File size: 62,755 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T14:47:08.725551Z"
    },
    "title": "Few-shot and Zero-shot Approaches to Legal Text Classification: A Case Study in the Financial Sector",
    "authors": [
        {
            "first": "Rajdeep",
            "middle": [],
            "last": "Sarkar",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Ireland Galway",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": "rajdeep.sarkar@insight-centre.org"
        },
        {
            "first": "Atul",
            "middle": [
                "Kr"
            ],
            "last": "Ojha",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Ireland Galway",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": "atulkumar.ojha@insight-centre.org"
        },
        {
            "first": "Jay",
            "middle": [],
            "last": "Megaro",
            "suffix": "",
            "affiliation": {
                "laboratory": "FMR LLC",
                "institution": "",
                "location": {
                    "settlement": "Boston",
                    "country": "USA"
                }
            },
            "email": "jay.megaro@fmr.com"
        },
        {
            "first": "John",
            "middle": [],
            "last": "Mariano",
            "suffix": "",
            "affiliation": {
                "laboratory": "FMR LLC",
                "institution": "",
                "location": {
                    "settlement": "Boston",
                    "country": "USA"
                }
            },
            "email": "john.mariano@fmr.com"
        },
        {
            "first": "Vall",
            "middle": [],
            "last": "Herard",
            "suffix": "",
            "affiliation": {
                "laboratory": "FMR LLC",
                "institution": "",
                "location": {
                    "settlement": "Boston",
                    "country": "USA"
                }
            },
            "email": "vall.herard@fmr.com"
        },
        {
            "first": "John",
            "middle": [
                "P"
            ],
            "last": "Mccrae",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "National University of Ireland Galway",
                "location": {
                    "country": "Ireland"
                }
            },
            "email": "john.mccrae@insight-centre.org"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to construct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "The application of predictive coding techniques to legal texts has the potential to greatly reduce the cost of legal review of documents, however, there is such a wide array of legal tasks and continuously evolving legislation that it is hard to construct sufficient training data to cover all cases. In this paper, we investigate few-shot and zero-shot approaches that require substantially less training data and introduce a triplet architecture, which for promissory statements produces performance close to that of a supervised system. This method allows predictive coding methods to be rapidly developed for new regulations and markets.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Organizations that are governed by legal and regulatory statues concerning communications with the public are required to comply with principles-based content standards. As such, this involves a significant expense due to having to use highly qualified staff to review, iterate on communications internally and file content with regulators, externally. There is thus a substantial expense in terms of iteration time and specialized staff associated with this process. With recent advances in Natural Language Processing (NLP) technologies, it is increasingly becoming possible to automatically flag high-risk statements by predictive coding and thus reduce the cost of these manual reviews. However, each industry has specific regulatory requirements and modern NLP systems need large training sets to be effective, and as such it is challenging to develop such systems. In this paper, we focus on a single example of such a regulatory compliance in the financial domain under the US regulation FINRA 2210 1 , which states that \"no member may make any false, exaggerated, unwarranted, promissory or misleading statement or claim in any communication.\" We examine how we can train a system in the following settings: firstly in a traditional dataheavy supervised setting, where a large number of existing examples have been classified. Secondly, we investigate a zero-shot training situation, where we have asked a legal expert to provide only rough guidelines for what is not compliant with the legal code. Finally, we combine this in a few-shot setting and show that with comparatively little training data, we can achieve performance that is equivalent with the data-heavy supervised setting and thus enables text classification systems for regulatory compliance to be constructed quickly and with little effort allowing them to cover a wide range of industries and national regulatory frameworks.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "There has been some work in the area of legal text classification and the application of text classification techniques to legal texts has mostly been successful so far. Methods based on counting the words in the text and then classifying using machine learning approaches such as support vector machines (Cortes and Vapnik, 1995) for example by Sulea et al. (2017) , where they applied this method to the classification of texts according to the legal area, ruling and time span of the text. Deep learning methods such as Convolutional Neural Networks (CNNs) have been shown to further improve the performance of such systems (Wei et al., 2018) . More recently, the emergence of large pre-trained language models such as BERT (Devlin et al., 2019) has further increased the performance and Shaheen et al. (2020) showed that these models could be used to classify legal texts according to thousands of labels and even on multiple languages if sufficient training data exists.",
                "cite_spans": [
                    {
                        "start": 305,
                        "end": 330,
                        "text": "(Cortes and Vapnik, 1995)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 346,
                        "end": 365,
                        "text": "Sulea et al. (2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 627,
                        "end": 645,
                        "text": "(Wei et al., 2018)",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 727,
                        "end": 748,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 791,
                        "end": 812,
                        "text": "Shaheen et al. (2020)",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A criticism of such NLP-based approaches to predictive coding, especially with the emergence of more sophisticated deep learning methods, is that they can appear to be 'black boxes', and thus there has been work in providing explainable systems (Mahoney et al., 2019) that can identify snippets and provides explanations for why they make certain predictions. Similarly, some work has gone into the investigation of specific complexities of legal texts, such as in Nallapati and Manning (2008) , who showed that for some legal texts the complex combination of negative and positive statements can confused machine learning approaches. They showed that by combining these machine learning approaches with propositional logic, text classification systems could handle intricate legal wording.",
                "cite_spans": [
                    {
                        "start": 465,
                        "end": 493,
                        "text": "Nallapati and Manning (2008)",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "To solve the problem of legal text classification, we approach this with a triplet architecture (Wei et al., 2021) where an input sentence, s, is compared with a positive example s + and a negative example s \u2212 as depicted in Figure 1 . We begin by describing the model architecture. Then we discuss the triplet loss used for training the network. Finally, we describe the classification model used for the final classification.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 114,
                        "text": "(Wei et al., 2021)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 225,
                        "end": 233,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Methodology",
                "sec_num": "3"
            },
            {
                "text": "Most existing methods of text classification only consider the local features of the samples, and their experimental results show better performance than traditional non-deep learning methods. However, in these methods, the global features of the sample are usually ignored, and these ignored global features will affect the classification accuracy. These global features are key to the use-case presented. To solve this problem, a triplet capsule network framework is proposed for text classification, to optimize results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "A triplet network consist of three instances of the same neural network with shared parameters. The network takes as input three examples in each sample. The three samples consists of the anchor, positive and negative examples. The anchor and positive examples belong to the same class, while the negative example belongs to a different class. The network outputs two values, the distance between the anchor and the positive example and the distance between the anchor and the negative example.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "We design a triplet network for the sentence classification task. The network encodes each incoming sentence using Sentence-BERT (Reimers and Gurevych, 2019) encoder. Sentence-BERT captures the contextual information in a sentence in a fixed-size vector representation. The contextual sentence representation is then fed to a two-layer perceptron. The hidden layer of the perceptron has ReLU (Nair and Hinton, 2010) activation for introducing non-linearity in the perceptron.",
                "cite_spans": [
                    {
                        "start": 129,
                        "end": 157,
                        "text": "(Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 392,
                        "end": 415,
                        "text": "(Nair and Hinton, 2010)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e 1 s = S-BERT(s)",
                        "eq_num": "(1)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e 2 s = RELU (W \u03b8,1 e 1 s )",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "e 3 s = W \u03b8,2 e 2 s",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "where W \u03b8,1 \u2208 R d e 2 \u00d7d e 1 h and W \u03b8,2 \u2208 R d e 3 \u00d7d e 2 and the parameter matrices to be learned during training. The Sentence-BERT model is also finetuned during the training procedure. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "S-Bert Encoder S-Bert Encoder S-Bert Encoder FC, ReLu FC, ReLu FC, ReLu FC FC FC d(s, s + ) d(s, s -) s + s - s",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Model Architecture",
                "sec_num": "3.1"
            },
            {
                "text": "Triplet loss (Hoffer and Ailon, 2015) has been used in few-shot classification methods. Although introduced for images, it has been successfully adapted in natural language processing (Wei et al., 2021; Lauriola and Moschitti, 2021) . Triplet loss enables the network to distinguish been positive and negative examples of a class. It is defined in Equation 4.",
                "cite_spans": [
                    {
                        "start": 13,
                        "end": 37,
                        "text": "(Hoffer and Ailon, 2015)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 184,
                        "end": 202,
                        "text": "(Wei et al., 2021;",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 203,
                        "end": 232,
                        "text": "Lauriola and Moschitti, 2021)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "L(D + , D \u2212 ) = D + , D \u2212 \u2212 1 2 2",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "where D + and D \u2212 are defined in Equation 7 and 8 respectively. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "d + (s, s + ) = e 3 s \u2212 e 3 s + 2 (5) d \u2212 (s, s \u2212 ) = e 3 s \u2212 e 3 s \u2212 2",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "D + = e d + (s,s + ) e d + (s,s + ) + e d \u2212 (s,s \u2212 )",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "D \u2212 = e d \u2212 (s,s \u2212 ) e d + (s,s + ) + e d \u2212 (s,s \u2212 )",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "(s,s + ) d \u2212 (s,s \u2212 ) \u2192 0, then L \u2192 0.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "We minimize L to learn the parameters of our model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Triplet Loss",
                "sec_num": "3.2"
            },
            {
                "text": "The network learns sentence representations where examples of the same class are close together. The closeness of two sentences is measured by calculating the euclidean distance between their representations from Equation 3. For the final classification, we use a Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. We use SVM for classification as it learns by minimizing the hinge loss which is similar to the loss used for training the triplet network. Given the sentence representation from Equation 3, the SVM outputs a probability p of a sentence being a promissory sentence. The sentence is classified being promissory using Equation 9.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification",
                "sec_num": "3.3"
            },
            {
                "text": "class(s) = promissory p \u2265 \u03b1 not promissory p < \u03b1 (9)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification",
                "sec_num": "3.3"
            },
            {
                "text": "where \u03b1 is a hyperparameter to be set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Classification",
                "sec_num": "3.3"
            },
            {
                "text": "We retrieved data from internal and external data sources in the financial services industry to create the initial data sets for the approach. After data setup, we cleaned the data to remove duplicate and irrelevant content to ensure data quality before review. Each data point was reviewed and labelled by both in-house licensed staff and contractors to confirm the interpretation of regulatory content standards.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We split the dataset into training, development and test set. The training set contains 2,016 promissory sentences and 3,260 non-promissory sentence. The test set contains 860 and 1,402 promissory and non-promissory examples, respectively. For our few-shot learning model, we sample 40 promissory and 190 non-promissory examples sentences from the training set and learn our model on this subset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dataset",
                "sec_num": "4.1"
            },
            {
                "text": "We compare the performance of our approach with the following supervised learning methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Naive Bayes: We learn a Naive Bayes classification model using TF-IDF scores of the tokens in the sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Multi-Layer Perceptron (MLP): We learn a two-layer perceptron with ReLu activation in the hidden layer using the TF-IDF scores of the sentence tokens as input features to the model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 SVM: Similar to the MLP model, we learn an SVM model for the classification task. We set the regularization parameter C and gamma to 1.0 and 0.1 respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Sentence-BERT (Reimers and Gurevych, 2019) : This setting is similar to our proposed approach. We encode each sentence into a fixed-sized vector using its Sentence-BERT embedding. The sentence embedding is then fed into a 3 layer fully connected neural network with ReLu activation in the first two layers. The model is learned by minimizing the cross-entropy loss of classification using the Adam optimizer.",
                "cite_spans": [
                    {
                        "start": 16,
                        "end": 44,
                        "text": "(Reimers and Gurevych, 2019)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "\u2022 Laser (Artetxe and Schwenk, 2019) : In this setting, we encode each sentence using its Laser embeddings. The remaining architecture remains the same as that used in the Sentence-BERT model.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 35,
                        "text": "(Artetxe and Schwenk, 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "In addition to the supervised approaches, we compare our few-shot learning approach against a zeroshot learning approach. Yin et al. (2019) suggested method for using pre-trained natural language inference models as sequence classifiers. Towards this end, we use BART model (Lewis et al., 2020) as our zero-shot learning model. We consider the sentences tagged as 'promissory' as the hypothesis. The probability of a sentence being the premise Sentence Model Result Gold Label 1 Stocks are an income source which main street is ignoring non-promissory promissory 2 It is going up in all currencies non-promissory promissory 3 Joe Smith picks the best stock in each sector for the fund non-promissory promissory 4 All rights reserved. promissory non-promissory 5 Save more now. promissory non-promissory 6 There is no action required on your part. promissory non-promissory for these tagged sentence is calculated using the BART model. We then consider the maximum of those scores, and if the maximum score is greater than 0.7, we classify the sentence as a promissory sentence.",
                "cite_spans": [
                    {
                        "start": 122,
                        "end": 139,
                        "text": "Yin et al. (2019)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 274,
                        "end": 294,
                        "text": "(Lewis et al., 2020)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baselines and Evaluation Metrics",
                "sec_num": "4.2"
            },
            {
                "text": "For the task, we use the Sentence-BERT base model. It encodes a sentence into a fixed-size vector of length 768. We set d e 1 , d e 2 and d e 3 to 768, 300 and 10 respectively. For every positive sentence belonging to the promissory class, we sample three sentences from the non-promissory class as negative sentences. We use grid-search on the development set to set the values of hyperparameters. The batch size is set to 16 for the triplet network and the model trained using Adam optimizer (Kingma and Ba, 2015) with a learning rate of 1e-5 for 10 epochs. We set the cost parameter C of SVM to 0.03 and \u03b1 in Equation 9 to 0.005.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Implementation Details",
                "sec_num": "4.3"
            },
            {
                "text": "In section, we first perform a quantitative analysis of models. We then study a few examples where our approach produces results different from the gold standard dataset.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5"
            },
            {
                "text": "In this work, we propose a few-shot learning method for legal text classification. Table 1 shows the performance of different model. Even when training with a limited number of examples, the few-shot learning model achieves better recall performance as compared to different supervised models. We find that the precision of our model is better than the zero-shot learning model but lower than the supervised models. Overall the F-Measure shows that similar results can be obtained with a few-shot approach and this enables the goal of rapid training of systems for different legal tasks. In the situation where the classifier is applied as a first filter, a high recall is preferable as we would rather create more work for a second manual annotation than miss some important texts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 83,
                        "end": 90,
                        "text": "Table 1",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Quantitative Analysis",
                "sec_num": "5.1"
            },
            {
                "text": "In Table 2 , we see some examples of misclassifications made by our algorithm. It is obvious that this is a very challenging task, with subtle changes in meaning being important for the classification. Examples 3 and 6 both appear to make factual statements, however, Example 3 is classed as promissory due to the context that 'Joe Smith' is likely an agent of the company. Similarly, Example 2 is difficult to classify without context and this shows that the introduction of further context is most likely to improve the effectiveness of the approach.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Qualitative Analysis",
                "sec_num": "5.2"
            },
            {
                "text": "We have investigated the use of few-shot and zeroshot text classification methods for the quick development of predictive coding systems for legal texts. We found that zero-shot systems have a substantial decrease in performance relative to a supervised approach. We then developed a few-shot approach based on a triplet architecture and showed that this model is within a few percentage points of the supervised system in performance but requires much less manual annotation in order to develop the system.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            }
        ],
        "back_matter": [
            {
                "text": "This work has been funded by FMR LLC. Researchers at the Data Science Institute are supported by Science Foundation Ireland as part of Grant Number SFI/12/RC/2289_P2, Insight SFI Centre for Data Analytics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgements",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Massively multilingual sentence embeddings for zeroshot cross-lingual transfer and beyond",
                "authors": [
                    {
                        "first": "Mikel",
                        "middle": [],
                        "last": "Artetxe",
                        "suffix": ""
                    },
                    {
                        "first": "Holger",
                        "middle": [],
                        "last": "Schwenk",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Trans. Assoc. Comput. Linguistics",
                "volume": "7",
                "issue": "",
                "pages": "597--610",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mikel Artetxe and Holger Schwenk. 2019. Mas- sively multilingual sentence embeddings for zero- shot cross-lingual transfer and beyond. Trans. Assoc. Comput. Linguistics, 7:597-610.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Supportvector networks",
                "authors": [
                    {
                        "first": "Corinna",
                        "middle": [],
                        "last": "Cortes",
                        "suffix": ""
                    },
                    {
                        "first": "Vladimir",
                        "middle": [],
                        "last": "Vapnik",
                        "suffix": ""
                    }
                ],
                "year": 1995,
                "venue": "Machine learning",
                "volume": "20",
                "issue": "3",
                "pages": "273--297",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Corinna Cortes and Vladimir Vapnik. 1995. Support- vector networks. Machine learning, 20(3):273-297.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "BERT: Pre-training of deep bidirectional transformers for language understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
                "volume": "1",
                "issue": "",
                "pages": "4171--4186",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/N19-1423"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language under- standing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186, Minneapolis, Minnesota. Associ- ation for Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Deep metric learning using triplet network",
                "authors": [
                    {
                        "first": "Elad",
                        "middle": [],
                        "last": "Hoffer",
                        "suffix": ""
                    },
                    {
                        "first": "Nir",
                        "middle": [],
                        "last": "Ailon",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Similarity-Based Pattern Recognition -Third International Workshop",
                "volume": "9370",
                "issue": "",
                "pages": "84--92",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-319-24261-3_7"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In Similarity-Based Pattern Recognition -Third International Workshop, SIM- BAD 2015, Copenhagen, Denmark, October 12-14, 2015, Proceedings, volume 9370 of Lecture Notes in Computer Science, pages 84-92. Springer.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Adam: A method for stochastic optimization",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Diederik",
                        "suffix": ""
                    },
                    {
                        "first": "Jimmy",
                        "middle": [],
                        "last": "Kingma",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Ba",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "3rd International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd Inter- national Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Answer sentence selection using local and global context in transformer models",
                "authors": [
                    {
                        "first": "Ivano",
                        "middle": [],
                        "last": "Lauriola",
                        "suffix": ""
                    },
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Moschitti",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Advances in Information Retrieval -43rd European Conference on IR Research, ECIR 2021, Virtual Event",
                "volume": "12656",
                "issue": "",
                "pages": "298--312",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-030-72113-8_20"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ivano Lauriola and Alessandro Moschitti. 2021. An- swer sentence selection using local and global con- text in transformer models. In Advances in Infor- mation Retrieval -43rd European Conference on IR Research, ECIR 2021, Virtual Event, March 28 - April 1, 2021, Proceedings, Part I, volume 12656 of Lecture Notes in Computer Science, pages 298-312. Springer.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "BART: denoising sequence-to-sequence pretraining for natural language generation, translation, and comprehension",
                "authors": [
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Yinhan",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Naman",
                        "middle": [],
                        "last": "Goyal ; Abdelrahman Mohamed",
                        "suffix": ""
                    },
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Veselin",
                        "middle": [],
                        "last": "Stoyanov",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
                "volume": "2020",
                "issue": "",
                "pages": "7871--7880",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.acl-main.703"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mike Lewis, Yinhan Liu, Naman Goyal, Mar- jan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: denoising sequence-to-sequence pre- training for natural language generation, translation, and comprehension. In Proceedings of the 58th An- nual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 7871-7880. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "A framework for explainable text classification in legal document review",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Christian",
                        "suffix": ""
                    },
                    {
                        "first": "Jianping",
                        "middle": [],
                        "last": "Mahoney",
                        "suffix": ""
                    },
                    {
                        "first": "Nathaniel",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Huber-Fliflet",
                        "suffix": ""
                    },
                    {
                        "first": "Haozhen",
                        "middle": [],
                        "last": "Gronvall",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "2019 IEEE International Conference on Big Data (Big Data)",
                "volume": "",
                "issue": "",
                "pages": "1858--1867",
                "other_ids": {
                    "DOI": [
                        "10.1109/BigData47090.2019.9005659"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Christian J. Mahoney, Jianping Zhang, Nathaniel Huber-Fliflet, Peter Gronvall, and Haozhen Zhao. 2019. A framework for explainable text classifi- cation in legal document review. In 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, December 9-12, 2019, pages 1858-1867. IEEE.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Rectified linear units improve restricted Boltzmann machines",
                "authors": [
                    {
                        "first": "Vinod",
                        "middle": [],
                        "last": "Nair",
                        "suffix": ""
                    },
                    {
                        "first": "Geoffrey",
                        "middle": [
                            "E"
                        ],
                        "last": "Hinton",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of the 27th International Conference on Machine Learning (ICML-10)",
                "volume": "",
                "issue": "",
                "pages": "807--814",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vinod Nair and Geoffrey E. Hinton. 2010. Rectified linear units improve restricted Boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages 807-814. Omnipress.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Legal docket classification: Where machine learning stumbles",
                "authors": [
                    {
                        "first": "Ramesh",
                        "middle": [],
                        "last": "Nallapati",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [
                            "D"
                        ],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "438--446",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ramesh Nallapati and Christopher D. Manning. 2008. Legal docket classification: Where machine learning stumbles. In Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing, pages 438-446, Honolulu, Hawaii. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Sentence-BERT: Sentence embeddings using Siamese BERTnetworks",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Reimers",
                        "suffix": ""
                    },
                    {
                        "first": "Iryna",
                        "middle": [],
                        "last": "Gurevych",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3980--3990",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1410"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Nils Reimers and Iryna Gurevych. 2019. Sentence- BERT: Sentence embeddings using Siamese BERT- networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Nat- ural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3980-3990. Association for Computational Linguis- tics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Large scale legal text classification using transformer models",
                "authors": [
                    {
                        "first": "Zein",
                        "middle": [],
                        "last": "Shaheen",
                        "suffix": ""
                    },
                    {
                        "first": "Gerhard",
                        "middle": [],
                        "last": "Wohlgenannt",
                        "suffix": ""
                    },
                    {
                        "first": "Erwin",
                        "middle": [],
                        "last": "Filtz",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zein Shaheen, Gerhard Wohlgenannt, and Erwin Filtz. 2020. Large scale legal text classification using transformer models. CoRR, abs/2010.12871.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Exploring the use of text classification in the legal domain",
                "authors": [
                    {
                        "first": "Octavia-Maria",
                        "middle": [],
                        "last": "Sulea",
                        "suffix": ""
                    },
                    {
                        "first": "Marcos",
                        "middle": [],
                        "last": "Zampieri",
                        "suffix": ""
                    },
                    {
                        "first": "Shervin",
                        "middle": [],
                        "last": "Malmasi",
                        "suffix": ""
                    },
                    {
                        "first": "Mihaela",
                        "middle": [],
                        "last": "Vela",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Liviu",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Dinu",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of the Second Workshop on Automated Semantic Analysis of Information in Legal Texts co-located with the 16th International Conference on Artificial Intelligence and Law",
                "volume": "2143",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Octavia-Maria Sulea, Marcos Zampieri, Shervin Mal- masi, Mihaela Vela, Liviu P. Dinu, and Josef van Genabith. 2017. Exploring the use of text classifi- cation in the legal domain. In Proceedings of the Second Workshop on Automated Semantic Analysis of Information in Legal Texts co-located with the 16th International Conference on Artificial Intelli- gence and Law (ICAIL 2017), London, UK, June 16, 2017, volume 2143 of CEUR Workshop Proceedings. CEUR-WS.org.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Empirical study of deep learning for text classification in legal document review",
                "authors": [
                    {
                        "first": "Fusheng",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Han",
                        "middle": [],
                        "last": "Qin",
                        "suffix": ""
                    },
                    {
                        "first": "Haozhen",
                        "middle": [],
                        "last": "Shi Ye",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "IEEE International Conference on Big Data, Big Data",
                "volume": "",
                "issue": "",
                "pages": "3317--3320",
                "other_ids": {
                    "DOI": [
                        "10.1109/BigData.2018.8622157"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Fusheng Wei, Han Qin, Shi Ye, and Haozhen Zhao. 2018. Empirical study of deep learning for text clas- sification in legal document review. In IEEE Inter- national Conference on Big Data, Big Data 2018, Seattle, WA, USA, December 10-13, 2018, pages 3317-3320. IEEE.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Few-shot text classification with triplet networks, data augmentation, and curriculum learning",
                "authors": [
                    {
                        "first": "Jason",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "Chengyu",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Soroush",
                        "middle": [],
                        "last": "Vosoughi",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Cheng",
                        "suffix": ""
                    },
                    {
                        "first": "Shiqi",
                        "middle": [],
                        "last": "Xu",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021",
                "volume": "",
                "issue": "",
                "pages": "5493--5500",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2021.naacl-main.434"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jason Wei, Chengyu Huang, Soroush Vosoughi, Yu Cheng, and Shiqi Xu. 2021. Few-shot text clas- sification with triplet networks, data augmentation, and curriculum learning. In Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online, June 6-11, 2021, pages 5493-5500. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach",
                "authors": [
                    {
                        "first": "Wenpeng",
                        "middle": [],
                        "last": "Yin",
                        "suffix": ""
                    },
                    {
                        "first": "Jamaal",
                        "middle": [],
                        "last": "Hay",
                        "suffix": ""
                    },
                    {
                        "first": "Dan",
                        "middle": [],
                        "last": "Roth",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "3912--3921",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/D19-1404"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Benchmarking zero-shot text classification: Datasets, evaluation and entailment approach. In Proceedings of the 2019 Conference on Em- pirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019, pages 3912-3921. Association for Computational Linguistics.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "num": null,
                "text": "Overall architecture of our approach.",
                "uris": null
            },
            "TABREF0": {
                "content": "<table><tr><td>Model</td><td colspan=\"3\">Precision Recall F1 Accuracy</td></tr><tr><td>Naive Bayes</td><td>0.78</td><td>0.48 0.60</td><td>0.75</td></tr><tr><td>MLP</td><td>0.66</td><td>0.70 0.68</td><td>0.75</td></tr><tr><td>SVM</td><td>0.76</td><td>0.67 0.71</td><td>0.79</td></tr><tr><td>S-BERT</td><td>0.72</td><td>0.69 0.70</td><td>0.78</td></tr><tr><td>Laser</td><td>0.75</td><td>0.68 0.71</td><td>0.79</td></tr><tr><td>Zero-Shot</td><td>0.48</td><td>0.75 0.59</td><td>0.60</td></tr><tr><td>Few-Shot(ours)</td><td>0.61</td><td>0.74 0.67</td><td>0.72</td></tr><tr><td colspan=\"4\">where \u2022 2 denotes the l 2 norm. The embeddings</td></tr><tr><td colspan=\"4\">e s , e s + and e s \u2212 denote the representation of the</td></tr><tr><td colspan=\"4\">anchor, positive and negative sentences from Equa-</td></tr><tr><td colspan=\"4\">tion 3 and e is Euler's number. The loss objective</td></tr><tr><td colspan=\"2\">ensures that when d +</td><td/><td/></tr></table>",
                "html": null,
                "text": "Performance of our few-shot learning model in comparison with other supervised and zero-shot learning methods.",
                "type_str": "table",
                "num": null
            },
            "TABREF1": {
                "content": "<table/>",
                "html": null,
                "text": "Error Analysis: Examples where our few-shot model produces classification labels different from the gold labels.",
                "type_str": "table",
                "num": null
            }
        }
    }
}