File size: 115,425 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T03:14:40.402860Z"
    },
    "title": "Automatic Classification of Human Translation and Machine Translation: A Study from the Perspective of Lexical Diversity",
    "authors": [
        {
            "first": "Yingxue",
            "middle": [],
            "last": "Fu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of St",
                "location": {
                    "postCode": "KY16 9SX",
                    "settlement": "Andrews",
                    "country": "UK"
                }
            },
            "email": ""
        },
        {
            "first": "Mark-Jan",
            "middle": [],
            "last": "Nederhof",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of St",
                "location": {
                    "postCode": "KY16 9SX",
                    "settlement": "Andrews",
                    "country": "UK"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "By using a trigram model and fine-tuning a pretrained BERT model for sequence classification, we show that machine translation and human translation can be classified with an accuracy above chance level, which suggests that machine translation and human translation are different in a systematic way. The classification accuracy of machine translation is much higher than of human translation. We show that this may be explained by the difference in lexical diversity between machine translation and human translation. If machine translation has independent patterns from human translation, automatic metrics which measure the deviation of machine translation from human translation may conflate difference with quality. Our experiment with two different types of automatic metrics shows correlation with the result of the classification task. Therefore, we suggest the difference in lexical diversity between machine translation and human translation be given more attention in machine translation evaluation.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "By using a trigram model and fine-tuning a pretrained BERT model for sequence classification, we show that machine translation and human translation can be classified with an accuracy above chance level, which suggests that machine translation and human translation are different in a systematic way. The classification accuracy of machine translation is much higher than of human translation. We show that this may be explained by the difference in lexical diversity between machine translation and human translation. If machine translation has independent patterns from human translation, automatic metrics which measure the deviation of machine translation from human translation may conflate difference with quality. Our experiment with two different types of automatic metrics shows correlation with the result of the classification task. Therefore, we suggest the difference in lexical diversity between machine translation and human translation be given more attention in machine translation evaluation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The initial interest in and support for machine translation (MT) stem from visions of highspeed and high-quality translation of arbitrary texts (Slocum, 1985) , but machine translation proves to be more difficult than initially imagined. In recent years, progress has been made in MT research and development, and it is claimed that MT achieves human parity in some tasks (Wu et al., 2016; Hassan et al., 2018; Popel et al., 2020) . However, these statements are challenged by other researchers and remain open to debate (L\u00e4ubli et al., 2018; Toral et al., 2018; Toral, 2020) .",
                "cite_spans": [
                    {
                        "start": 144,
                        "end": 158,
                        "text": "(Slocum, 1985)",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 372,
                        "end": 389,
                        "text": "(Wu et al., 2016;",
                        "ref_id": "BIBREF31"
                    },
                    {
                        "start": 390,
                        "end": 410,
                        "text": "Hassan et al., 2018;",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 411,
                        "end": 430,
                        "text": "Popel et al., 2020)",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 521,
                        "end": 542,
                        "text": "(L\u00e4ubli et al., 2018;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 543,
                        "end": 562,
                        "text": "Toral et al., 2018;",
                        "ref_id": "BIBREF26"
                    },
                    {
                        "start": 563,
                        "end": 575,
                        "text": "Toral, 2020)",
                        "ref_id": "BIBREF25"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The typical automatic approach to evaluating MT is to compare a machine translated text with a reference translation. The assumption is that the closer a machine translation is to a professional human translation, the better it is (Papineni et al., 2002) . Automatic metrics for MT are developed based on this assumption. Human translation (HT) is treated as gold standard and the deviation from it is transformed into a measure of translation quality of MT.",
                "cite_spans": [
                    {
                        "start": 231,
                        "end": 254,
                        "text": "(Papineni et al., 2002)",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Many studies have shown that translated texts are different from originally written texts (Baroni and Bernardini, 2006; Ilisei et al., 2010) . The typical method used for the identification of translationese is automatic classification of translated texts and originally written texts (Baroni and Bernardini, 2006) . There are some studies that compare translation varieties such as professional and student translations and post-edited MT (Kunilovskaya and Lapshinova-Koltunski, 2019; Toral, 2019; Popovi\u0107, 2020) . While surface linguistic features and simple machine learning techniques are capable of classifying translated texts and originally written texts with high accuracy, it is difficult to use the same method to classify translation varieties, with the accuracy being barely over the chance level (Kunilovskaya and Lapshinova-Koltunski, 2019; Rubino et al., 2016) .",
                "cite_spans": [
                    {
                        "start": 90,
                        "end": 119,
                        "text": "(Baroni and Bernardini, 2006;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 120,
                        "end": 140,
                        "text": "Ilisei et al., 2010)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 285,
                        "end": 314,
                        "text": "(Baroni and Bernardini, 2006)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 440,
                        "end": 485,
                        "text": "(Kunilovskaya and Lapshinova-Koltunski, 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 486,
                        "end": 498,
                        "text": "Toral, 2019;",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 499,
                        "end": 513,
                        "text": "Popovi\u0107, 2020)",
                        "ref_id": "BIBREF17"
                    },
                    {
                        "start": 809,
                        "end": 854,
                        "text": "(Kunilovskaya and Lapshinova-Koltunski, 2019;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 855,
                        "end": 875,
                        "text": "Rubino et al., 2016)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "When comparing translation varieties, MT is used as a translation variety independent of HT or other translation varieties in some studies (Toral, 2019) . Different from the conventional practice of MT evaluation that treats HT as the gold standard, some studies adopt a descriptive approach to comparing MT and HT (Bizzoni et al., 2020; Ahrenberg, 2017; Vanmassenhove et al., 2019) . Among these studies, Bizzoni et al. (2020) find that MT shows independent patterns of translationese and it resembles HT only partly. This implies that MT may be different from HT in a systematic way, and it remains a question as to whether the deviation of MT from HT is a reliable measure of the quality of MT, and whether the current automatic metrics conflate differences between HT and MT with the quality of MT.",
                "cite_spans": [
                    {
                        "start": 139,
                        "end": 152,
                        "text": "(Toral, 2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 315,
                        "end": 337,
                        "text": "(Bizzoni et al., 2020;",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 338,
                        "end": 354,
                        "text": "Ahrenberg, 2017;",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 355,
                        "end": 382,
                        "text": "Vanmassenhove et al., 2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 406,
                        "end": 427,
                        "text": "Bizzoni et al. (2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "According to research by Toral (2019) , translation varieties differ in multiple ways. Based on research by Vanmassenhove et al. (2019) , we focus on lexical diversity in our experiments.",
                "cite_spans": [
                    {
                        "start": 25,
                        "end": 37,
                        "text": "Toral (2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 108,
                        "end": 135,
                        "text": "Vanmassenhove et al. (2019)",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "We try to answer three questions in this study:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Can MT and HT be classified automatically with an accuracy above the chance level?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 In what way does lexical diversity influence the classification result?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "\u2022 Are the results of automatic metrics influenced by the difference in lexical diversity between HT and MT?",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "As our study essentially involves comparing translation varieties, we present an overview of previous studies that compare originally written texts and translations, other translation varieties, and HT and MT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Translated texts show distinctive features which make them different from originally written texts. These features are typically studied under the framework of translationese. Gellerstam (1986) is the first to use this term to refer to the \"fingerprints\" that the source text leaves on the translated text. This notion is developed by Baker, who proposes the idea of universals of translation. As suggested by Baker et al. (1993) , universals of translation are linguistic features that typically occur in translated texts as opposed to originally written texts, and these features are independent of the specific language pairs. Automatic means to distinguish translated texts and originally written texts have been developed and generally achieve high accuracy (Baroni and Bernardini, 2006; Ilisei et al., 2010; Lembersky et al., 2012; Rabinovich and Wintner, 2015) . Meanwhile, computational approaches (Teich, 2003; Volansky et al., 2015) contribute evidence for some translation universals.",
                "cite_spans": [
                    {
                        "start": 176,
                        "end": 193,
                        "text": "Gellerstam (1986)",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 410,
                        "end": 429,
                        "text": "Baker et al. (1993)",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 763,
                        "end": 792,
                        "text": "(Baroni and Bernardini, 2006;",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 793,
                        "end": 813,
                        "text": "Ilisei et al., 2010;",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 814,
                        "end": 837,
                        "text": "Lembersky et al., 2012;",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 838,
                        "end": 867,
                        "text": "Rabinovich and Wintner, 2015)",
                        "ref_id": "BIBREF18"
                    },
                    {
                        "start": 906,
                        "end": 919,
                        "text": "(Teich, 2003;",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 920,
                        "end": 942,
                        "text": "Volansky et al., 2015)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing Originally Written Texts and Translations",
                "sec_num": "2.1"
            },
            {
                "text": "Compared with the considerable amount of research on identifying translationese, the differences between translation varieties are less studied. Rubino et al. (2016) perform the classification between originally written texts and translations as well as between professional and student translations. They use surface features and distortion features which are inspired by quality estimation tasks, and surprisal and complexity features which are derived from information theory. Their experiment shows that originally written texts and professional translations are different mainly in terms of sequences of words, part-of-speech and syntactic tags, and originally written texts are closer to professional translations than to student translations. While the originally written texts and translations can be classified with high accuracy, automatic classification of different translation varieties is a more challenging task. Professional translations and student translations can only be classified with an accuracy barely above 50%.",
                "cite_spans": [
                    {
                        "start": 145,
                        "end": 165,
                        "text": "Rubino et al. (2016)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing Translation Varieties",
                "sec_num": "2.2"
            },
            {
                "text": "This finding is consistent with the result of a study by Kunilovskaya and Lapshinova-Koltunski (2019) . While morpho-syntactic features can be used to distinguish translations from nontranslations with high accuracy, the performance of the same algorithm on classifying professional and student translations only slightly exceeds the chance level.",
                "cite_spans": [
                    {
                        "start": 57,
                        "end": 101,
                        "text": "Kunilovskaya and Lapshinova-Koltunski (2019)",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing Translation Varieties",
                "sec_num": "2.2"
            },
            {
                "text": "The differences of translations authored by human translators with different expertise and native languages are studied by Popovi\u0107 (2020) . Similar to other studies on distinguishing originally written texts from translated texts or comparing translation varieties, surface text features at word and part-of-speech levels are used. It concludes by suggesting that detailed information about the reference translation including translator information be provided in the scenario of MT evaluation.",
                "cite_spans": [
                    {
                        "start": 123,
                        "end": 137,
                        "text": "Popovi\u0107 (2020)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing Translation Varieties",
                "sec_num": "2.2"
            },
            {
                "text": "Toral (2019) compares post-edited MT with HT in terms of lexical variety, lexical density, sentence length ratio and part-of-speech sequences. The research shows that post-edited MT has lower lexical diversity and lower lexical density than HT, which is linked to the translation universal of simplification, and post-edited MT is more normalized and has greater interference from the source text (in terms of sentence length and partof-speech sequences) than HT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing Translation Varieties",
                "sec_num": "2.2"
            },
            {
                "text": "While the number of studies on comparing translation varieties is much smaller than on the identification of translationese, there are even fewer studies that explore the differences between MT and HT.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing MT and HT",
                "sec_num": "2.3"
            },
            {
                "text": "Ahrenberg 2017compares MT and HT by means of automatically extracted features and statistics obtained through manual examination. By comparing the shifts (i.e. deviation from literal translation) and word order changes, he finds that HT contains twice as many word order changes. Meanwhile, an analysis of the number and types of edits required to give the machine translated text publishable quality is made. He argues that MT is likely to retain interference from the source text even after post-editing, and the machine translated text is more similar to the source text than the human translated text in many ways, including sentence length, information flow and structure.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing MT and HT",
                "sec_num": "2.3"
            },
            {
                "text": "Research by Vanmassenhove et al. (2019) shows another aspect where MT differs from HT. Three MT systems based on different architectures are trained. The lexical diversity of the translations of the MT systems is measured with three metrics including type/token ratio, Yule's K, and measure of textual lexical diversity (MTLD). It is found that the output of neural machine translation (NMT) systems has a loss of lexical diversity compared with the human translated text. The reason for this phenomenon is that the advantage of NMT systems over statistical machine translation (SMT) systems in terms of learning over the entire sequence is obtained at the expense of discarding less frequently occurring words or morphological forms. This finding is consistent with the research by Toral (2019) , who observes that the lexical variety of post-edited MT is lower than of HT and the lexical variety of MT is lower than of post-edited MT, which is attributed to the tendency of MT to choose words used more frequently in the training data (Farrell, 2018) .",
                "cite_spans": [
                    {
                        "start": 12,
                        "end": 39,
                        "text": "Vanmassenhove et al. (2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 783,
                        "end": 795,
                        "text": "Toral (2019)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1037,
                        "end": 1052,
                        "text": "(Farrell, 2018)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing MT and HT",
                "sec_num": "2.3"
            },
            {
                "text": "Bizzoni et al. (2020) study the differences between HT and MT in relation to the original texts. Part-of-speech perplexity and a syntactic distance metric are used to measure the differences between translations in written and spoken forms and produced by different types of MT systems. It is found that MT shows structural translationese, but the translationese of MT follows independent patterns that need further understanding.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Comparing MT and HT",
                "sec_num": "2.3"
            },
            {
                "text": "We adopt two approaches for classifying MT and HT: developing a trigram language model with Witten-Bell smoothing and fine-tuning a pretrained BERT model for sequence classification from the Transformers library (Wolf et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 212,
                        "end": 231,
                        "text": "(Wolf et al., 2020)",
                        "ref_id": "BIBREF30"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experiment",
                "sec_num": "3"
            },
            {
                "text": "The dataset is from the News commentary parallel corpus v13 (Tiedemann, 2012) provided in the WMT2018 shared task 1 . We use Google Translate 2 to obtain the corresponding machine translation.",
                "cite_spans": [
                    {
                        "start": 60,
                        "end": 77,
                        "text": "(Tiedemann, 2012)",
                        "ref_id": "BIBREF23"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "The language pairs used in the experiment, the number of sentences for each language pair and the average sentence length for HT and MT are presented in Table 1 . Table 2 it is clear that HT and MT can be classified automatically with an accuracy above the chance level. However, it is noticeable that MT can be classified with higher accuracy than HT.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 153,
                        "end": 160,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 163,
                        "end": 170,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "Based on research by Vanmassenhove et al. (2019) and Toral (2019) , this imbalance in classification accuracy may be partly explained by the higher lexical diversity of HT, so that p HT is a probability distribution over sentences composed of a larger set of words than in the case of p M T , thereby typically assigning a lower probability to any particular sentence, regardless of whether it is from MT or from HT.",
                "cite_spans": [
                    {
                        "start": 21,
                        "end": 48,
                        "text": "Vanmassenhove et al. (2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 53,
                        "end": 65,
                        "text": "Toral (2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "From Table 1 , it can be seen that the difference in average sentence length between MT and HT is only around 0.5. Therefore, we assume that the influence of sentence length is not significant in this study.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "3.1"
            },
            {
                "text": "We apply the BERT model on the same dataset, which is divided into training, test and validation sets by the ratio of 70%, 10% and 20%. The sentences are padded to the maximum length of sentences in the dataset. We find that the pretrained BERT model for sequence classification achieves higher accuracy and lower loss in the first epoch. The result is shown in Table 3 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 362,
                        "end": 369,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT Model",
                "sec_num": null
            },
            {
                "text": "From Table 3 , it can be seen that fine-tuning the pretrained BERT model for sequence classification can achieve higher accuracy for this task than the trigram model. Moreover, we can see the same pattern of imbalance in classification accuracy between MT and HT. Similar to the case of the trigram model, we hypothesize that it is because greater lexical diversity makes HT more difficult to classify correctly than MT. Table 3 : Classification accuracy of the BERT model.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 3",
                        "ref_id": null
                    },
                    {
                        "start": 421,
                        "end": 428,
                        "text": "Table 3",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "BERT Model",
                "sec_num": null
            },
            {
                "text": "To investigate further whether differences in lexical diversity could be the reason for the observed imbalance in the classification accuracy of MT and HT, we manipulate the lexical diversity of the two.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Changing Lexical Diversity",
                "sec_num": "3.3"
            },
            {
                "text": "As the lexical diversity of HT is generally higher than of MT (Vanmassenhove et al., 2019; Toral, 2019) , we reduce the lexical diversity of HT until it becomes close to or lower than MT, and for comparison, we also reduce the lexical diversity of MT.",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 90,
                        "text": "(Vanmassenhove et al., 2019;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 91,
                        "end": 103,
                        "text": "Toral, 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Changing Lexical Diversity",
                "sec_num": "3.3"
            },
            {
                "text": "Our general strategy of reducing lexical diversity is to replace rare words with words that are close to them in a vector space. First, we find rare words based on the frequency of lemmas in the corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method of Changing Lexical Diversity",
                "sec_num": null
            },
            {
                "text": "Since there are many numerals and proper names and it is difficult to find meaningful candidates to replace them in the vector space, we set token.like num and token.is oov in spaCy processing 3 to false. Among the remaining lemmas, those lemmas whose frequency is lower than a threshold will be considered to be rare words. We found that setting the frequency threshold to two is effective in reducing the lexical diversity. Second, we choose words whose vectors are close to the rare words from the pretrained GloVe embeddings (Pennington et al., 2014) , which are computationally less expensive than contextualized word embeddings like BERT. We found that the words which are closest to the rare words are not necessarily the optimal candidates in terms of part-of-speech or meaning, and so we choose the top three most similar words for each rare word. We convert the GloVe vectors into word2vec for-mat with the gensim glove2word2vec API 4 and set restrict vocab to 30000 in the most similar function 5 so that the search for the most similar words is limited to the top 30000 words in the pretrained embeddings. The vocabulary size 30000 was determined empirically.",
                "cite_spans": [
                    {
                        "start": 529,
                        "end": 554,
                        "text": "(Pennington et al., 2014)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method of Changing Lexical Diversity",
                "sec_num": null
            },
            {
                "text": "After this step, we apply a check on the finegrained tags of the rare words and the fine-grained tags of the respective three candidates, the tags being obtained with spaCy 6 and containing more information than the coarse-grained part-of-speech tags from the Universal POS tag set 7 . The candidates with the same tags as the rare words will be chosen. Where there is more than one matched candidate, only the first is chosen, and when there are no matched candidates after the check, the rare words will not be replaced. In this way, we obtain texts with modified lexical diversity. For ease of reference, modified HT texts will be referred to as HT modf , modified MT texts will be referred to as M T modf , original HT texts as HT orig and original MT texts as M T orig.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method of Changing Lexical Diversity",
                "sec_num": null
            },
            {
                "text": "To compute the lexical diversity of the texts, based on research by McCarthy and Jarvis 2010and Vanmassenhove et al. (2019) , we choose the measure of textual lexical diversity (MTLD) (Mc-Carthy, 2005) , which is reasonably robust to text length difference. We refer those interested in the specific computation and statistical significance of MTLD to McCarthy and Jarvis (2010). The lexical diversity of the texts is presented in Table 4 : MTLD of the original texts and of the modified texts.",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 123,
                        "text": "Vanmassenhove et al. (2019)",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 184,
                        "end": 201,
                        "text": "(Mc-Carthy, 2005)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 431,
                        "end": 438,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Method of Changing Lexical Diversity",
                "sec_num": null
            },
            {
                "text": "From Table 4 , it can be seen that the MTLD values of HT texts are generally higher than of MT texts, which is consistent with the result of previous studies (Vanmassenhove et al., 2019 (Vanmassenhove et al., , 2021 Toral, 2019) . With our method, the difference in MTLD value between MT and HT texts is reduced.",
                "cite_spans": [
                    {
                        "start": 158,
                        "end": 185,
                        "text": "(Vanmassenhove et al., 2019",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 186,
                        "end": 215,
                        "text": "(Vanmassenhove et al., , 2021",
                        "ref_id": "BIBREF27"
                    },
                    {
                        "start": 216,
                        "end": 228,
                        "text": "Toral, 2019)",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 12,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Method of Changing Lexical Diversity",
                "sec_num": null
            },
            {
                "text": "We conduct another set of binary classification experiments on the original and modified MT and HT texts paired in different ways. For example, \"M T modf & HT modf \" in the following tables means that the binary classification is performed on the modified MT text and the modified HT text. The result of the trigram model is shown in Table 5. For comparison, the results from Table 2 are repeated in the lines M T orig & HT orig. Table 5 : Binary classification of MT and HT by the trigram model under different combinations of MT and HT texts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 376,
                        "end": 383,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 430,
                        "end": 437,
                        "text": "Table 5",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Result of Trigram Model",
                "sec_num": null
            },
            {
                "text": "From Table 5 in combination with Table 4 , we can see that when the difference in lexical diversity between MT and HT becomes smaller, the imbalance in classification accuracy is reduced, and the classification accuracy of MT goes down while the classification accuracy of HT goes up.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 5,
                        "end": 40,
                        "text": "Table 5 in combination with Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "CS-EN",
                "sec_num": null
            },
            {
                "text": "Since the lexical diversity of HT is generally higher than MT, we conduct an experiment where the lexical diversity of HT is significantly lower than MT, and the result is shown in the lines M T orig & HT modf . Under this condition, the classification accuracy of MT is much lower than HT. In this way, we reverse the previously observed trend that the classification accuracy of MT is higher than HT. Note that the overall classification accuracy does not change much in this experiment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CS-EN",
                "sec_num": null
            },
            {
                "text": "For fine-tuning the pretrained BERT model for sequence classification, similar experiments were done, with different combinations of MT and HT texts. Accuracies are presented in Table 6 . Table 6 : Binary classification of MT and HT by the BERT model under different combinations of MT and HT texts.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 178,
                        "end": 185,
                        "text": "Table 6",
                        "ref_id": null
                    },
                    {
                        "start": 188,
                        "end": 195,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Experimental Result of BERT Model",
                "sec_num": null
            },
            {
                "text": "Similar to the trigram model, the classification accuracy of HT goes up in the case of CS-EN and DE-EN and the classification accuracy of MT goes down a little, when the lexical diversity of MT and of HT are closer, as shown in the lines M T modf & HT modf , and when the lexical diversity of HT is much lower than MT, the classification accuracy of HT goes up, as shown in the lines M T orig & HT modf . However, changing the difference in lexical diversity does not tend to decrease the classification accuracy of MT for the BERT model. Recall that with the trigram model, the classification accuracy of HT increases while the classification accuracy of MT decreases. In contrast, with the BERT model, even when the lexical diversity of MT is much higher than HT, the overall classification accuracy and the separate classification accuracies of MT and HT all go up. The difference of the two models in terms of the classification accuracy of MT may be explained by the fact that the pretrained BERT model for sequence classification calculates cross-entropy loss for the classification task 8 while the trigram model results from relative frequency estimation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CS-EN",
                "sec_num": null
            },
            {
                "text": "We hypothesize that the performance of the two models in the binary classification task may be reflected in the result of MT metrics that are based on n-gram matching or that use contexualized embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic Metrics",
                "sec_num": "3.4"
            },
            {
                "text": "Since BLEU is a commonly used metric based on n-gram matching, we test the performance of BLEU on the dataset to see if the difference in lexical diversity between MT and HT would influence the result. We calculate the corpus-level BLEU score for MT, as implemented in NLTK 9 , using HT as reference. The result is presented in Table 7 : BLEU score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 328,
                        "end": 335,
                        "text": "Table 7",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Metrics",
                "sec_num": "3.4"
            },
            {
                "text": "As can be seen from Table 7 , when the lexical diversity of MT is closest to HT, as shown by the column M T modf & HT modf , the MT BLEU score is the highest. When the lexical diversity of the reference is much lower than MT, as is the case in the column M T orig & HT modf , the MT BLEU score is the lowest. Much as in the discussion of the results of the trigram model, the difference in lexical diversity between MT and HT is a factor that needs to be taken into account when an n-gram matching based metric like BLEU is used for MT evaluation.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 20,
                        "end": 27,
                        "text": "Table 7",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Metrics",
                "sec_num": "3.4"
            },
            {
                "text": "The majority of automatic MT metrics developed in recent years such as BERTScore (Zhang et al., 2019) and Yisi (Lo, 2019) adopt contextualized embeddings. Based on accessibility and performance, we choose MoverScore (Zhao et al., 2019) as an example of a metric that uses BERT representations. Since MoverScore is not a corpus-level metric, we calculate the average sentence-level score. The result is presented in Ta Table 8 : MoverScore result for MT.",
                "cite_spans": [
                    {
                        "start": 81,
                        "end": 101,
                        "text": "(Zhang et al., 2019)",
                        "ref_id": "BIBREF32"
                    },
                    {
                        "start": 111,
                        "end": 121,
                        "text": "(Lo, 2019)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 216,
                        "end": 235,
                        "text": "(Zhao et al., 2019)",
                        "ref_id": "BIBREF33"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 415,
                        "end": 417,
                        "text": "Ta",
                        "ref_id": null
                    },
                    {
                        "start": 418,
                        "end": 425,
                        "text": "Table 8",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Metrics",
                "sec_num": "3.4"
            },
            {
                "text": "The MoverScore result in Table 8 shows a different pattern from the BLEU scores. The scores are basically inversely proportional to the overall accuracy of the binary classification task shown in Table 6 . As the difference in MoverScore results under different combinations of MT and HT texts is small, more work is needed.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 25,
                        "end": 32,
                        "text": "Table 8",
                        "ref_id": null
                    },
                    {
                        "start": 196,
                        "end": 203,
                        "text": "Table 6",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Metrics",
                "sec_num": "3.4"
            },
            {
                "text": "With the above experiments, we have shown that MT and HT can be classified with an accuracy above the chance level. The trigram model does not involve a machine learning algorithm but is capable of capturing the differences between MT and HT. By fine-tuning the pretrained BERT model for sequence classification, we obtain a higher accuracy for this task.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "4"
            },
            {
                "text": "Similar to the identification of translationese, we may claim that MT and HT belong to different translation varieties. The result serves as supporting evidence for the study by Bizzoni et al. (2020) , which maintains that MT only resembles HT in part and often follows independent patterns. This finding calls into question the longstanding assumption in MT evaluation that the more similar an MT output is to a professional human translation, the better it is. If MT and HT are two translation varieties and have different patterns, it leaves room for doubt as to the legitimacy of evaluating MT by its similarity to HT.",
                "cite_spans": [
                    {
                        "start": 178,
                        "end": 199,
                        "text": "Bizzoni et al. (2020)",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "4"
            },
            {
                "text": "Moreover, there is a noticeable imbalance in the classification accuracy of HT and MT. For the trigram model, while more than 70% of the MT test sentences can be classified correctly, fewer than 60% of the HT test sentences are classified correctly. This imbalance also exists in the experiment with the BERT model. Generally speaking, it is easier to correctly classify MT sentences than HT sentences.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "4"
            },
            {
                "text": "Based on previous studies and analysis from the probabilistic perspective, we consider lexical diversity as one of the major reasons for this imbalance in classification accuracy. We change the lexical diversity of the MT and HT texts and conduct another set of experiments with the same models. With the trigram model, if the difference in lexical diversity between MT and HT decreases, the imbalance in classification accuracy between the two is reduced, and we can reverse this imbalance in classification accuracy when the lexical diversity of MT is higher than HT. The result of the experiment with the BERT model shows a different pattern. An increase in classification accuracy of HT is accompanied by an increase in the classification accuracy of MT. This may be explained by the different ways of performing binary classification by the two models. The performance of automatic MT metrics based on n-gram matching, represented by BLEU in this study, and automatic metrics using BERT representations, such as MoverScore, is related to the result of the binary classification task with the two kinds of models. When the lexical diversity of HT is lower than MT, the MT BLEU score is the lowest and when the lexical diversity of HT is very close to MT, the MT BLEU score is the highest. The evaluation results given by MoverScore are basically inversely proportional to the classification accuracy of the BERT model. Therefore, we suggest the difference in lexical diversity between MT and the reference be given more attention in MT evaluation with automatic metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "4"
            },
            {
                "text": "We are aware that there are other possible factors that may account for the phenomenon that HT is more likely to be classified as MT than the other way around. In our experiment, we only manipulate one factor. In future work, we intend to further study the independent patterns of MT compared with HT and investigate if the differences between MT and HT are related to the quality of MT. As differences in lexical diversity may influence automatic metrics for MT evaluation in different ways, we plan to explore this phenomenon with other metrics, such as COMET (Rei et al., 2020) .",
                "cite_spans": [
                    {
                        "start": 562,
                        "end": 580,
                        "text": "(Rei et al., 2020)",
                        "ref_id": "BIBREF19"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion and Future Work",
                "sec_num": "4"
            },
            {
                "text": "http://www.statmt.org/wmt18/translation-task.html 2 https://translate.google.co.uk",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://spacy.io",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://radimrehurek.com/gensim/scripts/ glove2word2vec.html 5 https://radimrehurek.com/gensim/models/word2vec. html 6 https://spacy.io/api/token#attributes 7 https://universaldependencies.org/docs/u/pos/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "https://github.com/huggingface/transformers/blob/ 9aeacb58bab321bc21c24bbdf7a24efdccb1d426/src/ transformers/modeling bert.py",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Comparing machine translation and human translation: A case study",
                "authors": [
                    {
                        "first": "Lars",
                        "middle": [],
                        "last": "Ahrenberg",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "RANLP 2017: The First Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT)",
                "volume": "",
                "issue": "",
                "pages": "21--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lars Ahrenberg. 2017. Comparing machine translation and human translation: A case study. In RANLP 2017: The First Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT), pages 21-28. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Corpus linguistics and translation studies: Implications and applications. Text and Technology: In honour of John Sinclair",
                "authors": [
                    {
                        "first": "Mona",
                        "middle": [],
                        "last": "Baker",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "",
                "volume": "233",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Mona Baker et al. 1993. Corpus linguistics and transla- tion studies: Implications and applications. Text and Technology: In honour of John Sinclair, 233:250.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "A new approach to the study of translationese: Machinelearning the difference between original and translated text",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    },
                    {
                        "first": "Silvia",
                        "middle": [],
                        "last": "Bernardini",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Literary and Linguistic Computing",
                "volume": "21",
                "issue": "3",
                "pages": "259--274",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Baroni and Silvia Bernardini. 2006. A new approach to the study of translationese: Machine- learning the difference between original and trans- lated text. Literary and Linguistic Computing, 21(3):259-274.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "How human is machine translationese? comparing human and machine translations of text and speech",
                "authors": [
                    {
                        "first": "Yuri",
                        "middle": [],
                        "last": "Bizzoni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Tom",
                        "suffix": ""
                    },
                    {
                        "first": "Cristina",
                        "middle": [],
                        "last": "Juzek",
                        "suffix": ""
                    },
                    {
                        "first": "Koel",
                        "middle": [],
                        "last": "Espa\u00f1a-Bonet",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Dutta Chowdhury",
                        "suffix": ""
                    },
                    {
                        "first": "Elke",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Teich",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 17th International Conference on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "280--290",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.iwslt-1.34"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yuri Bizzoni, Tom S Juzek, Cristina Espa\u00f1a-Bonet, Koel Dutta Chowdhury, Josef van Genabith, and Elke Teich. 2020. How human is machine transla- tionese? comparing human and machine translations of text and speech. In Proceedings of the 17th Inter- national Conference on Spoken Language Transla- tion, pages 280-290, Online. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Machine translation markers in post-edited machine translation output",
                "authors": [
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Farrell",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 40th Conference Translating and the Computer",
                "volume": "",
                "issue": "",
                "pages": "50--59",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Michael Farrell. 2018. Machine translation markers in post-edited machine translation output. In Pro- ceedings of the 40th Conference Translating and the Computer, pages 50-59.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Translationese in swedish novels translated from english",
                "authors": [
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Gellerstam",
                        "suffix": ""
                    }
                ],
                "year": 1986,
                "venue": "Translation Studies in Scandinavia",
                "volume": "1",
                "issue": "",
                "pages": "88--95",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martin Gellerstam. 1986. Translationese in swedish novels translated from english. Translation Studies in Scandinavia, 1:88-95.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Achieving human parity on automatic chinese to english news translation",
                "authors": [
                    {
                        "first": "Hany",
                        "middle": [],
                        "last": "Hassan",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Aue",
                        "suffix": ""
                    },
                    {
                        "first": "Chang",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Vishal",
                        "middle": [],
                        "last": "Chowdhary",
                        "suffix": ""
                    },
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Christian",
                        "middle": [],
                        "last": "Federmann",
                        "suffix": ""
                    },
                    {
                        "first": "Xuedong",
                        "middle": [],
                        "last": "Huang",
                        "suffix": ""
                    },
                    {
                        "first": "Marcin",
                        "middle": [],
                        "last": "Junczys-Dowmunt",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Lewis",
                        "suffix": ""
                    },
                    {
                        "first": "Mu",
                        "middle": [],
                        "last": "Li",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1803.05567"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Feder- mann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, et al. 2018. Achieving hu- man parity on automatic chinese to english news translation. arXiv preprint arXiv:1803.05567.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Identification of translationese: A machine learning approach",
                "authors": [
                    {
                        "first": "Iustina",
                        "middle": [],
                        "last": "Ilisei",
                        "suffix": ""
                    },
                    {
                        "first": "Diana",
                        "middle": [],
                        "last": "Inkpen",
                        "suffix": ""
                    },
                    {
                        "first": "Gloria",
                        "middle": [
                            "Corpas"
                        ],
                        "last": "Pastor",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Mitkov",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "503--511",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Iustina Ilisei, Diana Inkpen, Gloria Corpas Pastor, and Ruslan Mitkov. 2010. Identification of trans- lationese: A machine learning approach. In In- ternational Conference on Intelligent Text Process- ing and Computational Linguistics, pages 503-511. Springer.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Translationese features as indicators of quality in english-russian human translation",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Kunilovskaya",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Lapshinova-Koltunski",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019)",
                "volume": "",
                "issue": "",
                "pages": "47--56",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Kunilovskaya and Ekaterina Lapshinova- Koltunski. 2019. Translationese features as indicators of quality in english-russian human translation. In Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019), pages 47-56.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Has machine translation achieved human parity? a case for document-level evaluation",
                "authors": [
                    {
                        "first": "Samuel",
                        "middle": [],
                        "last": "L\u00e4ubli",
                        "suffix": ""
                    },
                    {
                        "first": "Rico",
                        "middle": [],
                        "last": "Sennrich",
                        "suffix": ""
                    },
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Volk",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "4791--4796",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Samuel L\u00e4ubli, Rico Sennrich, and Martin Volk. 2018. Has machine translation achieved human parity? a case for document-level evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4791-4796.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Language models for machine translation: Original vs",
                "authors": [
                    {
                        "first": "Gennadi",
                        "middle": [],
                        "last": "Lembersky",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Ordan",
                        "suffix": ""
                    },
                    {
                        "first": "Shuly",
                        "middle": [],
                        "last": "Wintner",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Computational Linguistics",
                "volume": "38",
                "issue": "4",
                "pages": "799--825",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Gennadi Lembersky, Noam Ordan, and Shuly Wint- ner. 2012. Language models for machine transla- tion: Original vs. translated texts. Computational Linguistics, 38(4):799-825.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Yisi-a unified semantic mt quality evaluation and estimation metric for languages with different levels of available resources",
                "authors": [
                    {
                        "first": "Chi-Kiu",
                        "middle": [],
                        "last": "Lo",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the Fourth Conference on Machine Translation",
                "volume": "2",
                "issue": "",
                "pages": "507--513",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Chi-kiu Lo. 2019. Yisi-a unified semantic mt quality evaluation and estimation metric for languages with different levels of available resources. In Proceed- ings of the Fourth Conference on Machine Transla- tion (Volume 2: Shared Task Papers, Day 1), pages 507-513.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD)",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Philip",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Mccarthy",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philip M McCarthy. 2005. An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD). Ph.D. thesis, The University of Memphis.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Mtld, vocdd, and hd-d: A validation study of sophisticated approaches to lexical diversity assessment",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Philip",
                        "suffix": ""
                    },
                    {
                        "first": "Scott",
                        "middle": [],
                        "last": "Mccarthy",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Jarvis",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Behavior research methods",
                "volume": "42",
                "issue": "",
                "pages": "381--392",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Philip M McCarthy and Scott Jarvis. 2010. Mtld, vocd- d, and hd-d: A validation study of sophisticated ap- proaches to lexical diversity assessment. Behavior research methods, 42(2):381-392.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "BLEU: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "Kishore",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "Salim",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "Todd",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Jing",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311-318.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "GloVe: Global vectors for word representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "1532--1543",
                "other_ids": {
                    "DOI": [
                        "10.3115/v1/D14-1162"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals",
                "authors": [
                    {
                        "first": "Martin",
                        "middle": [],
                        "last": "Popel",
                        "suffix": ""
                    },
                    {
                        "first": "Marketa",
                        "middle": [],
                        "last": "Tomkova",
                        "suffix": ""
                    },
                    {
                        "first": "Jakub",
                        "middle": [],
                        "last": "Tomek",
                        "suffix": ""
                    },
                    {
                        "first": "\u0141ukasz",
                        "middle": [],
                        "last": "Kaiser",
                        "suffix": ""
                    },
                    {
                        "first": "Jakob",
                        "middle": [],
                        "last": "Uszkoreit",
                        "suffix": ""
                    },
                    {
                        "first": "Ond\u0159ej",
                        "middle": [],
                        "last": "Bojar",
                        "suffix": ""
                    },
                    {
                        "first": "Zden\u011bk\u017eabokrtsk\u1ef3",
                        "middle": [],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Nature communications",
                "volume": "11",
                "issue": "1",
                "pages": "1--15",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Martin Popel, Marketa Tomkova, Jakub Tomek, \u0141ukasz Kaiser, Jakob Uszkoreit, Ond\u0159ej Bojar, and Zden\u011bk\u017dabokrtsk\u1ef3. 2020. Transforming machine translation: a deep learning system reaches news translation quality comparable to human profession- als. Nature communications, 11(1):1-15.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "On the differences between human translations",
                "authors": [
                    {
                        "first": "Maja",
                        "middle": [],
                        "last": "Popovi\u0107",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "365--374",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maja Popovi\u0107. 2020. On the differences between hu- man translations. In Proceedings of the 22nd An- nual Conference of the European Association for Machine Translation, pages 365-374.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Unsupervised identification of translationese",
                "authors": [
                    {
                        "first": "Ella",
                        "middle": [],
                        "last": "Rabinovich",
                        "suffix": ""
                    },
                    {
                        "first": "Shuly",
                        "middle": [],
                        "last": "Wintner",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Transactions of the Association for Computational Linguistics",
                "volume": "3",
                "issue": "",
                "pages": "419--432",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ella Rabinovich and Shuly Wintner. 2015. Unsuper- vised identification of translationese. Transactions of the Association for Computational Linguistics, 3:419-432.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "COMET: A neural framework for MT evaluation",
                "authors": [
                    {
                        "first": "Ricardo",
                        "middle": [],
                        "last": "Rei",
                        "suffix": ""
                    },
                    {
                        "first": "Craig",
                        "middle": [],
                        "last": "Stewart",
                        "suffix": ""
                    },
                    {
                        "first": "Ana",
                        "middle": [
                            "C"
                        ],
                        "last": "Farinha",
                        "suffix": ""
                    },
                    {
                        "first": "Alon",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "2685--2702",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-main.213"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. 2020. COMET: A neural framework for MT evaluation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro- cessing (EMNLP), pages 2685-2702, Online. Asso- ciation for Computational Linguistics.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Information density and quality estimation features as translationese indicators for human translation classification",
                "authors": [
                    {
                        "first": "Raphael",
                        "middle": [],
                        "last": "Rubino",
                        "suffix": ""
                    },
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Lapshinova-Koltunski",
                        "suffix": ""
                    },
                    {
                        "first": "Josef",
                        "middle": [],
                        "last": "Van Genabith",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies",
                "volume": "",
                "issue": "",
                "pages": "960--970",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Raphael Rubino, Ekaterina Lapshinova-Koltunski, and Josef Van Genabith. 2016. Information density and quality estimation features as translationese indica- tors for human translation classification. In Pro- ceedings of the 2016 conference of the North Ameri- can chapter of the association for computational lin- guistics: Human language technologies, pages 960- 970.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "A survey of machine translation: Its history, current status and future prospects",
                "authors": [
                    {
                        "first": "Jonathan",
                        "middle": [],
                        "last": "Slocum",
                        "suffix": ""
                    }
                ],
                "year": 1985,
                "venue": "Computational linguistics",
                "volume": "11",
                "issue": "1",
                "pages": "1--17",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jonathan Slocum. 1985. A survey of machine transla- tion: Its history, current status and future prospects. Computational linguistics, 11(1):1-17.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Cross-linguistic variation in system and text: A methodology for the investigation of translations and comparable texts",
                "authors": [
                    {
                        "first": "Elke",
                        "middle": [],
                        "last": "Teich",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "5",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Elke Teich. 2003. Cross-linguistic variation in sys- tem and text: A methodology for the investigation of translations and comparable texts, volume 5. Wal- ter de Gruyter.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Parallel data, tools and interfaces in OPUS",
                "authors": [
                    {
                        "first": "J\u00f6rg",
                        "middle": [],
                        "last": "Tiedemann",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "LREC",
                "volume": "2012",
                "issue": "",
                "pages": "2214--2218",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J\u00f6rg Tiedemann. 2012. Parallel data, tools and in- terfaces in OPUS. In LREC, volume 2012, pages 2214-2218.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Post-editese: an exacerbated translationese",
                "authors": [
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Toral",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of Machine Translation Summit XVII",
                "volume": "1",
                "issue": "",
                "pages": "273--281",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antonio Toral. 2019. Post-editese: an exacerbated translationese. In Proceedings of Machine Transla- tion Summit XVII Volume 1: Research Track, pages 273-281.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Reassessing claims of human parity and super-human performance in machine translation at wmt 2019",
                "authors": [
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Toral",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "185--194",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antonio Toral. 2020. Reassessing claims of human parity and super-human performance in machine translation at wmt 2019. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 185-194.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Attaining the unattainable? reassessing claims of human parity in neural machine translation",
                "authors": [
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "Toral",
                        "suffix": ""
                    },
                    {
                        "first": "Sheila",
                        "middle": [],
                        "last": "Castilho",
                        "suffix": ""
                    },
                    {
                        "first": "Ke",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Third Conference on Machine Translation: Research Papers",
                "volume": "",
                "issue": "",
                "pages": "113--123",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way. 2018. Attaining the unattainable? reassess- ing claims of human parity in neural machine trans- lation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 113- 123.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "Machine translationese: Effects of algorithmic bias on linguistic complexity in machine translation",
                "authors": [
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Vanmassenhove",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitar",
                        "middle": [],
                        "last": "Shterionov",
                        "suffix": ""
                    },
                    {
                        "first": "Matthew",
                        "middle": [],
                        "last": "Gwilliam",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
                "volume": "",
                "issue": "",
                "pages": "2203--2213",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eva Vanmassenhove, Dimitar Shterionov, and Matthew Gwilliam. 2021. Machine translationese: Effects of algorithmic bias on linguistic complexity in machine translation. In Proceedings of the 16th Conference of the European Chapter of the Association for Com- putational Linguistics: Main Volume, pages 2203- 2213, Online. Association for Computational Lin- guistics.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "Lost in translation: Loss and decay of linguistic richness in machine translation",
                "authors": [
                    {
                        "first": "Eva",
                        "middle": [],
                        "last": "Vanmassenhove",
                        "suffix": ""
                    },
                    {
                        "first": "Dimitar",
                        "middle": [],
                        "last": "Shterionov",
                        "suffix": ""
                    },
                    {
                        "first": "Andy",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of Machine Translation Summit XVII",
                "volume": "1",
                "issue": "",
                "pages": "222--232",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eva Vanmassenhove, Dimitar Shterionov, and Andy Way. 2019. Lost in translation: Loss and decay of linguistic richness in machine translation. In Pro- ceedings of Machine Translation Summit XVII Vol- ume 1: Research Track, pages 222-232, Dublin, Ireland. European Association for Machine Trans- lation.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "On the features of translationese. Digital Scholarship in the Humanities",
                "authors": [
                    {
                        "first": "Vered",
                        "middle": [],
                        "last": "Volansky",
                        "suffix": ""
                    },
                    {
                        "first": "Noam",
                        "middle": [],
                        "last": "Ordan",
                        "suffix": ""
                    },
                    {
                        "first": "Shuly",
                        "middle": [],
                        "last": "Wintner",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "",
                "volume": "30",
                "issue": "",
                "pages": "98--118",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Vered Volansky, Noam Ordan, and Shuly Wintner. 2015. On the features of translationese. Digital Scholarship in the Humanities, 30(1):98-118.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "Transformers: State-of-the-art natural language processing",
                "authors": [
                    {
                        "first": "Thomas",
                        "middle": [],
                        "last": "Wolf",
                        "suffix": ""
                    },
                    {
                        "first": "Lysandre",
                        "middle": [],
                        "last": "Debut",
                        "suffix": ""
                    },
                    {
                        "first": "Victor",
                        "middle": [],
                        "last": "Sanh",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Chaumond",
                        "suffix": ""
                    },
                    {
                        "first": "Clement",
                        "middle": [],
                        "last": "Delangue",
                        "suffix": ""
                    },
                    {
                        "first": "Anthony",
                        "middle": [],
                        "last": "Moi",
                        "suffix": ""
                    },
                    {
                        "first": "Pierric",
                        "middle": [],
                        "last": "Cistac",
                        "suffix": ""
                    },
                    {
                        "first": "Tim",
                        "middle": [],
                        "last": "Rault",
                        "suffix": ""
                    },
                    {
                        "first": "Remi",
                        "middle": [],
                        "last": "Louf",
                        "suffix": ""
                    },
                    {
                        "first": "Morgan",
                        "middle": [],
                        "last": "Funtowicz",
                        "suffix": ""
                    },
                    {
                        "first": "Joe",
                        "middle": [],
                        "last": "Davison",
                        "suffix": ""
                    },
                    {
                        "first": "Sam",
                        "middle": [],
                        "last": "Shleifer",
                        "suffix": ""
                    },
                    {
                        "first": "Clara",
                        "middle": [],
                        "last": "Patrick Von Platen",
                        "suffix": ""
                    },
                    {
                        "first": "Yacine",
                        "middle": [],
                        "last": "Ma",
                        "suffix": ""
                    },
                    {
                        "first": "Julien",
                        "middle": [],
                        "last": "Jernite",
                        "suffix": ""
                    },
                    {
                        "first": "Canwen",
                        "middle": [],
                        "last": "Plu",
                        "suffix": ""
                    },
                    {
                        "first": "Teven",
                        "middle": [
                            "Le"
                        ],
                        "last": "Xu",
                        "suffix": ""
                    },
                    {
                        "first": "Sylvain",
                        "middle": [],
                        "last": "Scao",
                        "suffix": ""
                    },
                    {
                        "first": "Mariama",
                        "middle": [],
                        "last": "Gugger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Drame",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
                "volume": "",
                "issue": "",
                "pages": "38--45",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/2020.emnlp-demos.6"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans- formers: State-of-the-art natural language process- ing. In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF31": {
                "ref_id": "b31",
                "title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
                "authors": [
                    {
                        "first": "Yonghui",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Mike",
                        "middle": [],
                        "last": "Schuster",
                        "suffix": ""
                    },
                    {
                        "first": "Zhifeng",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "Mohammad",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    },
                    {
                        "first": "Wolfgang",
                        "middle": [],
                        "last": "Norouzi",
                        "suffix": ""
                    },
                    {
                        "first": "Maxim",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    },
                    {
                        "first": "Yuan",
                        "middle": [],
                        "last": "Krikun",
                        "suffix": ""
                    },
                    {
                        "first": "Qin",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "Klaus",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Macherey",
                        "suffix": ""
                    }
                ],
                "year": 2016,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1609.08144"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural ma- chine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.",
                "links": null
            },
            "BIBREF32": {
                "ref_id": "b32",
                "title": "Bertscore: Evaluating text generation with bert",
                "authors": [
                    {
                        "first": "Tianyi",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Varsha",
                        "middle": [],
                        "last": "Kishore",
                        "suffix": ""
                    },
                    {
                        "first": "Felix",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "Q",
                        "middle": [],
                        "last": "Kilian",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Weinberger",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Artzi",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "International Conference on Learning Representations",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Eval- uating text generation with bert. In International Conference on Learning Representations.",
                "links": null
            },
            "BIBREF33": {
                "ref_id": "b33",
                "title": "Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance",
                "authors": [
                    {
                        "first": "Wei",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "Maxime",
                        "middle": [],
                        "last": "Peyrard",
                        "suffix": ""
                    },
                    {
                        "first": "Fei",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "Yang",
                        "middle": [],
                        "last": "Gao",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Christian",
                        "suffix": ""
                    },
                    {
                        "first": "Steffen",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Eger",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris- tian M Meyer, and Steffen Eger. 2019. Moverscore: Text generation evaluating with contextualized em- beddings and earth mover distance. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP).",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "text": "Accuracy Total MT HT M T orig & HT orig 0.69 0.79 0.58 M T modf & HT modf 0.69 0.77 0.61 M T orig & HT modf 0.69 0.56 0.83 DE-EN Accuracy Total MT HT M T orig & HT orig 0.66 0.75 0.57 M T modf & HT modf 0.67 0.74 0.60 M T orig & HT modf 0.67 0.52 0.82 RU-EN Accuracy Total MT HT M T orig & HT orig 0.67 0.76 0.58 M T modf & HT modf 0.67 0.75 0.59 M T orig & HT modf 0.67 0.52 0.82",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "FIGREF1": {
                "text": "M T orig & HT orig 0.78 0.87 0.69 M T modf & HT modf 0.78 0.86 0.71 M T orig & HT modf 0.81 0.89 0.73 RU-EN Accuracy Total MT HT M T orig & HT orig 0.78 0.90 0.65 M T modf & HT modf 0.77 0.89 0.65 M T orig & HT modf 0.81 0.95 0.68",
                "uris": null,
                "type_str": "figure",
                "num": null
            },
            "TABREF0": {
                "html": null,
                "content": "<table><tr><td/><td>CS-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.69</td><td>0.79</td><td>0.58</td></tr><tr><td/><td>DE-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.66</td><td>0.75</td><td>0.57</td></tr><tr><td/><td>RU-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.67</td><td>0.76</td><td>0.58</td></tr><tr><td/><td/><td>Number of</td><td>MT avg</td><td>HT avg</td></tr><tr><td/><td/><td>sentences</td><td>sentence</td><td>sentence</td></tr><tr><td/><td/><td/><td>length</td><td>length</td></tr><tr><td/><td/><td>CS-EN 30384</td><td>26.33</td><td>25.83</td></tr><tr><td/><td/><td>DE-EN 30345</td><td>26.61</td><td>26.15</td></tr><tr><td/><td/><td>RU-EN 30387</td><td>28.00</td><td>27.51</td></tr><tr><td/><td/><td colspan=\"2\">Table 1: Statistics of the dataset: translations from</td></tr><tr><td/><td/><td colspan=\"2\">Czech, German and Russian to English.</td></tr><tr><td/><td/><td colspan=\"2\">3.2 Classifying HT and MT</td></tr><tr><td/><td/><td>Trigram Model</td></tr></table>",
                "text": "We train two trigram models on the HT and MT training sets. Let p M T denote the trigram model trained on MT sentences, and p HT the model trained on HT sentences. A sentence s is classified as MT if p M T (s) > p HT (s) and as HT otherwise. If s is from the HT test set and classified as HT, we count it as a success, and the same goes for the case when s is from the MT test set and classified as MT. The classification accuracy is obtained by dividing the number of correct classifications by the total number of sentences in the respective test set. Since the two classes are balanced, accuracy is an appropriate metric. The result is shown inTable 2.",
                "type_str": "table",
                "num": null
            },
            "TABREF1": {
                "html": null,
                "content": "<table><tr><td>From</td></tr></table>",
                "text": "Classification accuracy of the trigram model.",
                "type_str": "table",
                "num": null
            },
            "TABREF3": {
                "html": null,
                "content": "<table><tr><td>MTLD</td><td>Original</td><td>Modified</td></tr><tr><td>CS MT</td><td>62.02</td><td>43.00</td></tr><tr><td>CS HT</td><td>63.80</td><td>43.04</td></tr><tr><td>DE MT</td><td>62.53</td><td>42.44</td></tr><tr><td>DE HT</td><td>64.59</td><td>42.76</td></tr><tr><td>RU MT</td><td>61.06</td><td>42.66</td></tr><tr><td>RU HT</td><td>64.51</td><td>43.05</td></tr></table>",
                "text": "",
                "type_str": "table",
                "num": null
            },
            "TABREF4": {
                "html": null,
                "content": "<table><tr><td>BLEU M T orig</td><td>M T modf</td><td>M T orig</td></tr><tr><td>&amp;</td><td>&amp;</td><td>&amp;</td></tr><tr><td>HT orig</td><td>HT modf</td><td>HT modf</td></tr><tr><td>CS-EN 0.42</td><td>0.46</td><td>0.39</td></tr><tr><td>DE-EN 0.41</td><td>0.45</td><td>0.38</td></tr><tr><td>RU-EN 0.37</td><td>0.40</td><td>0.34</td></tr></table>",
                "text": "",
                "type_str": "table",
                "num": null
            }
        }
    }
}