x. (c) Total control strength 2x. (d) Total control strength 4x.",
                "num": null
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "text": "Experiment results for the untuned model. Refer to Figure 3a for baseline comparison.",
                "num": null
            }
        }
    }
}