File size: 52,953 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
{
    "paper_id": "M92-1031",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T03:13:02.155095Z"
    },
    "title": "CRL/NMSU and Brandeis : Description of the MucBruce System as Used for MUC-4",
    "authors": [
        {
            "first": "Jim",
            "middle": [],
            "last": "Cowie",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Louise",
            "middle": [],
            "last": "Guthrie",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Yorick",
            "middle": [],
            "last": "Wilks",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "James",
            "middle": [],
            "last": "Pustejovsky",
            "suffix": "",
            "affiliation": {},
            "email": ""
        },
        {
            "first": "Scott",
            "middle": [],
            "last": "Waterma",
            "suffix": "",
            "affiliation": {},
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Through their involvement in the Tipster project the Computing Research Laboratory at New Mexic o State University and the Computer Science Department at Brandeis University are developing a method fo r identifying articles of interest and extracting and storing specific kinds of information from large volumes o f Japanese and English texts. We intend that the method be general and extensible. The techniques involve d are not explicitly tied to these two languages nor to a particular subject area. Development for Tipster ha s been going on since September, 1992. The system we have used for the MUC-4 tests has only implemented some of the features we pla n to include in our final Tipster system. It relies intensively on statistics and on context-free text markin g to generate templates. Some more detailed parsing has been added for a limited lexicon, but lack of fulle r coverage places an inherent limit on its performance. Most of the information produced in our MUC template s is arrived at by probing the text which surrounds `significant' words for the template type being generated , in order to find appropriately tagged fillers for the template fields .",
    "pdf_parse": {
        "paper_id": "M92-1031",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Through their involvement in the Tipster project the Computing Research Laboratory at New Mexic o State University and the Computer Science Department at Brandeis University are developing a method fo r identifying articles of interest and extracting and storing specific kinds of information from large volumes o f Japanese and English texts. We intend that the method be general and extensible. The techniques involve d are not explicitly tied to these two languages nor to a particular subject area. Development for Tipster ha s been going on since September, 1992. The system we have used for the MUC-4 tests has only implemented some of the features we pla n to include in our final Tipster system. It relies intensively on statistics and on context-free text markin g to generate templates. Some more detailed parsing has been added for a limited lexicon, but lack of fulle r coverage places an inherent limit on its performance. Most of the information produced in our MUC template s is arrived at by probing the text which surrounds `significant' words for the template type being generated , in order to find appropriately tagged fillers for the template fields .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The overall system architecture is shown in Figure 1 . Three independent processes operate on an inpu t text . One, the Text Tagger, marks a variety of strings with semantic information . The other two, the Relevant Template Filter and the Relevant Paragraph Filter, perform word frequency analysis to determin e whether a text should be allowed to generate templates for particular incident types and which paragraph s are specifically related to each incident type . These predictions are used by the central process in th e system, the Template Constructor, which uses a variety of heuristics to extract template information fro m the tagged text . A skeleton template structure is then passed to the final process, the Template Formatter, which performs some consistency checking, creates cross references and attempts to expand any names foun d in the template to the longest form in which they occur in the text . Each of the above processes is described in more detail below .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 44,
                        "end": 52,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "OVERVIEW OF THE TEMPLATE FILLING PROCES S",
                "sec_num": null
            },
            {
                "text": "We have developed a procedure for detecting document types in any language . The system requires training texts for the types of documents to be classified and is developed on a sound statistical basis usin g probabilistic models of word occurrence [Guthrie and Walker 1991] . This may operate on letter grams o f appropriate size or on actual words of the language being targeted and develops optimal detection algorithm s from automatically generated \"word\" lists . The system depends on the availability of appropriate training texts . So far the method has been applied to English, discriminating between Tipster and MUC texts, an d to Japanese between Tipster texts and translations of ACM proceedings . In both cases the classification scheme developed was correct 99% of the time .",
                "cite_spans": [
                    {
                        "start": 249,
                        "end": 274,
                        "text": "[Guthrie and Walker 1991]",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevancy Filters",
                "sec_num": null
            },
            {
                "text": "The method has now been extended to the identification of relevant paragraphs and relevant templat e types for the MUC documents . This is a more complex problem due to the non-homogeneous nature of th e texts and the difficulty of deriving training sets of text . Each process uses two sets of words, one whic h occurs with high probability in the texts of interest, and the other which occurs in the `non-interesting ' texts . Due to the complexity of separating relevant from non-relevant information for the MUC texts w e actually use three filters, two trained on sets of non-relevant and relevant paragraphs and one trained o n sets of relevant and non-relevant texts . The lists of relevant and non-relevant paragraphs were derived using the templates of the 1300 text test corpus . Any paragraph which contributed two or more string fills to a particular template was used as part of the relevant training set ; paragraphs contributing only one string fill were regarded as of dubious accuracy and were not placed in either set and all other paragraphs wer e considered as non-relevant . Word lists were derived automatically by finding those words in the relevan t training set which occurred within a threshold of most frequently occurring words in the relevant paragraphs and not in the non-relevant paragraphs, and vice versa to obtain a set of non-relevant words .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevancy Filters",
                "sec_num": null
            },
            {
                "text": "The relevant template marker consists of two processes, the first trained on a set of texts consistin g of paragraphs from the MUC corpus which produced two or more string fills against text consisting o f paragraphs which generated no string fills .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevancy Filters",
                "sec_num": null
            },
            {
                "text": "These allow us to determine, based on word counts taken at paragraph level, whether the whole tex t should be checked for specific template types . The second stage is activated if any single paragraph in the text is found to be `relevant' . This stage is trained on the set of texts which generated a particular templat e type against texts which produced no templates . There are separate relevant and non-relevant lists of word s used to determine each template type .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevancy Filters",
                "sec_num": null
            },
            {
                "text": "The result is a vector represented as a Prolog fact which determines whether the texts will be allowed t o generate templates of a particular type . Thus : ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Relevancy Filters",
                "sec_num": null
            },
            {
                "text": "The relevant paragraph filter is the final stage and uses word lists which were derived from relevant an d non-relevant paragraphs for each template type .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "slot(4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING' , 'NO', 'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY']) .",
                "sec_num": null
            },
            {
                "text": "Once again this operates at the paragraph level and produces a list of paragraph numbers for eac h template type . These paragraph lists are only used if the relevant template filter has also predicted a template of that type . This stage produces a vector of relevant paragraphs . Thus : The two stages can be thought of as first distinguishing relevant texts for a particular template typ e from among all texts and second, given a relevant text, to distinguish between the relevant and non-relevan t paragraphs within that text for the template type .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "slot(4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING' , 'NO', 'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY']) .",
                "sec_num": null
            },
            {
                "text": "Partial word lists for relevant and non-relevant texts are given in Tables 1 and 2 . The full lists contain 124 and 117 words respectively . Partial relevant word lists for BOMBING at the text level (relevant template ) and the paragraph level are given in Tables 3 and 4 . The full lists contain 176 and 51 words respectively .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 68,
                        "end": 82,
                        "text": "Tables 1 and 2",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 257,
                        "end": 271,
                        "text": "Tables 3 and 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "slot(4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING' , 'NO', 'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY']) .",
                "sec_num": null
            },
            {
                "text": "A key question for the Tipster and MUC tasks is the correct identification of place names, company an d organization names, and the names of individuals . We now have available to us several sources of geographic , company and personal name information . In addition the templates provided for MUC also supplied nam e information . These have been incorporated in a set of tagging files which provide lexical information as a pre-processing stage for every text .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Semantic Tagging",
                "sec_num": null
            },
            {
                "text": "The details of the Text Tagger are shown in Figure 2 , which is a screen dump of an interface which allow s examination of the operation of each stage in the filter . The text window on the left shows the state of a text after the group dates process has converted dates to standard form and on the right after the temporary tags placed to identify date constituents have been removed . Each stage, apart from the last, marks the text with tags in the form :",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 44,
                        "end": 52,
                        "text": "Figure 2",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Semantic Tagging",
                "sec_num": null
            },
            {
                "text": "Thus for example a date takes the form : In general each stage in the pipeline is only allowed to modify text which is not already marked, althoug h an examination of already marked text is allowed . Several stages also place temporary markers in the text For processing by the template constructor the final convert facts stage changes each sentence into a Prolog fact, containing sentence and paragraph numbers and a list of structures holding the marked item s Thus : . sen (3,3,[name(\"GARCIA ALVARADO\",null),',', num(\"86\",num(86)),',' ,   cs(\"WAS\",closed(was,[pastv] )), gls(\"KILLED\",action(killed,'ATTACK')) , cs (\"WHEN\",closed(when,[conj,pron] )), cs (\"A\",closed(a,[determiner] All the programs in the Tagger are written in `C' or Lex . We describe three of these components in mor e detail .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 477,
                        "end": 570,
                        "text": "(3,3,[name(\"GARCIA ALVARADO\",null),',', num(\"86\",num(86)),',' ,   cs(\"WAS\",closed(was,[pastv]",
                        "ref_id": null
                    },
                    {
                        "start": 618,
                        "end": 649,
                        "text": "(\"WHEN\",closed(when,[conj,pron]",
                        "ref_id": null
                    },
                    {
                        "start": 657,
                        "end": 683,
                        "text": "(\"A\",closed(a,[determiner]",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "<\\TYPE> ACTUAL TEXT STRING {SEMANTIC INFORMATION} <\\ENDTYPE>",
                "sec_num": null
            },
            {
                "text": "This program uses a large list of known strings which is held alphabetically . For each word in the text a binary search is performed on the list . When a match is found it will be with the longest string beginnin g with the word, subsequent words in the text are compared with the matched string . If the complete string i s matched then this portion of text is marked with the information associated with the string . If a complet e match is not achieved the word is checked against the previous item in the list, which may also match the word, and the process is repeated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Known Item s",
                "sec_num": null
            },
            {
                "text": "The strings and information in the file are derived from a variety of sources . The place name informatio n provided for MUC, organization, target and weapon names derived from the MUC templates and furthe r lists of human occupations and titles derived from Longman's .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Known Item s",
                "sec_num": null
            },
            {
                "text": "The proper name filter uses a variety of methods to successfully identify a large majority of the huma n names found in a MUC text . It uses two data resources ; a complete word list of all the Longman Dictionar y headwords and a list of English and Spanish first and last names . In addition it uses the hidden Marko v Model algorithm described by BBN in MUC-3 to identify Spanish words . The first stage marks words no t in Longman's, Spanish words and known first and last names . The second stage decides whether a group of these items is indeed a name . Any group containing a Spanish word or a known name is recognized , unknown words on their own must be preceded by a title of some kind (identified by the Known Items step) . Once an unknown item is identified as a name, however, it is added temporarily to the list of first and las t names, so if it occurs in isolation later in the text it will be recognized correctly . A further complication to the problem of name recognition was found in several names which contained text which had already bee n identified as a place name . In this case the proper name marker over-rides the previous marking and marks the entire section of text as a human name .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Proper Names",
                "sec_num": null
            },
            {
                "text": "The date marker uses a wide variety of patterns which have been identified in the MUC and Tipster texts a s referring to time . Each date is converted to a standard form and the identified text marked . Relative time expressions are always converted with reference to the headline date on the text . This assumption appears to be valid in the vast majority of cases we have examined .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Date Part s",
                "sec_num": null
            },
            {
                "text": "The template constructor uses the tagged text and the list of relevant paragraphs for each template typ e to generate skeleton templates which are produced as a list of triples, SLOT NUMBER, SET FILL, STRIN G FILL . For example :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "[ [0 , 'TST2-MUC4-0048 ' ,null] ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "A sequence of paragraphs is assumed to generate a new template . The sentences in these paragraphs are examined for a sentence containing a key verb for the template type . Sentences before this sentence ar e held in reverse order and sentences after in normal order . Each sentence is stripped of any prefatory claus e terminated by \"that\" (e .g . GOVERNMENT OFFICIALS REPORTED TODAY THAT) . The remainder of the sentence is reordered into lists containing texts marked with specific semantic types . These correspond to the appropriate fillers for the main sections of the template . The sentence is then marked as active or passive . A search is then made in the current sentence and either the previous or the succeeding ones fo r items satisfying the appropriate conditions to fill a template slot . Thus for an active sentence the perpetrator will be sought in the head of the sentence and then, if not found, in previous sentences . This provides a crude form of reference resolution as pronouns are not marked with any specific semantic information . The target is checked for in the tail of the sentence and then in subsequent sentences . This process is repeated for all the main fields of the template . It relies heavily on the fact that our text locating techniques are accurate . If no appropriate action word is found the template creation process is abandoned . The process is also abandoned if some of the template filling criteria are not satisfied (eg if the human target is a militar y officer) . The template construction program is written in Prolog and was compiled to run stand-alone usin g Quintus Prolog .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "We obviously need to add more precise syntax and semantics at the sentence level and to provide a structure which allows the inter-relationship of a group of sentences to be captured . The advantage of the method we are using at the moment is that it is robust and can be used as a fall-back whenever the mor e precise methods fail . A limited amount of semantic parsing was implemented before the final MUC-4 test . This over-rode the robust method whenever an appropriate parse was found . Due to the limited number of lexical entries we were able to generate before the test, it was not possible to accurately assess the impac t of the more precise grammar .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "Below are given sample entries of the lexical structures used in the MUC-4 tests. The transitive ver b murder and gerundive nominal killing illustrate the current state of the integration of lexical semanti c information (seen in the qualia field) with corpus-related information derived from tuning (seen in th e cospec field) [Pustejovsky 1991] . Cospecifacaiion is a semantic tagging of what collocational patterns th e lexical item may enter into . The sem field specifies directly how to map the qualia values into the appropriat e slots in the MUC templates . Parsing rules which allow indeterminate gaps are used to match the cospecification against the ke y sentences found . A parser-generator uses the cospec fields of the GLS's to construct the parsing rules, wit h type constraints obtained from the corresponding qualia fields . Certain operators within the rules (such as np() and \"*\") allow varying degrees of unspecified material to be considered in the constituents of the parse . The parsing rules can in this way be seen as specifying complex regular expressions . Because of thi s looseness, the parser will not break due to unknown items or intervening material .",
                "cite_spans": [
                    {
                        "start": 328,
                        "end": 346,
                        "text": "[Pustejovsky 1991]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "These parsing rules are individually pre-compiled into compact Prolog code (each a small expressio n matching machine) before being included into the template constructor . The term-unification machinery of Prolog automatically relates the syntactic constituents of the parse with the type constraints from th e qualia and also with the arguments of the template semantics, avoiding the need for complex type matchin g and argument matching procedures .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "Performance is degraded by the current partial implementation of the cospec field in the lexical structure definition . The statistical-based corpus-tuning program for the lexical structures was not included for th e MUC-4 test runs, but is on development-schedule for inclusion in the Tipster test run later this summer . The cospec for a lexical item ideally encodes corpus-based usage information for each semantic aspect of the word (e .g . its qualia, event type, and argument structure) . This is a statistically-encoded structure o f all admissible semantic collocations associated with the lexical item .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "The initial seeding of the LS's is being done from lexical entries in the Longman Dictionary of Contemporary English [Proctor et al 1978] , largely using tools described in [Wilks et al 1990] . These are the n automatically adapted to the format of generative lexical structures . It is these lexical structures which ar e then statistically tuned against the corpus, following the methods outlined in [Pustejovsky 1992 ] and [Anic k and Pustejovsky 1990] . Semantic features for a lexical item which are missing or only partially specifie d from dictionary seeding are, where possible, induced from a semantic model of the corpus . ",
                "cite_spans": [
                    {
                        "start": 117,
                        "end": 137,
                        "text": "[Proctor et al 1978]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 173,
                        "end": 191,
                        "text": "[Wilks et al 1990]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 402,
                        "end": 419,
                        "text": "[Pustejovsky 1992",
                        "ref_id": "BIBREF5"
                    },
                    {
                        "start": 434,
                        "end": 455,
                        "text": "and Pustejovsky 1990]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Construction",
                "sec_num": null
            },
            {
                "text": "This final stage is also a Prolog program . This takes as input the lists of triples produced by the previou s stage and a list of every name found in the text . It then produces the final template, introducing cros s references between serially defined fields which are related to each other . The name list is used to attemp t to choose the fullest version of a name found in the text and substitute this for any shorter versions foun d in the template outline.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Template Formattin g",
                "sec_num": null
            },
            {
                "text": "MucBruce generates four templates for this text . All are related to the vehicle bomb described at th e beginning of the text . The template and relevant paragraphs filters produce the following predictions : 4, ['NO', 'ARSON', 'NO', 'ATTACK', 'YES', 'BOMBING', 'NO' , 'KIDNAPPING', 'NO', 'ROBBERY', 'NO', 'DUMMY'] ) . rel_paras ([[1,3,5,6,13,18,19,20],'ARSON' ,   [1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21],'ATTACK' ,  [1,3,4,5,6,7,8,9,10,11,13,14,16,17,18,19,20],'BOMBING' ,   [1,3,6,7,16,17,20],'KIDNAPPING', [19,20],'ROBBERY', [],'DUMMY'] ) .",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 211,
                        "text": "4,",
                        "ref_id": null
                    },
                    {
                        "start": 212,
                        "end": 218,
                        "text": "['NO',",
                        "ref_id": null
                    },
                    {
                        "start": 219,
                        "end": 227,
                        "text": "'ARSON',",
                        "ref_id": null
                    },
                    {
                        "start": 228,
                        "end": 233,
                        "text": "'NO',",
                        "ref_id": null
                    },
                    {
                        "start": 234,
                        "end": 243,
                        "text": "'ATTACK',",
                        "ref_id": null
                    },
                    {
                        "start": 244,
                        "end": 250,
                        "text": "'YES',",
                        "ref_id": null
                    },
                    {
                        "start": 251,
                        "end": 261,
                        "text": "'BOMBING',",
                        "ref_id": null
                    },
                    {
                        "start": 262,
                        "end": 268,
                        "text": "'NO' ,",
                        "ref_id": null
                    },
                    {
                        "start": 269,
                        "end": 282,
                        "text": "'KIDNAPPING',",
                        "ref_id": null
                    },
                    {
                        "start": 283,
                        "end": 288,
                        "text": "'NO',",
                        "ref_id": null
                    },
                    {
                        "start": 289,
                        "end": 299,
                        "text": "'ROBBERY',",
                        "ref_id": null
                    },
                    {
                        "start": 300,
                        "end": 305,
                        "text": "'NO',",
                        "ref_id": null
                    },
                    {
                        "start": 306,
                        "end": 314,
                        "text": "'DUMMY']",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 329,
                        "end": 552,
                        "text": "([[1,3,5,6,13,18,19,20],'ARSON' ,   [1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21],'ATTACK' ,  [1,3,4,5,6,7,8,9,10,11,13,14,16,17,18,19,20],'BOMBING' ,   [1,3,6,7,16,17,20],'KIDNAPPING', [19,20],'ROBBERY', [],'DUMMY']",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "TST2-MUC4-004 8",
                "sec_num": null
            },
            {
                "text": "slot(",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "TST2-MUC4-004 8",
                "sec_num": null
            },
            {
                "text": "This means that only 4 BOMBING templates will be produced . The first of these produces a reasonably complete match to the key ; details on the driver and bodyguards are omitted . The remaining three template s are incorrect, carrying only the information that a bombing has taken place. The attack on the home i s not identified by our naive method of multiple template generation, as it already occurs in a sequence o f paragraphs in which only the first event is found .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "TST2-MUC4-004 8",
                "sec_num": null
            },
            {
                "text": "We feel that our present system, given its only partially completed state, shows potential . In particular th e following techniques seem generally useful :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The recognition of text types and sub-texts within a text using statistical techniques trained on larg e numbers of sample texts .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The use of the key templates to derive system lexicons .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The automatic seeding of lexical structures from machine readable dictionaries .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The use of lexically-driven cospecification to provide a robust parsing method at the sentence level .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The successful combination of a variety of techniques in the human name recognizer .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "\u2022 The production of a number of independent tools for tagging texts .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            },
            {
                "text": "The system is robust and provides a good starting point for the application of more sophisticated techniques . Given appropriate data it should be possible to produce a similar system for a different domain in a matter of weeks . The tagger software is already being adapted to Japanese and we have already establishe d that we can achieve similar performance with the statistical methods for Japanese texts using characte r bigrams .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "CONCLUSION S",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "The system described here has been created using work funded by DARPA under contract number MDA904-91-C-9328 . The following colleagues at CRL and Brandeis have contributed time, ideas, programming ability and enthusiasm to the development of the MucBruce system ; Federica Busa, Peter Dilworth, Ted Dunning , Eric Eiverson, Steve Helmreich, Wang Jin, Fang Lin, Bill Ogden, Gees Stein, and Takahiro Waka o",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "ACKNOWLEDGEMENTS",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "THE FARABUNDO MARTI NATIONAL LIBERATION FRONT",
                "authors": [
                    {
                        "first": "'el Salvador : San",
                        "middle": [],
                        "last": "Salvador",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "18",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "1, '6' ,null] , [4, 'ATTACK ',null] , [2,'19 APR 89',null] , [3,'EL SALVADOR : SAN SALVADOR (CITY)',null] , [6, 'null' ,\"BOMB\"] , [7, 'BOMB' ,null] , [18, 'null' , \"ROBERTO GARCIA ALVARADO\"] , [8, 'TERRORIST ACT' ,null] , [9, 'null' ,\"TERRORIST\"] , [10, 'null ' , \"THE FARABUNDO MARTI NATIONAL LIBERATION FRONT\"] , [12, 'null' ,\"VEHICLE\"] , [13, 'TRANSPORT VEHICLE' ,null] , [19, 'null' ,\"GENERAL\"] , [20, 'MILITARY' ,null] , [21, 'null' ,null] , [5, 'ACCOMPLISHED' ,null] , [16,'-',null] , [23, 'DEATH' ,null] ]",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "An Application of Lexical Semantics to Knowledge Acquisitio n from Corpora",
                "authors": [
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Anick",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Proceedings of Coling 90",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Anick, Peter and Pustejovsky, J . (1990) . An Application of Lexical Semantics to Knowledge Acquisitio n from Corpora. Proceedings of Coling 90, Helsinki, Finland .",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Some Comments on Document Classification by Machine",
                "authors": [
                    {
                        "first": "Louise",
                        "middle": [],
                        "last": "Guthrie",
                        "suffix": ""
                    },
                    {
                        "first": "Elbert",
                        "middle": [],
                        "last": "Walker",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Computer and Cognitive Science",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Guthrie, Louise and Elbert Walker (1991) . Some Comments on Document Classification by Machine . Mem- orandum in Computer and Cognitive Science, MCCS-92-935, Computing Research Laboratory, New Mexic o State University, New Mexico .",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Longman Dictionary of Contemporary English",
                "authors": [
                    {
                        "first": "Paul",
                        "middle": [],
                        "last": "Proctor",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "F"
                        ],
                        "last": "Ilson",
                        "suffix": ""
                    },
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Ayto",
                        "suffix": ""
                    }
                ],
                "year": 1978,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Proctor, Paul, Robert F . Ilson, John Ayto, et al . (1978) . Longman Dictionary of Contemporary English , Longman Group Limited : Harlow, Essex, England .",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "The Generative Lexicon",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 1991,
                "venue": "Computational Linguistics",
                "volume": "17",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, James (1991) \"The Generative Lexicon,\" Computational Linguistics, 17 .4, 1991 .",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The Acquisition of Lexical Semantic Knowledge from Large Corpora",
                "authors": [
                    {
                        "first": "James",
                        "middle": [],
                        "last": "Pustejovsky",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "Proceedings of the DARPA Spoken and Written Language Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Pustejovsky, James (1992) \"The Acquisition of Lexical Semantic Knowledge from Large Corpora \" , in Pro- ceedings of the DARPA Spoken and Written Language Workshop, Arden House, New York, February, 1992 , Morgan Kaufmann .",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Providing Machin e Tractable Dictionary Tools",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Wilks",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Fass",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "C-M",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Guo",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "E"
                        ],
                        "last": "Mcdonald",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Plate",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "M"
                        ],
                        "last": "Slator",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Wilks, Y ., Fass, D ., C-M ., Guo, McDonald, J . E ., Plate, T . and Slator, B .M . 1990 . \"Providing Machin e Tractable Dictionary Tools,\" in Machine Translation, 5 .1, 1990 .",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "MucBruce -System Overvie w"
            },
            "FIGREF2": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "<\\date> 5 DAYS AGO {date(\"14 APR 89\",890414)} <\\enddate >"
            },
            "FIGREF3": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "MucBruce -Tagging Pipeline to allow subsequent grouping by following stages . These temporary markers are removed by the filter stages . Each text is marked as follows : Known Items Places, organizations, physical targets, human occupations, weapons . Proper Names Human proper names . Dates All standard date forms and other references to time. Closed class Prepositions, determiners and conjunctions . Residue All other words are marked as unknown . The final tagged text looks like this : <\\name> GARCIA ALVARADO <\\endname>, <\\num> 56 {num(56)} <\\endnum> , <\\cs> WAS {closed(was,[pastv])} <\\endcs> <\\gls> KILLED {action(killed,'ATTACK')} <\\endgls> <\\cs> WHEN {closed(when,[conj,pron])} <\\endcs> <\\cs> A {closed(a,[determiner]) } <\\endcs> <\\weapon> BOMB {type(['BOMB'])} <\\endweapon> <\\res> PLACE D {atom(placed)} <\\endres > <\\cs> BY {closed(by,[prep])} <\\endcs> <\\res> URBAN {atom(urban)} <\\endres > <\\organ> GUERRILLAS {type(['TERRORIST', 'NOUN' ])} <\\endorgan> <\\cs > ON {closed(on,[prep])} <\\endcs> <\\cs> HI S {closed(his,[determiner,pron])} <\\endcs> <\\target> VEHICL E {type(['TRANSPORT VEHICLE'])} <\\endtarget> <\\gls> EXPLODE D {action(exploded,'BOMBING')} <\\endgls> <\\cs> A S {closed(as,[conj,pron,prep])} <\\endcs> <\\cs> IT {closed(it,[pron]) } <\\endcs> <\\res> CAME {atom(came)} <\\endres > <\\cs> TO {closed(to,[prep])} <\\endcs> <\\cs> A {closed(a,[determiner]) } <\\endcs> <\\res> HALT {atom(halt)} <\\endres > <\\cs> AT {closed(at,[prep])} <\\endcs> <\\cs> AN {closed(an,[determiner])} <\\endcs > <\\res> INTERSECTION {atom(intersection)} <\\endres> <\\cs> IN {closed(in,[prep]) } <\\endcs> <\\res> DOWNTOWN {atom(downtown)} <\\endres> <\\place> SAN SALVADO R {type([['CITY','EL SALVADOR'],['DEPARTMENT','EL SALVADOR']])} <\\endplace> ."
            },
            "FIGREF4": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "\",closed(his,[determiner,pron])), target(\"VEHICLE\",type(['TRANSPORT VEHICLE'])) , gis(\"EXPLODED\",action(exploded,'BOMBING')), cs(\"AS\",closed(as,[conj,pron,prep])) , cs(\"IT\",closed(it,[pron])), res(\"CAME\",atom(came)) , cs(\"TO\",closed(to,[prep])), cs(\"A\",closed(a,[determiner])) , res(\"HALT\",atom(halt)), cs(\"AT\",closed(at,[prep])) , cs(\"AN\",closed(an,[determiner])), res(\"INTERSECTION\",atom(intersection)) , cs(\"IN\",closed(in,[prep])), res(\"DOWNTOWN\",atom(downtown)) , place(\"SAN SALVADOR\",type([['CITY','EL SALVADOR'],['DEPARTMENT','EL SALVADOR']])),' .']) ."
            },
            "FIGREF5": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "self , \"*\" , \"WITH\" , np(I1)])]) , sem([type ('AMOK '),perp(H1),hum_tgt(H2),last (I1),hum_tgt_eff('DEATH')]"
            },
            "FIGREF6": {
                "uris": null,
                "type_str": "figure",
                "num": null,
                "text": "TGT : EFFECT OF INCIDENT DEATH : \"ROBERTO GARCIA ALVARADO \" 24 . HUM TGT : TOTAL NUMBER * _Table 5 : One of Four Templates Generated for TST2-MUC4-004 8"
            },
            "TABREF0": {
                "type_str": "table",
                "num": null,
                "text": "A FLAG FROM THE <\\organ> MANUEL RODRIGUEZ' PATRIOTIC FRONT Itvpef[TERRORIST '; ' NAME' DI <\\endorgan> (<\\organ> FPMR Itypef[TERRORIST ', ' NAME 111 <\\endorgan> ) WAS FOUN D AT THE SCENE OF THE EXPLOSION. THE<\\organ> FPMR Itypet(TERRORIST, 'NAME' DI <\\endorgan> IS A CLANDESTINE LEFTIS T <\\organ GROUP ltypei('OTHER NOUN Di <\\endorgan> THAT PROMOTES \"ALL FORMS O F STRUGGLE\"AGAINST THE <\\organ> MILITAR Y",
                "content": "<table><tr><td>Input file: TST2-:MLC.-0002</td><td>Start</td><td>Overview : : Qui t</td></tr><tr><td/><td>Tagger</td><td/></tr><tr><td>i Know m</td><td/><td/></tr><tr><td>+ I Itemsz</td><td/><td/></tr><tr><td>Inpu t</td><td/><td/></tr><tr><td>Itype((' MILITARY: 'NOUN'. Dl &lt;\\endorgan &lt;\\organ&gt; GOVERNMENT Itype(CGOVERNMENT' , 'NOUN ' &lt;\\human&gt; POLICE Itype(('LAW ENFORCEM E NT' REPORTED THAT THE EXPLOSION CAUSED SERIOUS .'NOUN'DI &lt;\\endhuman&gt; SOURCES HAV E</td><td colspan=\"2\">A FLAG FROM THE &lt;\\organ&gt; MANUEL RODRIGUEZ PATRIOTIC FRONT Itypel[TERRORIST , ' NAME' DI &lt;\\endorgan&gt; (&lt;\\organ&gt; FP'I R \u00a3typet(TERRORIST. .'NAME' DI &lt;\\endorgan&gt; ) WAS FOUN D AT THE SCENE OF THE EXPLOSION. THE &lt;\\organ &gt; FPMR type((TERRORIST '.'NAME DI&lt;\\endorgan &gt; Properl IS A CLANDESTINE LEFTIST Names &lt;\\organ&gt; GROUP Itypeb1OTHEK, iNOUN`DI &lt;\\endorgan&gt; THAT PROMOTES 'ALL FORMS O F STRUGGLE\" AGAINST THE &lt;\\organ&gt;MILITARY \u00a3type(CM ILI TARY' . 'NOUN' DI &lt;\\endorgan&gt; &lt;\\organ&gt; GOVERNMENT ItypelrGOVERNMENT , 'NOUN' DI &lt;\\endorgan&gt; esuHEADED= BY &lt;\\human GENERAL Itypef[' MILITARY', 'NOUN; ' RANK 'DI &lt;\\endhuman&gt; -.nAUOUSTO= =suPINOCHET ..</td></tr></table>",
                "html": null
            },
            "TABREF2": {
                "type_str": "table",
                "num": null,
                "text": "",
                "content": "<table><tr><td colspan=\"2\">: Part of Non-Relevant Text Word Lis t</td></tr><tr><td>FREQUENCY</td><td>WORD</td></tr><tr><td/><td>BOM B</td></tr><tr><td/><td>EXPLOSIO N</td></tr><tr><td/><td>INJURE D</td></tr><tr><td/><td>EXPLODED</td></tr><tr><td/><td>DYNAMIT E</td></tr><tr><td/><td>CA R</td></tr><tr><td/><td>BOMBS</td></tr><tr><td/><td>STREET</td></tr><tr><td/><td>PLACE D</td></tr><tr><td/><td>DAMAGED</td></tr></table>",
                "html": null
            },
            "TABREF3": {
                "type_str": "table",
                "num": null,
                "text": "",
                "content": "<table><tr><td>: Part of Relevant Template Word List : BOMBIN G</td></tr></table>",
                "html": null
            },
            "TABREF4": {
                "type_str": "table",
                "num": null,
                "text": "",
                "content": "<table/>",
                "html": null
            },
            "TABREF5": {
                "type_str": "table",
                "num": null,
                "text": "....... . ...... . ....... ................... .. ........ ....... ......",
                "content": "<table><tr><td>\" MUCBr uca' [8L-NMSU/Brandei s</td><td/></tr><tr><td>Releven t</td><td/></tr><tr><td>Templates</td><td/></tr><tr><td/><td>Template</td></tr><tr><td>Tagge r</td><td>Formate r</td></tr><tr><td>(click to view)</td><td/></tr></table>",
                "html": null
            }
        }
    }
}