File size: 115,425 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 |
{
"paper_id": "2021",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T03:14:40.402860Z"
},
"title": "Automatic Classification of Human Translation and Machine Translation: A Study from the Perspective of Lexical Diversity",
"authors": [
{
"first": "Yingxue",
"middle": [],
"last": "Fu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of St",
"location": {
"postCode": "KY16 9SX",
"settlement": "Andrews",
"country": "UK"
}
},
"email": ""
},
{
"first": "Mark-Jan",
"middle": [],
"last": "Nederhof",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "University of St",
"location": {
"postCode": "KY16 9SX",
"settlement": "Andrews",
"country": "UK"
}
},
"email": ""
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "By using a trigram model and fine-tuning a pretrained BERT model for sequence classification, we show that machine translation and human translation can be classified with an accuracy above chance level, which suggests that machine translation and human translation are different in a systematic way. The classification accuracy of machine translation is much higher than of human translation. We show that this may be explained by the difference in lexical diversity between machine translation and human translation. If machine translation has independent patterns from human translation, automatic metrics which measure the deviation of machine translation from human translation may conflate difference with quality. Our experiment with two different types of automatic metrics shows correlation with the result of the classification task. Therefore, we suggest the difference in lexical diversity between machine translation and human translation be given more attention in machine translation evaluation.",
"pdf_parse": {
"paper_id": "2021",
"_pdf_hash": "",
"abstract": [
{
"text": "By using a trigram model and fine-tuning a pretrained BERT model for sequence classification, we show that machine translation and human translation can be classified with an accuracy above chance level, which suggests that machine translation and human translation are different in a systematic way. The classification accuracy of machine translation is much higher than of human translation. We show that this may be explained by the difference in lexical diversity between machine translation and human translation. If machine translation has independent patterns from human translation, automatic metrics which measure the deviation of machine translation from human translation may conflate difference with quality. Our experiment with two different types of automatic metrics shows correlation with the result of the classification task. Therefore, we suggest the difference in lexical diversity between machine translation and human translation be given more attention in machine translation evaluation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "The initial interest in and support for machine translation (MT) stem from visions of highspeed and high-quality translation of arbitrary texts (Slocum, 1985) , but machine translation proves to be more difficult than initially imagined. In recent years, progress has been made in MT research and development, and it is claimed that MT achieves human parity in some tasks (Wu et al., 2016; Hassan et al., 2018; Popel et al., 2020) . However, these statements are challenged by other researchers and remain open to debate (L\u00e4ubli et al., 2018; Toral et al., 2018; Toral, 2020) .",
"cite_spans": [
{
"start": 144,
"end": 158,
"text": "(Slocum, 1985)",
"ref_id": "BIBREF21"
},
{
"start": 372,
"end": 389,
"text": "(Wu et al., 2016;",
"ref_id": "BIBREF31"
},
{
"start": 390,
"end": 410,
"text": "Hassan et al., 2018;",
"ref_id": "BIBREF6"
},
{
"start": 411,
"end": 430,
"text": "Popel et al., 2020)",
"ref_id": "BIBREF16"
},
{
"start": 521,
"end": 542,
"text": "(L\u00e4ubli et al., 2018;",
"ref_id": "BIBREF9"
},
{
"start": 543,
"end": 562,
"text": "Toral et al., 2018;",
"ref_id": "BIBREF26"
},
{
"start": 563,
"end": 575,
"text": "Toral, 2020)",
"ref_id": "BIBREF25"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "The typical automatic approach to evaluating MT is to compare a machine translated text with a reference translation. The assumption is that the closer a machine translation is to a professional human translation, the better it is (Papineni et al., 2002) . Automatic metrics for MT are developed based on this assumption. Human translation (HT) is treated as gold standard and the deviation from it is transformed into a measure of translation quality of MT.",
"cite_spans": [
{
"start": 231,
"end": 254,
"text": "(Papineni et al., 2002)",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "Many studies have shown that translated texts are different from originally written texts (Baroni and Bernardini, 2006; Ilisei et al., 2010) . The typical method used for the identification of translationese is automatic classification of translated texts and originally written texts (Baroni and Bernardini, 2006) . There are some studies that compare translation varieties such as professional and student translations and post-edited MT (Kunilovskaya and Lapshinova-Koltunski, 2019; Toral, 2019; Popovi\u0107, 2020) . While surface linguistic features and simple machine learning techniques are capable of classifying translated texts and originally written texts with high accuracy, it is difficult to use the same method to classify translation varieties, with the accuracy being barely over the chance level (Kunilovskaya and Lapshinova-Koltunski, 2019; Rubino et al., 2016) .",
"cite_spans": [
{
"start": 90,
"end": 119,
"text": "(Baroni and Bernardini, 2006;",
"ref_id": "BIBREF2"
},
{
"start": 120,
"end": 140,
"text": "Ilisei et al., 2010)",
"ref_id": "BIBREF7"
},
{
"start": 285,
"end": 314,
"text": "(Baroni and Bernardini, 2006)",
"ref_id": "BIBREF2"
},
{
"start": 440,
"end": 485,
"text": "(Kunilovskaya and Lapshinova-Koltunski, 2019;",
"ref_id": "BIBREF8"
},
{
"start": 486,
"end": 498,
"text": "Toral, 2019;",
"ref_id": "BIBREF24"
},
{
"start": 499,
"end": 513,
"text": "Popovi\u0107, 2020)",
"ref_id": "BIBREF17"
},
{
"start": 809,
"end": 854,
"text": "(Kunilovskaya and Lapshinova-Koltunski, 2019;",
"ref_id": "BIBREF8"
},
{
"start": 855,
"end": 875,
"text": "Rubino et al., 2016)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "When comparing translation varieties, MT is used as a translation variety independent of HT or other translation varieties in some studies (Toral, 2019) . Different from the conventional practice of MT evaluation that treats HT as the gold standard, some studies adopt a descriptive approach to comparing MT and HT (Bizzoni et al., 2020; Ahrenberg, 2017; Vanmassenhove et al., 2019) . Among these studies, Bizzoni et al. (2020) find that MT shows independent patterns of translationese and it resembles HT only partly. This implies that MT may be different from HT in a systematic way, and it remains a question as to whether the deviation of MT from HT is a reliable measure of the quality of MT, and whether the current automatic metrics conflate differences between HT and MT with the quality of MT.",
"cite_spans": [
{
"start": 139,
"end": 152,
"text": "(Toral, 2019)",
"ref_id": "BIBREF24"
},
{
"start": 315,
"end": 337,
"text": "(Bizzoni et al., 2020;",
"ref_id": "BIBREF3"
},
{
"start": 338,
"end": 354,
"text": "Ahrenberg, 2017;",
"ref_id": "BIBREF0"
},
{
"start": 355,
"end": 382,
"text": "Vanmassenhove et al., 2019)",
"ref_id": "BIBREF28"
},
{
"start": 406,
"end": 427,
"text": "Bizzoni et al. (2020)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "According to research by Toral (2019) , translation varieties differ in multiple ways. Based on research by Vanmassenhove et al. (2019) , we focus on lexical diversity in our experiments.",
"cite_spans": [
{
"start": 25,
"end": 37,
"text": "Toral (2019)",
"ref_id": "BIBREF24"
},
{
"start": 108,
"end": 135,
"text": "Vanmassenhove et al. (2019)",
"ref_id": "BIBREF28"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "We try to answer three questions in this study:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Can MT and HT be classified automatically with an accuracy above the chance level?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 In what way does lexical diversity influence the classification result?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "\u2022 Are the results of automatic metrics influenced by the difference in lexical diversity between HT and MT?",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1"
},
{
"text": "As our study essentially involves comparing translation varieties, we present an overview of previous studies that compare originally written texts and translations, other translation varieties, and HT and MT.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Related Work",
"sec_num": "2"
},
{
"text": "Translated texts show distinctive features which make them different from originally written texts. These features are typically studied under the framework of translationese. Gellerstam (1986) is the first to use this term to refer to the \"fingerprints\" that the source text leaves on the translated text. This notion is developed by Baker, who proposes the idea of universals of translation. As suggested by Baker et al. (1993) , universals of translation are linguistic features that typically occur in translated texts as opposed to originally written texts, and these features are independent of the specific language pairs. Automatic means to distinguish translated texts and originally written texts have been developed and generally achieve high accuracy (Baroni and Bernardini, 2006; Ilisei et al., 2010; Lembersky et al., 2012; Rabinovich and Wintner, 2015) . Meanwhile, computational approaches (Teich, 2003; Volansky et al., 2015) contribute evidence for some translation universals.",
"cite_spans": [
{
"start": 176,
"end": 193,
"text": "Gellerstam (1986)",
"ref_id": "BIBREF5"
},
{
"start": 410,
"end": 429,
"text": "Baker et al. (1993)",
"ref_id": "BIBREF1"
},
{
"start": 763,
"end": 792,
"text": "(Baroni and Bernardini, 2006;",
"ref_id": "BIBREF2"
},
{
"start": 793,
"end": 813,
"text": "Ilisei et al., 2010;",
"ref_id": "BIBREF7"
},
{
"start": 814,
"end": 837,
"text": "Lembersky et al., 2012;",
"ref_id": "BIBREF10"
},
{
"start": 838,
"end": 867,
"text": "Rabinovich and Wintner, 2015)",
"ref_id": "BIBREF18"
},
{
"start": 906,
"end": 919,
"text": "(Teich, 2003;",
"ref_id": "BIBREF22"
},
{
"start": 920,
"end": 942,
"text": "Volansky et al., 2015)",
"ref_id": "BIBREF29"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing Originally Written Texts and Translations",
"sec_num": "2.1"
},
{
"text": "Compared with the considerable amount of research on identifying translationese, the differences between translation varieties are less studied. Rubino et al. (2016) perform the classification between originally written texts and translations as well as between professional and student translations. They use surface features and distortion features which are inspired by quality estimation tasks, and surprisal and complexity features which are derived from information theory. Their experiment shows that originally written texts and professional translations are different mainly in terms of sequences of words, part-of-speech and syntactic tags, and originally written texts are closer to professional translations than to student translations. While the originally written texts and translations can be classified with high accuracy, automatic classification of different translation varieties is a more challenging task. Professional translations and student translations can only be classified with an accuracy barely above 50%.",
"cite_spans": [
{
"start": 145,
"end": 165,
"text": "Rubino et al. (2016)",
"ref_id": "BIBREF20"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing Translation Varieties",
"sec_num": "2.2"
},
{
"text": "This finding is consistent with the result of a study by Kunilovskaya and Lapshinova-Koltunski (2019) . While morpho-syntactic features can be used to distinguish translations from nontranslations with high accuracy, the performance of the same algorithm on classifying professional and student translations only slightly exceeds the chance level.",
"cite_spans": [
{
"start": 57,
"end": 101,
"text": "Kunilovskaya and Lapshinova-Koltunski (2019)",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing Translation Varieties",
"sec_num": "2.2"
},
{
"text": "The differences of translations authored by human translators with different expertise and native languages are studied by Popovi\u0107 (2020) . Similar to other studies on distinguishing originally written texts from translated texts or comparing translation varieties, surface text features at word and part-of-speech levels are used. It concludes by suggesting that detailed information about the reference translation including translator information be provided in the scenario of MT evaluation.",
"cite_spans": [
{
"start": 123,
"end": 137,
"text": "Popovi\u0107 (2020)",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing Translation Varieties",
"sec_num": "2.2"
},
{
"text": "Toral (2019) compares post-edited MT with HT in terms of lexical variety, lexical density, sentence length ratio and part-of-speech sequences. The research shows that post-edited MT has lower lexical diversity and lower lexical density than HT, which is linked to the translation universal of simplification, and post-edited MT is more normalized and has greater interference from the source text (in terms of sentence length and partof-speech sequences) than HT.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing Translation Varieties",
"sec_num": "2.2"
},
{
"text": "While the number of studies on comparing translation varieties is much smaller than on the identification of translationese, there are even fewer studies that explore the differences between MT and HT.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing MT and HT",
"sec_num": "2.3"
},
{
"text": "Ahrenberg 2017compares MT and HT by means of automatically extracted features and statistics obtained through manual examination. By comparing the shifts (i.e. deviation from literal translation) and word order changes, he finds that HT contains twice as many word order changes. Meanwhile, an analysis of the number and types of edits required to give the machine translated text publishable quality is made. He argues that MT is likely to retain interference from the source text even after post-editing, and the machine translated text is more similar to the source text than the human translated text in many ways, including sentence length, information flow and structure.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing MT and HT",
"sec_num": "2.3"
},
{
"text": "Research by Vanmassenhove et al. (2019) shows another aspect where MT differs from HT. Three MT systems based on different architectures are trained. The lexical diversity of the translations of the MT systems is measured with three metrics including type/token ratio, Yule's K, and measure of textual lexical diversity (MTLD). It is found that the output of neural machine translation (NMT) systems has a loss of lexical diversity compared with the human translated text. The reason for this phenomenon is that the advantage of NMT systems over statistical machine translation (SMT) systems in terms of learning over the entire sequence is obtained at the expense of discarding less frequently occurring words or morphological forms. This finding is consistent with the research by Toral (2019) , who observes that the lexical variety of post-edited MT is lower than of HT and the lexical variety of MT is lower than of post-edited MT, which is attributed to the tendency of MT to choose words used more frequently in the training data (Farrell, 2018) .",
"cite_spans": [
{
"start": 12,
"end": 39,
"text": "Vanmassenhove et al. (2019)",
"ref_id": "BIBREF28"
},
{
"start": 783,
"end": 795,
"text": "Toral (2019)",
"ref_id": "BIBREF24"
},
{
"start": 1037,
"end": 1052,
"text": "(Farrell, 2018)",
"ref_id": "BIBREF4"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing MT and HT",
"sec_num": "2.3"
},
{
"text": "Bizzoni et al. (2020) study the differences between HT and MT in relation to the original texts. Part-of-speech perplexity and a syntactic distance metric are used to measure the differences between translations in written and spoken forms and produced by different types of MT systems. It is found that MT shows structural translationese, but the translationese of MT follows independent patterns that need further understanding.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Comparing MT and HT",
"sec_num": "2.3"
},
{
"text": "We adopt two approaches for classifying MT and HT: developing a trigram language model with Witten-Bell smoothing and fine-tuning a pretrained BERT model for sequence classification from the Transformers library (Wolf et al., 2020) .",
"cite_spans": [
{
"start": 212,
"end": 231,
"text": "(Wolf et al., 2020)",
"ref_id": "BIBREF30"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experiment",
"sec_num": "3"
},
{
"text": "The dataset is from the News commentary parallel corpus v13 (Tiedemann, 2012) provided in the WMT2018 shared task 1 . We use Google Translate 2 to obtain the corresponding machine translation.",
"cite_spans": [
{
"start": 60,
"end": 77,
"text": "(Tiedemann, 2012)",
"ref_id": "BIBREF23"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data",
"sec_num": "3.1"
},
{
"text": "The language pairs used in the experiment, the number of sentences for each language pair and the average sentence length for HT and MT are presented in Table 1 . Table 2 it is clear that HT and MT can be classified automatically with an accuracy above the chance level. However, it is noticeable that MT can be classified with higher accuracy than HT.",
"cite_spans": [],
"ref_spans": [
{
"start": 153,
"end": 160,
"text": "Table 1",
"ref_id": null
},
{
"start": 163,
"end": 170,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Data",
"sec_num": "3.1"
},
{
"text": "Based on research by Vanmassenhove et al. (2019) and Toral (2019) , this imbalance in classification accuracy may be partly explained by the higher lexical diversity of HT, so that p HT is a probability distribution over sentences composed of a larger set of words than in the case of p M T , thereby typically assigning a lower probability to any particular sentence, regardless of whether it is from MT or from HT.",
"cite_spans": [
{
"start": 21,
"end": 48,
"text": "Vanmassenhove et al. (2019)",
"ref_id": "BIBREF28"
},
{
"start": 53,
"end": 65,
"text": "Toral (2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Data",
"sec_num": "3.1"
},
{
"text": "From Table 1 , it can be seen that the difference in average sentence length between MT and HT is only around 0.5. Therefore, we assume that the influence of sentence length is not significant in this study.",
"cite_spans": [],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 1",
"ref_id": null
}
],
"eq_spans": [],
"section": "Data",
"sec_num": "3.1"
},
{
"text": "We apply the BERT model on the same dataset, which is divided into training, test and validation sets by the ratio of 70%, 10% and 20%. The sentences are padded to the maximum length of sentences in the dataset. We find that the pretrained BERT model for sequence classification achieves higher accuracy and lower loss in the first epoch. The result is shown in Table 3 .",
"cite_spans": [],
"ref_spans": [
{
"start": 362,
"end": 369,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "BERT Model",
"sec_num": null
},
{
"text": "From Table 3 , it can be seen that fine-tuning the pretrained BERT model for sequence classification can achieve higher accuracy for this task than the trigram model. Moreover, we can see the same pattern of imbalance in classification accuracy between MT and HT. Similar to the case of the trigram model, we hypothesize that it is because greater lexical diversity makes HT more difficult to classify correctly than MT. Table 3 : Classification accuracy of the BERT model.",
"cite_spans": [],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 3",
"ref_id": null
},
{
"start": 421,
"end": 428,
"text": "Table 3",
"ref_id": null
}
],
"eq_spans": [],
"section": "BERT Model",
"sec_num": null
},
{
"text": "To investigate further whether differences in lexical diversity could be the reason for the observed imbalance in the classification accuracy of MT and HT, we manipulate the lexical diversity of the two.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Changing Lexical Diversity",
"sec_num": "3.3"
},
{
"text": "As the lexical diversity of HT is generally higher than of MT (Vanmassenhove et al., 2019; Toral, 2019) , we reduce the lexical diversity of HT until it becomes close to or lower than MT, and for comparison, we also reduce the lexical diversity of MT.",
"cite_spans": [
{
"start": 62,
"end": 90,
"text": "(Vanmassenhove et al., 2019;",
"ref_id": "BIBREF28"
},
{
"start": 91,
"end": 103,
"text": "Toral, 2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Changing Lexical Diversity",
"sec_num": "3.3"
},
{
"text": "Our general strategy of reducing lexical diversity is to replace rare words with words that are close to them in a vector space. First, we find rare words based on the frequency of lemmas in the corpus.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Method of Changing Lexical Diversity",
"sec_num": null
},
{
"text": "Since there are many numerals and proper names and it is difficult to find meaningful candidates to replace them in the vector space, we set token.like num and token.is oov in spaCy processing 3 to false. Among the remaining lemmas, those lemmas whose frequency is lower than a threshold will be considered to be rare words. We found that setting the frequency threshold to two is effective in reducing the lexical diversity. Second, we choose words whose vectors are close to the rare words from the pretrained GloVe embeddings (Pennington et al., 2014) , which are computationally less expensive than contextualized word embeddings like BERT. We found that the words which are closest to the rare words are not necessarily the optimal candidates in terms of part-of-speech or meaning, and so we choose the top three most similar words for each rare word. We convert the GloVe vectors into word2vec for-mat with the gensim glove2word2vec API 4 and set restrict vocab to 30000 in the most similar function 5 so that the search for the most similar words is limited to the top 30000 words in the pretrained embeddings. The vocabulary size 30000 was determined empirically.",
"cite_spans": [
{
"start": 529,
"end": 554,
"text": "(Pennington et al., 2014)",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Method of Changing Lexical Diversity",
"sec_num": null
},
{
"text": "After this step, we apply a check on the finegrained tags of the rare words and the fine-grained tags of the respective three candidates, the tags being obtained with spaCy 6 and containing more information than the coarse-grained part-of-speech tags from the Universal POS tag set 7 . The candidates with the same tags as the rare words will be chosen. Where there is more than one matched candidate, only the first is chosen, and when there are no matched candidates after the check, the rare words will not be replaced. In this way, we obtain texts with modified lexical diversity. For ease of reference, modified HT texts will be referred to as HT modf , modified MT texts will be referred to as M T modf , original HT texts as HT orig and original MT texts as M T orig.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Method of Changing Lexical Diversity",
"sec_num": null
},
{
"text": "To compute the lexical diversity of the texts, based on research by McCarthy and Jarvis 2010and Vanmassenhove et al. (2019) , we choose the measure of textual lexical diversity (MTLD) (Mc-Carthy, 2005) , which is reasonably robust to text length difference. We refer those interested in the specific computation and statistical significance of MTLD to McCarthy and Jarvis (2010). The lexical diversity of the texts is presented in Table 4 : MTLD of the original texts and of the modified texts.",
"cite_spans": [
{
"start": 96,
"end": 123,
"text": "Vanmassenhove et al. (2019)",
"ref_id": "BIBREF28"
},
{
"start": 184,
"end": 201,
"text": "(Mc-Carthy, 2005)",
"ref_id": null
}
],
"ref_spans": [
{
"start": 431,
"end": 438,
"text": "Table 4",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Method of Changing Lexical Diversity",
"sec_num": null
},
{
"text": "From Table 4 , it can be seen that the MTLD values of HT texts are generally higher than of MT texts, which is consistent with the result of previous studies (Vanmassenhove et al., 2019 (Vanmassenhove et al., , 2021 Toral, 2019) . With our method, the difference in MTLD value between MT and HT texts is reduced.",
"cite_spans": [
{
"start": 158,
"end": 185,
"text": "(Vanmassenhove et al., 2019",
"ref_id": "BIBREF28"
},
{
"start": 186,
"end": 215,
"text": "(Vanmassenhove et al., , 2021",
"ref_id": "BIBREF27"
},
{
"start": 216,
"end": 228,
"text": "Toral, 2019)",
"ref_id": "BIBREF24"
}
],
"ref_spans": [
{
"start": 5,
"end": 12,
"text": "Table 4",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Method of Changing Lexical Diversity",
"sec_num": null
},
{
"text": "We conduct another set of binary classification experiments on the original and modified MT and HT texts paired in different ways. For example, \"M T modf & HT modf \" in the following tables means that the binary classification is performed on the modified MT text and the modified HT text. The result of the trigram model is shown in Table 5. For comparison, the results from Table 2 are repeated in the lines M T orig & HT orig. Table 5 : Binary classification of MT and HT by the trigram model under different combinations of MT and HT texts.",
"cite_spans": [],
"ref_spans": [
{
"start": 376,
"end": 383,
"text": "Table 2",
"ref_id": "TABREF1"
},
{
"start": 430,
"end": 437,
"text": "Table 5",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Result of Trigram Model",
"sec_num": null
},
{
"text": "From Table 5 in combination with Table 4 , we can see that when the difference in lexical diversity between MT and HT becomes smaller, the imbalance in classification accuracy is reduced, and the classification accuracy of MT goes down while the classification accuracy of HT goes up.",
"cite_spans": [],
"ref_spans": [
{
"start": 5,
"end": 40,
"text": "Table 5 in combination with Table 4",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "CS-EN",
"sec_num": null
},
{
"text": "Since the lexical diversity of HT is generally higher than MT, we conduct an experiment where the lexical diversity of HT is significantly lower than MT, and the result is shown in the lines M T orig & HT modf . Under this condition, the classification accuracy of MT is much lower than HT. In this way, we reverse the previously observed trend that the classification accuracy of MT is higher than HT. Note that the overall classification accuracy does not change much in this experiment.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CS-EN",
"sec_num": null
},
{
"text": "For fine-tuning the pretrained BERT model for sequence classification, similar experiments were done, with different combinations of MT and HT texts. Accuracies are presented in Table 6 . Table 6 : Binary classification of MT and HT by the BERT model under different combinations of MT and HT texts.",
"cite_spans": [],
"ref_spans": [
{
"start": 178,
"end": 185,
"text": "Table 6",
"ref_id": null
},
{
"start": 188,
"end": 195,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Experimental Result of BERT Model",
"sec_num": null
},
{
"text": "Similar to the trigram model, the classification accuracy of HT goes up in the case of CS-EN and DE-EN and the classification accuracy of MT goes down a little, when the lexical diversity of MT and of HT are closer, as shown in the lines M T modf & HT modf , and when the lexical diversity of HT is much lower than MT, the classification accuracy of HT goes up, as shown in the lines M T orig & HT modf . However, changing the difference in lexical diversity does not tend to decrease the classification accuracy of MT for the BERT model. Recall that with the trigram model, the classification accuracy of HT increases while the classification accuracy of MT decreases. In contrast, with the BERT model, even when the lexical diversity of MT is much higher than HT, the overall classification accuracy and the separate classification accuracies of MT and HT all go up. The difference of the two models in terms of the classification accuracy of MT may be explained by the fact that the pretrained BERT model for sequence classification calculates cross-entropy loss for the classification task 8 while the trigram model results from relative frequency estimation.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "CS-EN",
"sec_num": null
},
{
"text": "We hypothesize that the performance of the two models in the binary classification task may be reflected in the result of MT metrics that are based on n-gram matching or that use contexualized embeddings.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Automatic Metrics",
"sec_num": "3.4"
},
{
"text": "Since BLEU is a commonly used metric based on n-gram matching, we test the performance of BLEU on the dataset to see if the difference in lexical diversity between MT and HT would influence the result. We calculate the corpus-level BLEU score for MT, as implemented in NLTK 9 , using HT as reference. The result is presented in Table 7 : BLEU score.",
"cite_spans": [],
"ref_spans": [
{
"start": 328,
"end": 335,
"text": "Table 7",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Automatic Metrics",
"sec_num": "3.4"
},
{
"text": "As can be seen from Table 7 , when the lexical diversity of MT is closest to HT, as shown by the column M T modf & HT modf , the MT BLEU score is the highest. When the lexical diversity of the reference is much lower than MT, as is the case in the column M T orig & HT modf , the MT BLEU score is the lowest. Much as in the discussion of the results of the trigram model, the difference in lexical diversity between MT and HT is a factor that needs to be taken into account when an n-gram matching based metric like BLEU is used for MT evaluation.",
"cite_spans": [],
"ref_spans": [
{
"start": 20,
"end": 27,
"text": "Table 7",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Automatic Metrics",
"sec_num": "3.4"
},
{
"text": "The majority of automatic MT metrics developed in recent years such as BERTScore (Zhang et al., 2019) and Yisi (Lo, 2019) adopt contextualized embeddings. Based on accessibility and performance, we choose MoverScore (Zhao et al., 2019) as an example of a metric that uses BERT representations. Since MoverScore is not a corpus-level metric, we calculate the average sentence-level score. The result is presented in Ta Table 8 : MoverScore result for MT.",
"cite_spans": [
{
"start": 81,
"end": 101,
"text": "(Zhang et al., 2019)",
"ref_id": "BIBREF32"
},
{
"start": 111,
"end": 121,
"text": "(Lo, 2019)",
"ref_id": "BIBREF11"
},
{
"start": 216,
"end": 235,
"text": "(Zhao et al., 2019)",
"ref_id": "BIBREF33"
}
],
"ref_spans": [
{
"start": 415,
"end": 417,
"text": "Ta",
"ref_id": null
},
{
"start": 418,
"end": 425,
"text": "Table 8",
"ref_id": null
}
],
"eq_spans": [],
"section": "Automatic Metrics",
"sec_num": "3.4"
},
{
"text": "The MoverScore result in Table 8 shows a different pattern from the BLEU scores. The scores are basically inversely proportional to the overall accuracy of the binary classification task shown in Table 6 . As the difference in MoverScore results under different combinations of MT and HT texts is small, more work is needed.",
"cite_spans": [],
"ref_spans": [
{
"start": 25,
"end": 32,
"text": "Table 8",
"ref_id": null
},
{
"start": 196,
"end": 203,
"text": "Table 6",
"ref_id": null
}
],
"eq_spans": [],
"section": "Automatic Metrics",
"sec_num": "3.4"
},
{
"text": "With the above experiments, we have shown that MT and HT can be classified with an accuracy above the chance level. The trigram model does not involve a machine learning algorithm but is capable of capturing the differences between MT and HT. By fine-tuning the pretrained BERT model for sequence classification, we obtain a higher accuracy for this task.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "4"
},
{
"text": "Similar to the identification of translationese, we may claim that MT and HT belong to different translation varieties. The result serves as supporting evidence for the study by Bizzoni et al. (2020) , which maintains that MT only resembles HT in part and often follows independent patterns. This finding calls into question the longstanding assumption in MT evaluation that the more similar an MT output is to a professional human translation, the better it is. If MT and HT are two translation varieties and have different patterns, it leaves room for doubt as to the legitimacy of evaluating MT by its similarity to HT.",
"cite_spans": [
{
"start": 178,
"end": 199,
"text": "Bizzoni et al. (2020)",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "4"
},
{
"text": "Moreover, there is a noticeable imbalance in the classification accuracy of HT and MT. For the trigram model, while more than 70% of the MT test sentences can be classified correctly, fewer than 60% of the HT test sentences are classified correctly. This imbalance also exists in the experiment with the BERT model. Generally speaking, it is easier to correctly classify MT sentences than HT sentences.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "4"
},
{
"text": "Based on previous studies and analysis from the probabilistic perspective, we consider lexical diversity as one of the major reasons for this imbalance in classification accuracy. We change the lexical diversity of the MT and HT texts and conduct another set of experiments with the same models. With the trigram model, if the difference in lexical diversity between MT and HT decreases, the imbalance in classification accuracy between the two is reduced, and we can reverse this imbalance in classification accuracy when the lexical diversity of MT is higher than HT. The result of the experiment with the BERT model shows a different pattern. An increase in classification accuracy of HT is accompanied by an increase in the classification accuracy of MT. This may be explained by the different ways of performing binary classification by the two models. The performance of automatic MT metrics based on n-gram matching, represented by BLEU in this study, and automatic metrics using BERT representations, such as MoverScore, is related to the result of the binary classification task with the two kinds of models. When the lexical diversity of HT is lower than MT, the MT BLEU score is the lowest and when the lexical diversity of HT is very close to MT, the MT BLEU score is the highest. The evaluation results given by MoverScore are basically inversely proportional to the classification accuracy of the BERT model. Therefore, we suggest the difference in lexical diversity between MT and the reference be given more attention in MT evaluation with automatic metrics.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "4"
},
{
"text": "We are aware that there are other possible factors that may account for the phenomenon that HT is more likely to be classified as MT than the other way around. In our experiment, we only manipulate one factor. In future work, we intend to further study the independent patterns of MT compared with HT and investigate if the differences between MT and HT are related to the quality of MT. As differences in lexical diversity may influence automatic metrics for MT evaluation in different ways, we plan to explore this phenomenon with other metrics, such as COMET (Rei et al., 2020) .",
"cite_spans": [
{
"start": 562,
"end": 580,
"text": "(Rei et al., 2020)",
"ref_id": "BIBREF19"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusion and Future Work",
"sec_num": "4"
},
{
"text": "http://www.statmt.org/wmt18/translation-task.html 2 https://translate.google.co.uk",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://spacy.io",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://radimrehurek.com/gensim/scripts/ glove2word2vec.html 5 https://radimrehurek.com/gensim/models/word2vec. html 6 https://spacy.io/api/token#attributes 7 https://universaldependencies.org/docs/u/pos/",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "https://github.com/huggingface/transformers/blob/ 9aeacb58bab321bc21c24bbdf7a24efdccb1d426/src/ transformers/modeling bert.py",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "Comparing machine translation and human translation: A case study",
"authors": [
{
"first": "Lars",
"middle": [],
"last": "Ahrenberg",
"suffix": ""
}
],
"year": 2017,
"venue": "RANLP 2017: The First Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT)",
"volume": "",
"issue": "",
"pages": "21--28",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Lars Ahrenberg. 2017. Comparing machine translation and human translation: A case study. In RANLP 2017: The First Workshop on Human-Informed Translation and Interpreting Technology (HiT-IT), pages 21-28. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Corpus linguistics and translation studies: Implications and applications. Text and Technology: In honour of John Sinclair",
"authors": [
{
"first": "Mona",
"middle": [],
"last": "Baker",
"suffix": ""
}
],
"year": 1993,
"venue": "",
"volume": "233",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Mona Baker et al. 1993. Corpus linguistics and transla- tion studies: Implications and applications. Text and Technology: In honour of John Sinclair, 233:250.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "A new approach to the study of translationese: Machinelearning the difference between original and translated text",
"authors": [
{
"first": "Marco",
"middle": [],
"last": "Baroni",
"suffix": ""
},
{
"first": "Silvia",
"middle": [],
"last": "Bernardini",
"suffix": ""
}
],
"year": 2006,
"venue": "Literary and Linguistic Computing",
"volume": "21",
"issue": "3",
"pages": "259--274",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Marco Baroni and Silvia Bernardini. 2006. A new approach to the study of translationese: Machine- learning the difference between original and trans- lated text. Literary and Linguistic Computing, 21(3):259-274.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "How human is machine translationese? comparing human and machine translations of text and speech",
"authors": [
{
"first": "Yuri",
"middle": [],
"last": "Bizzoni",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Tom",
"suffix": ""
},
{
"first": "Cristina",
"middle": [],
"last": "Juzek",
"suffix": ""
},
{
"first": "Koel",
"middle": [],
"last": "Espa\u00f1a-Bonet",
"suffix": ""
},
{
"first": "Josef",
"middle": [],
"last": "Dutta Chowdhury",
"suffix": ""
},
{
"first": "Elke",
"middle": [],
"last": "Van Genabith",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Teich",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 17th International Conference on Spoken Language Translation",
"volume": "",
"issue": "",
"pages": "280--290",
"other_ids": {
"DOI": [
"10.18653/v1/2020.iwslt-1.34"
]
},
"num": null,
"urls": [],
"raw_text": "Yuri Bizzoni, Tom S Juzek, Cristina Espa\u00f1a-Bonet, Koel Dutta Chowdhury, Josef van Genabith, and Elke Teich. 2020. How human is machine transla- tionese? comparing human and machine translations of text and speech. In Proceedings of the 17th Inter- national Conference on Spoken Language Transla- tion, pages 280-290, Online. Association for Com- putational Linguistics.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Machine translation markers in post-edited machine translation output",
"authors": [
{
"first": "Michael",
"middle": [],
"last": "Farrell",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 40th Conference Translating and the Computer",
"volume": "",
"issue": "",
"pages": "50--59",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Michael Farrell. 2018. Machine translation markers in post-edited machine translation output. In Pro- ceedings of the 40th Conference Translating and the Computer, pages 50-59.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Translationese in swedish novels translated from english",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Gellerstam",
"suffix": ""
}
],
"year": 1986,
"venue": "Translation Studies in Scandinavia",
"volume": "1",
"issue": "",
"pages": "88--95",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Gellerstam. 1986. Translationese in swedish novels translated from english. Translation Studies in Scandinavia, 1:88-95.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Achieving human parity on automatic chinese to english news translation",
"authors": [
{
"first": "Hany",
"middle": [],
"last": "Hassan",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Aue",
"suffix": ""
},
{
"first": "Chang",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "Vishal",
"middle": [],
"last": "Chowdhary",
"suffix": ""
},
{
"first": "Jonathan",
"middle": [],
"last": "Clark",
"suffix": ""
},
{
"first": "Christian",
"middle": [],
"last": "Federmann",
"suffix": ""
},
{
"first": "Xuedong",
"middle": [],
"last": "Huang",
"suffix": ""
},
{
"first": "Marcin",
"middle": [],
"last": "Junczys-Dowmunt",
"suffix": ""
},
{
"first": "William",
"middle": [],
"last": "Lewis",
"suffix": ""
},
{
"first": "Mu",
"middle": [],
"last": "Li",
"suffix": ""
}
],
"year": 2018,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1803.05567"
]
},
"num": null,
"urls": [],
"raw_text": "Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark, Christian Feder- mann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis, Mu Li, et al. 2018. Achieving hu- man parity on automatic chinese to english news translation. arXiv preprint arXiv:1803.05567.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Identification of translationese: A machine learning approach",
"authors": [
{
"first": "Iustina",
"middle": [],
"last": "Ilisei",
"suffix": ""
},
{
"first": "Diana",
"middle": [],
"last": "Inkpen",
"suffix": ""
},
{
"first": "Gloria",
"middle": [
"Corpas"
],
"last": "Pastor",
"suffix": ""
},
{
"first": "Ruslan",
"middle": [],
"last": "Mitkov",
"suffix": ""
}
],
"year": 2010,
"venue": "International Conference on Intelligent Text Processing and Computational Linguistics",
"volume": "",
"issue": "",
"pages": "503--511",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Iustina Ilisei, Diana Inkpen, Gloria Corpas Pastor, and Ruslan Mitkov. 2010. Identification of trans- lationese: A machine learning approach. In In- ternational Conference on Intelligent Text Process- ing and Computational Linguistics, pages 503-511. Springer.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Translationese features as indicators of quality in english-russian human translation",
"authors": [
{
"first": "Maria",
"middle": [],
"last": "Kunilovskaya",
"suffix": ""
},
{
"first": "Ekaterina",
"middle": [],
"last": "Lapshinova-Koltunski",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019)",
"volume": "",
"issue": "",
"pages": "47--56",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maria Kunilovskaya and Ekaterina Lapshinova- Koltunski. 2019. Translationese features as indicators of quality in english-russian human translation. In Proceedings of the Human-Informed Translation and Interpreting Technology Workshop (HiT-IT 2019), pages 47-56.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Has machine translation achieved human parity? a case for document-level evaluation",
"authors": [
{
"first": "Samuel",
"middle": [],
"last": "L\u00e4ubli",
"suffix": ""
},
{
"first": "Rico",
"middle": [],
"last": "Sennrich",
"suffix": ""
},
{
"first": "Martin",
"middle": [],
"last": "Volk",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "4791--4796",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Samuel L\u00e4ubli, Rico Sennrich, and Martin Volk. 2018. Has machine translation achieved human parity? a case for document-level evaluation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4791-4796.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Language models for machine translation: Original vs",
"authors": [
{
"first": "Gennadi",
"middle": [],
"last": "Lembersky",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Ordan",
"suffix": ""
},
{
"first": "Shuly",
"middle": [],
"last": "Wintner",
"suffix": ""
}
],
"year": 2012,
"venue": "Computational Linguistics",
"volume": "38",
"issue": "4",
"pages": "799--825",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Gennadi Lembersky, Noam Ordan, and Shuly Wint- ner. 2012. Language models for machine transla- tion: Original vs. translated texts. Computational Linguistics, 38(4):799-825.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Yisi-a unified semantic mt quality evaluation and estimation metric for languages with different levels of available resources",
"authors": [
{
"first": "Chi-Kiu",
"middle": [],
"last": "Lo",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the Fourth Conference on Machine Translation",
"volume": "2",
"issue": "",
"pages": "507--513",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Chi-kiu Lo. 2019. Yisi-a unified semantic mt quality evaluation and estimation metric for languages with different levels of available resources. In Proceed- ings of the Fourth Conference on Machine Transla- tion (Volume 2: Shared Task Papers, Day 1), pages 507-513.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD)",
"authors": [
{
"first": "M",
"middle": [],
"last": "Philip",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Mccarthy",
"suffix": ""
}
],
"year": 2005,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philip M McCarthy. 2005. An assessment of the range and usefulness of lexical diversity measures and the potential of the measure of textual, lexical diversity (MTLD). Ph.D. thesis, The University of Memphis.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Mtld, vocdd, and hd-d: A validation study of sophisticated approaches to lexical diversity assessment",
"authors": [
{
"first": "M",
"middle": [],
"last": "Philip",
"suffix": ""
},
{
"first": "Scott",
"middle": [],
"last": "Mccarthy",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Jarvis",
"suffix": ""
}
],
"year": 2010,
"venue": "Behavior research methods",
"volume": "42",
"issue": "",
"pages": "381--392",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Philip M McCarthy and Scott Jarvis. 2010. Mtld, vocd- d, and hd-d: A validation study of sophisticated ap- proaches to lexical diversity assessment. Behavior research methods, 42(2):381-392.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "BLEU: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "Kishore",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "Salim",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "Todd",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "Wei-Jing",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. 2002. BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311-318.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "GloVe: Global vectors for word representation",
"authors": [
{
"first": "Jeffrey",
"middle": [],
"last": "Pennington",
"suffix": ""
},
{
"first": "Richard",
"middle": [],
"last": "Socher",
"suffix": ""
},
{
"first": "Christopher",
"middle": [],
"last": "Manning",
"suffix": ""
}
],
"year": 2014,
"venue": "Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "1532--1543",
"other_ids": {
"DOI": [
"10.3115/v1/D14-1162"
]
},
"num": null,
"urls": [],
"raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. GloVe: Global vectors for word representation. In Proceedings of the 2014 Con- ference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, Doha, Qatar. Association for Computational Linguistics.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "Transforming machine translation: a deep learning system reaches news translation quality comparable to human professionals",
"authors": [
{
"first": "Martin",
"middle": [],
"last": "Popel",
"suffix": ""
},
{
"first": "Marketa",
"middle": [],
"last": "Tomkova",
"suffix": ""
},
{
"first": "Jakub",
"middle": [],
"last": "Tomek",
"suffix": ""
},
{
"first": "\u0141ukasz",
"middle": [],
"last": "Kaiser",
"suffix": ""
},
{
"first": "Jakob",
"middle": [],
"last": "Uszkoreit",
"suffix": ""
},
{
"first": "Ond\u0159ej",
"middle": [],
"last": "Bojar",
"suffix": ""
},
{
"first": "Zden\u011bk\u017eabokrtsk\u1ef3",
"middle": [],
"last": "",
"suffix": ""
}
],
"year": 2020,
"venue": "Nature communications",
"volume": "11",
"issue": "1",
"pages": "1--15",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Martin Popel, Marketa Tomkova, Jakub Tomek, \u0141ukasz Kaiser, Jakob Uszkoreit, Ond\u0159ej Bojar, and Zden\u011bk\u017dabokrtsk\u1ef3. 2020. Transforming machine translation: a deep learning system reaches news translation quality comparable to human profession- als. Nature communications, 11(1):1-15.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "On the differences between human translations",
"authors": [
{
"first": "Maja",
"middle": [],
"last": "Popovi\u0107",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
"volume": "",
"issue": "",
"pages": "365--374",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Maja Popovi\u0107. 2020. On the differences between hu- man translations. In Proceedings of the 22nd An- nual Conference of the European Association for Machine Translation, pages 365-374.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "Unsupervised identification of translationese",
"authors": [
{
"first": "Ella",
"middle": [],
"last": "Rabinovich",
"suffix": ""
},
{
"first": "Shuly",
"middle": [],
"last": "Wintner",
"suffix": ""
}
],
"year": 2015,
"venue": "Transactions of the Association for Computational Linguistics",
"volume": "3",
"issue": "",
"pages": "419--432",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Ella Rabinovich and Shuly Wintner. 2015. Unsuper- vised identification of translationese. Transactions of the Association for Computational Linguistics, 3:419-432.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "COMET: A neural framework for MT evaluation",
"authors": [
{
"first": "Ricardo",
"middle": [],
"last": "Rei",
"suffix": ""
},
{
"first": "Craig",
"middle": [],
"last": "Stewart",
"suffix": ""
},
{
"first": "Ana",
"middle": [
"C"
],
"last": "Farinha",
"suffix": ""
},
{
"first": "Alon",
"middle": [],
"last": "Lavie",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "2685--2702",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-main.213"
]
},
"num": null,
"urls": [],
"raw_text": "Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. 2020. COMET: A neural framework for MT evaluation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro- cessing (EMNLP), pages 2685-2702, Online. Asso- ciation for Computational Linguistics.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "Information density and quality estimation features as translationese indicators for human translation classification",
"authors": [
{
"first": "Raphael",
"middle": [],
"last": "Rubino",
"suffix": ""
},
{
"first": "Ekaterina",
"middle": [],
"last": "Lapshinova-Koltunski",
"suffix": ""
},
{
"first": "Josef",
"middle": [],
"last": "Van Genabith",
"suffix": ""
}
],
"year": 2016,
"venue": "Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: Human language technologies",
"volume": "",
"issue": "",
"pages": "960--970",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Raphael Rubino, Ekaterina Lapshinova-Koltunski, and Josef Van Genabith. 2016. Information density and quality estimation features as translationese indica- tors for human translation classification. In Pro- ceedings of the 2016 conference of the North Ameri- can chapter of the association for computational lin- guistics: Human language technologies, pages 960- 970.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "A survey of machine translation: Its history, current status and future prospects",
"authors": [
{
"first": "Jonathan",
"middle": [],
"last": "Slocum",
"suffix": ""
}
],
"year": 1985,
"venue": "Computational linguistics",
"volume": "11",
"issue": "1",
"pages": "1--17",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Jonathan Slocum. 1985. A survey of machine transla- tion: Its history, current status and future prospects. Computational linguistics, 11(1):1-17.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Cross-linguistic variation in system and text: A methodology for the investigation of translations and comparable texts",
"authors": [
{
"first": "Elke",
"middle": [],
"last": "Teich",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "5",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Elke Teich. 2003. Cross-linguistic variation in sys- tem and text: A methodology for the investigation of translations and comparable texts, volume 5. Wal- ter de Gruyter.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "Parallel data, tools and interfaces in OPUS",
"authors": [
{
"first": "J\u00f6rg",
"middle": [],
"last": "Tiedemann",
"suffix": ""
}
],
"year": 2012,
"venue": "LREC",
"volume": "2012",
"issue": "",
"pages": "2214--2218",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J\u00f6rg Tiedemann. 2012. Parallel data, tools and in- terfaces in OPUS. In LREC, volume 2012, pages 2214-2218.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Post-editese: an exacerbated translationese",
"authors": [
{
"first": "Antonio",
"middle": [],
"last": "Toral",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of Machine Translation Summit XVII",
"volume": "1",
"issue": "",
"pages": "273--281",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antonio Toral. 2019. Post-editese: an exacerbated translationese. In Proceedings of Machine Transla- tion Summit XVII Volume 1: Research Track, pages 273-281.",
"links": null
},
"BIBREF25": {
"ref_id": "b25",
"title": "Reassessing claims of human parity and super-human performance in machine translation at wmt 2019",
"authors": [
{
"first": "Antonio",
"middle": [],
"last": "Toral",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
"volume": "",
"issue": "",
"pages": "185--194",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antonio Toral. 2020. Reassessing claims of human parity and super-human performance in machine translation at wmt 2019. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 185-194.",
"links": null
},
"BIBREF26": {
"ref_id": "b26",
"title": "Attaining the unattainable? reassessing claims of human parity in neural machine translation",
"authors": [
{
"first": "Antonio",
"middle": [],
"last": "Toral",
"suffix": ""
},
{
"first": "Sheila",
"middle": [],
"last": "Castilho",
"suffix": ""
},
{
"first": "Ke",
"middle": [],
"last": "Hu",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2018,
"venue": "Proceedings of the Third Conference on Machine Translation: Research Papers",
"volume": "",
"issue": "",
"pages": "113--123",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Antonio Toral, Sheila Castilho, Ke Hu, and Andy Way. 2018. Attaining the unattainable? reassess- ing claims of human parity in neural machine trans- lation. In Proceedings of the Third Conference on Machine Translation: Research Papers, pages 113- 123.",
"links": null
},
"BIBREF27": {
"ref_id": "b27",
"title": "Machine translationese: Effects of algorithmic bias on linguistic complexity in machine translation",
"authors": [
{
"first": "Eva",
"middle": [],
"last": "Vanmassenhove",
"suffix": ""
},
{
"first": "Dimitar",
"middle": [],
"last": "Shterionov",
"suffix": ""
},
{
"first": "Matthew",
"middle": [],
"last": "Gwilliam",
"suffix": ""
}
],
"year": 2021,
"venue": "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
"volume": "",
"issue": "",
"pages": "2203--2213",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eva Vanmassenhove, Dimitar Shterionov, and Matthew Gwilliam. 2021. Machine translationese: Effects of algorithmic bias on linguistic complexity in machine translation. In Proceedings of the 16th Conference of the European Chapter of the Association for Com- putational Linguistics: Main Volume, pages 2203- 2213, Online. Association for Computational Lin- guistics.",
"links": null
},
"BIBREF28": {
"ref_id": "b28",
"title": "Lost in translation: Loss and decay of linguistic richness in machine translation",
"authors": [
{
"first": "Eva",
"middle": [],
"last": "Vanmassenhove",
"suffix": ""
},
{
"first": "Dimitar",
"middle": [],
"last": "Shterionov",
"suffix": ""
},
{
"first": "Andy",
"middle": [],
"last": "Way",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of Machine Translation Summit XVII",
"volume": "1",
"issue": "",
"pages": "222--232",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Eva Vanmassenhove, Dimitar Shterionov, and Andy Way. 2019. Lost in translation: Loss and decay of linguistic richness in machine translation. In Pro- ceedings of Machine Translation Summit XVII Vol- ume 1: Research Track, pages 222-232, Dublin, Ireland. European Association for Machine Trans- lation.",
"links": null
},
"BIBREF29": {
"ref_id": "b29",
"title": "On the features of translationese. Digital Scholarship in the Humanities",
"authors": [
{
"first": "Vered",
"middle": [],
"last": "Volansky",
"suffix": ""
},
{
"first": "Noam",
"middle": [],
"last": "Ordan",
"suffix": ""
},
{
"first": "Shuly",
"middle": [],
"last": "Wintner",
"suffix": ""
}
],
"year": 2015,
"venue": "",
"volume": "30",
"issue": "",
"pages": "98--118",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Vered Volansky, Noam Ordan, and Shuly Wintner. 2015. On the features of translationese. Digital Scholarship in the Humanities, 30(1):98-118.",
"links": null
},
"BIBREF30": {
"ref_id": "b30",
"title": "Transformers: State-of-the-art natural language processing",
"authors": [
{
"first": "Thomas",
"middle": [],
"last": "Wolf",
"suffix": ""
},
{
"first": "Lysandre",
"middle": [],
"last": "Debut",
"suffix": ""
},
{
"first": "Victor",
"middle": [],
"last": "Sanh",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Chaumond",
"suffix": ""
},
{
"first": "Clement",
"middle": [],
"last": "Delangue",
"suffix": ""
},
{
"first": "Anthony",
"middle": [],
"last": "Moi",
"suffix": ""
},
{
"first": "Pierric",
"middle": [],
"last": "Cistac",
"suffix": ""
},
{
"first": "Tim",
"middle": [],
"last": "Rault",
"suffix": ""
},
{
"first": "Remi",
"middle": [],
"last": "Louf",
"suffix": ""
},
{
"first": "Morgan",
"middle": [],
"last": "Funtowicz",
"suffix": ""
},
{
"first": "Joe",
"middle": [],
"last": "Davison",
"suffix": ""
},
{
"first": "Sam",
"middle": [],
"last": "Shleifer",
"suffix": ""
},
{
"first": "Clara",
"middle": [],
"last": "Patrick Von Platen",
"suffix": ""
},
{
"first": "Yacine",
"middle": [],
"last": "Ma",
"suffix": ""
},
{
"first": "Julien",
"middle": [],
"last": "Jernite",
"suffix": ""
},
{
"first": "Canwen",
"middle": [],
"last": "Plu",
"suffix": ""
},
{
"first": "Teven",
"middle": [
"Le"
],
"last": "Xu",
"suffix": ""
},
{
"first": "Sylvain",
"middle": [],
"last": "Scao",
"suffix": ""
},
{
"first": "Mariama",
"middle": [],
"last": "Gugger",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Drame",
"suffix": ""
}
],
"year": 2020,
"venue": "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
"volume": "",
"issue": "",
"pages": "38--45",
"other_ids": {
"DOI": [
"10.18653/v1/2020.emnlp-demos.6"
]
},
"num": null,
"urls": [],
"raw_text": "Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pier- ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- icz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush. 2020. Trans- formers: State-of-the-art natural language process- ing. In Proceedings of the 2020 Conference on Em- pirical Methods in Natural Language Processing: System Demonstrations, pages 38-45, Online. As- sociation for Computational Linguistics.",
"links": null
},
"BIBREF31": {
"ref_id": "b31",
"title": "Google's neural machine translation system: Bridging the gap between human and machine translation",
"authors": [
{
"first": "Yonghui",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Mike",
"middle": [],
"last": "Schuster",
"suffix": ""
},
{
"first": "Zhifeng",
"middle": [],
"last": "Chen",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Quoc",
"suffix": ""
},
{
"first": "Mohammad",
"middle": [],
"last": "Le",
"suffix": ""
},
{
"first": "Wolfgang",
"middle": [],
"last": "Norouzi",
"suffix": ""
},
{
"first": "Maxim",
"middle": [],
"last": "Macherey",
"suffix": ""
},
{
"first": "Yuan",
"middle": [],
"last": "Krikun",
"suffix": ""
},
{
"first": "Qin",
"middle": [],
"last": "Cao",
"suffix": ""
},
{
"first": "Klaus",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Macherey",
"suffix": ""
}
],
"year": 2016,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {
"arXiv": [
"arXiv:1609.08144"
]
},
"num": null,
"urls": [],
"raw_text": "Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural ma- chine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.",
"links": null
},
"BIBREF32": {
"ref_id": "b32",
"title": "Bertscore: Evaluating text generation with bert",
"authors": [
{
"first": "Tianyi",
"middle": [],
"last": "Zhang",
"suffix": ""
},
{
"first": "Varsha",
"middle": [],
"last": "Kishore",
"suffix": ""
},
{
"first": "Felix",
"middle": [],
"last": "Wu",
"suffix": ""
},
{
"first": "Q",
"middle": [],
"last": "Kilian",
"suffix": ""
},
{
"first": "Yoav",
"middle": [],
"last": "Weinberger",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Artzi",
"suffix": ""
}
],
"year": 2019,
"venue": "International Conference on Learning Representations",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Eval- uating text generation with bert. In International Conference on Learning Representations.",
"links": null
},
"BIBREF33": {
"ref_id": "b33",
"title": "Moverscore: Text generation evaluating with contextualized embeddings and earth mover distance",
"authors": [
{
"first": "Wei",
"middle": [],
"last": "Zhao",
"suffix": ""
},
{
"first": "Maxime",
"middle": [],
"last": "Peyrard",
"suffix": ""
},
{
"first": "Fei",
"middle": [],
"last": "Liu",
"suffix": ""
},
{
"first": "Yang",
"middle": [],
"last": "Gao",
"suffix": ""
},
{
"first": "M",
"middle": [],
"last": "Christian",
"suffix": ""
},
{
"first": "Steffen",
"middle": [],
"last": "Meyer",
"suffix": ""
},
{
"first": "",
"middle": [],
"last": "Eger",
"suffix": ""
}
],
"year": 2019,
"venue": "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris- tian M Meyer, and Steffen Eger. 2019. Moverscore: Text generation evaluating with contextualized em- beddings and earth mover distance. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing (EMNLP).",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"text": "Accuracy Total MT HT M T orig & HT orig 0.69 0.79 0.58 M T modf & HT modf 0.69 0.77 0.61 M T orig & HT modf 0.69 0.56 0.83 DE-EN Accuracy Total MT HT M T orig & HT orig 0.66 0.75 0.57 M T modf & HT modf 0.67 0.74 0.60 M T orig & HT modf 0.67 0.52 0.82 RU-EN Accuracy Total MT HT M T orig & HT orig 0.67 0.76 0.58 M T modf & HT modf 0.67 0.75 0.59 M T orig & HT modf 0.67 0.52 0.82",
"uris": null,
"type_str": "figure",
"num": null
},
"FIGREF1": {
"text": "M T orig & HT orig 0.78 0.87 0.69 M T modf & HT modf 0.78 0.86 0.71 M T orig & HT modf 0.81 0.89 0.73 RU-EN Accuracy Total MT HT M T orig & HT orig 0.78 0.90 0.65 M T modf & HT modf 0.77 0.89 0.65 M T orig & HT modf 0.81 0.95 0.68",
"uris": null,
"type_str": "figure",
"num": null
},
"TABREF0": {
"html": null,
"content": "<table><tr><td/><td>CS-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.69</td><td>0.79</td><td>0.58</td></tr><tr><td/><td>DE-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.66</td><td>0.75</td><td>0.57</td></tr><tr><td/><td>RU-EN</td><td/></tr><tr><td>Total</td><td>MT</td><td>HT</td></tr><tr><td>0.67</td><td>0.76</td><td>0.58</td></tr><tr><td/><td/><td>Number of</td><td>MT avg</td><td>HT avg</td></tr><tr><td/><td/><td>sentences</td><td>sentence</td><td>sentence</td></tr><tr><td/><td/><td/><td>length</td><td>length</td></tr><tr><td/><td/><td>CS-EN 30384</td><td>26.33</td><td>25.83</td></tr><tr><td/><td/><td>DE-EN 30345</td><td>26.61</td><td>26.15</td></tr><tr><td/><td/><td>RU-EN 30387</td><td>28.00</td><td>27.51</td></tr><tr><td/><td/><td colspan=\"2\">Table 1: Statistics of the dataset: translations from</td></tr><tr><td/><td/><td colspan=\"2\">Czech, German and Russian to English.</td></tr><tr><td/><td/><td colspan=\"2\">3.2 Classifying HT and MT</td></tr><tr><td/><td/><td>Trigram Model</td></tr></table>",
"text": "We train two trigram models on the HT and MT training sets. Let p M T denote the trigram model trained on MT sentences, and p HT the model trained on HT sentences. A sentence s is classified as MT if p M T (s) > p HT (s) and as HT otherwise. If s is from the HT test set and classified as HT, we count it as a success, and the same goes for the case when s is from the MT test set and classified as MT. The classification accuracy is obtained by dividing the number of correct classifications by the total number of sentences in the respective test set. Since the two classes are balanced, accuracy is an appropriate metric. The result is shown inTable 2.",
"type_str": "table",
"num": null
},
"TABREF1": {
"html": null,
"content": "<table><tr><td>From</td></tr></table>",
"text": "Classification accuracy of the trigram model.",
"type_str": "table",
"num": null
},
"TABREF3": {
"html": null,
"content": "<table><tr><td>MTLD</td><td>Original</td><td>Modified</td></tr><tr><td>CS MT</td><td>62.02</td><td>43.00</td></tr><tr><td>CS HT</td><td>63.80</td><td>43.04</td></tr><tr><td>DE MT</td><td>62.53</td><td>42.44</td></tr><tr><td>DE HT</td><td>64.59</td><td>42.76</td></tr><tr><td>RU MT</td><td>61.06</td><td>42.66</td></tr><tr><td>RU HT</td><td>64.51</td><td>43.05</td></tr></table>",
"text": "",
"type_str": "table",
"num": null
},
"TABREF4": {
"html": null,
"content": "<table><tr><td>BLEU M T orig</td><td>M T modf</td><td>M T orig</td></tr><tr><td>&</td><td>&</td><td>&</td></tr><tr><td>HT orig</td><td>HT modf</td><td>HT modf</td></tr><tr><td>CS-EN 0.42</td><td>0.46</td><td>0.39</td></tr><tr><td>DE-EN 0.41</td><td>0.45</td><td>0.38</td></tr><tr><td>RU-EN 0.37</td><td>0.40</td><td>0.34</td></tr></table>",
"text": "",
"type_str": "table",
"num": null
}
}
}
} |