File size: 124,738 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
{
    "paper_id": "2006",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:20:19.305517Z"
    },
    "title": "Overview of the IWSLT 2006 Evaluation Campaign",
    "authors": [
        {
            "first": "Michael",
            "middle": [],
            "last": "Paul",
            "suffix": "",
            "affiliation": {
                "laboratory": "ATR Spoken Language Communication Research Labs",
                "institution": "Keihanna Science City",
                "location": {
                    "addrLine": "Hikaridai 2-2-2",
                    "postCode": "619-0288",
                    "settlement": "Kyoto"
                }
            },
            "email": "michael.paul@atr.jp"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This paper gives an overview of the evaluation campaign results of the International Workshop on Spoken Language Translation (IWSLT) 2006 1. In this workshop, we focused on the translation of spontaneous speech. The translation directions were Arabic, Chinese, Italian, or Japanese into English. In total, 21 translation systems from 19 research groups participated in this year's evaluation campaign. Both automatic and subjective evaluations were carried out in order to investigate the impact of spontaneity aspects on automatic speech recognition (ASR) and machine translation (MT) system performance as well as the robustness of stateof-the-art MT systems towards speech recognition errors. (' * ' indicates late run submissions that were submitted after the official submission period) ASR Output MT Correct Recognition Result official evaluation additional evaluation Engine official evaluation additional evaluation BLEU4 NIST METEOR BLEU4 NIST METEOR BLEU4 NIST METEOR BLEU4 NIST METEOR",
    "pdf_parse": {
        "paper_id": "2006",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This paper gives an overview of the evaluation campaign results of the International Workshop on Spoken Language Translation (IWSLT) 2006 1. In this workshop, we focused on the translation of spontaneous speech. The translation directions were Arabic, Chinese, Italian, or Japanese into English. In total, 21 translation systems from 19 research groups participated in this year's evaluation campaign. Both automatic and subjective evaluations were carried out in order to investigate the impact of spontaneity aspects on automatic speech recognition (ASR) and machine translation (MT) system performance as well as the robustness of stateof-the-art MT systems towards speech recognition errors. (' * ' indicates late run submissions that were submitted after the official submission period) ASR Output MT Correct Recognition Result official evaluation additional evaluation Engine official evaluation additional evaluation BLEU4 NIST METEOR BLEU4 NIST METEOR BLEU4 NIST METEOR BLEU4 NIST METEOR",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "The International Workshop on Spoken Language Translation (IWSLT) is an evaluation campaign organized by the Consortium for Speech Translation Advanced Research (C-STAR) 2 , that provides a common framework to compare and improve current state-of-the-art speech-to-speech translation technologies. Previous IWSLT workshops focused on the establishment of evaluation metrics for multilingual speech-to-speech translation [1] and the translation of automatic speech recognition results from read-speech input [2] .",
                "cite_spans": [
                    {
                        "start": 170,
                        "end": 171,
                        "text": "2",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 420,
                        "end": 423,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 507,
                        "end": 510,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The focus of this year's IWSLT was the translation of spontaneous-speech input. The evaluation campaign was carried out using a multilingual spoken language corpus including Arabic, Chinese, Italian, Japanese, and English sentences from the travel domain. The input to the machine translation (MT) engines was either the output of an automatic speech recognition (ASR) system applied to spontaneous-speech and read-speech input or the correct recognition result (CRR). The translation was carried out from Arabic, Chinese, Italian, or Japanese into English.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Participants were supplied with in-domain resources, but were free to use additional resources as well. Depending on the amount of in-domain training data, two different data tracks (OPEN, CSTAR) were distinguished. In total, 21 MT systems from 19 research groups participated in this year's evaluation campaign. A total of 73 MT engines were built to cover different combinations of language pairs and data tracks. The translation quality of all official run submissions was evaluated using automatic evaluation metrics. In addition, human assessments were carried out for the most popular track, i.e., the translation of Chinese ASR output into English. Based on the evaluation results, the impact of the spontaneity aspects of speech on the ASR and MT systems performance as well as the robustness of state-of-the-art MT systems towards speech recognition errors were investigated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The IWSLT 2006 evaluation campaign was carried out using a multilingual spoken language corpus. The Basic Travel Expression Corpus (BTEC ) contains tourism-related sentences similar to those that are usually found in phrase books for tourists going abroad [3] . Parts of this corpus were already used in previous IWSLT evaluation campaigns [1, 2] . In addition to the sentence-aligned training corpus, the evaluation data sets of previous workshops including multiple reference translations were provided to the participants as a development corpus.",
                "cite_spans": [
                    {
                        "start": 4,
                        "end": 14,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    },
                    {
                        "start": 256,
                        "end": 259,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 340,
                        "end": 343,
                        "text": "[1,",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 344,
                        "end": 346,
                        "text": "2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IWSLT 2006 Spoken Language Corpus",
                "sec_num": "2.1."
            },
            {
                "text": "The evaluation data set of IWSLT 2006 consisted of spontaneous answers to questions in the tourism domain. This \"Challenge Task 2006\" differed greatly from the translation tasks of previous workshops. In addition to the spontaneous speech data, read-speech recordings of the cleaned transcripts were also used for evaluation purposes. ASR engines provided by the C-STAR partners were applied to the speech input and produced word lattices from which NBEST/1BEST lists were extracted automatically using publicly available tools. Word segmentations according to the output of the ASR engines were also provided for all supplied resources.",
                "cite_spans": [
                    {
                        "start": 27,
                        "end": 37,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    },
                    {
                        "start": 123,
                        "end": 133,
                        "text": "Task 2006\"",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IWSLT 2006 Spoken Language Corpus",
                "sec_num": "2.1."
            },
            {
                "text": "For this year's evaluation campaign, parts of the Arabic (A), Chinese (C), Italian (I), Japanese (J), and English (E) subsets of the BTEC corpus were used. The participants were supplied with a training corpus of 40K sentence pairs for CE/JE, and 20K sentence pairs for AE/IE and three development data sets (dev1, dev2, dev3; 500 sentences each) consisting of the evaluation data sets of previous IWSLT evaluation campaigns including up to 16 English reference translations for evaluation purposes. Table 1: The IWSLT 2006 spoken language corpus   type  lang  sentence count  avg.  word  word  uage  total  unique  length  tokens  types  training  C/E 39,953 37,559 / 39,633 8.6 / 9.2 342,362 / 367,265 11,174 / 7,225  J/E 39,953 37,173 / 39,633 10.0 / 9.2 398,498 / 367,265 11,407 / 7,225  A/E 19,972 19,777 / 19,880 Details of the IWSLT 2006 spoken language corpus are given in Table 1 . The total sentence counts show the number of bilingual sentence pairs and the unique sentence counts refer to the number of unique monolingual sentences. The average length column shows the average number of words per training sentence where the word segmentation for the source language was the one given by the output of the ASR engines. The English target sentences were tokenized according to the evaluation specifications used for this year's evaluation campaign. Word token refers to the number of words in the corpus and word type refers to the vocabulary size.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 500,
                        "end": 818,
                        "text": "Table 1: The IWSLT 2006 spoken language corpus   type  lang  sentence count  avg.  word  word  uage  total  unique  length  tokens  types  training  C/E 39,953 37,559 / 39,633 8.6 / 9.2 342,362 / 367,265 11,174 / 7,225  J/E 39,953 37,173 / 39,633 10.0 / 9.2 398,498 / 367,265 11,407 / 7,225  A/E 19,972 19,777 / 19,880",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 881,
                        "end": 888,
                        "text": "Table 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Supplied Resources",
                "sec_num": "2.1.1."
            },
            {
                "text": "In order to obtain speech input with a certain level of spontaneity, question/answer conversations between Chinese speakers were recorded by the C-STAR partners. In the preparation phase, around 1000 questions were extracted manually from the original BTEC corpus, avoiding redundancy and an attempt was made to maximize the diversity of the topics addressed. In addition, answer keys, i.e. short phrases providing hints on the answer contents, were added to each question. For recording, the questions were split into 20 subsets and pairs of native Chinese speakers 3 were asked to carryout a \"one-turn\" role play. A brief scene description (outline of the role-play) was given to both speakers. Speaker SQ obtained a list of questions and asked one question after the other. Speaker SA obtained a list of answer keys and answered to each question using the following guidelines:",
                "cite_spans": [
                    {
                        "start": 567,
                        "end": 568,
                        "text": "3",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "2.1.2."
            },
            {
                "text": "\u2022 answer in a natural way based on the answer keys Examples of questions, answer keys, and recorded answers are given in Table 2 . The obtained Challenge Task 2006 data sets were split into two subsets: dev4 (489 sentences, development corpus) and eval (500 sentences, evaluation corpus). The difficulty of this year's evaluation data set is illustrated in Table 3 . It lists the target language perplexity of all translation tasks according to the supplied resources of IWSLT 2006. Compared to last year's evaluation data sets, the language perplexities of dev4 and eval were three times higher. In addition to the Chinese spontaneous-speech recordings, read-speech recordings of the Challenge Task 2006 were produced for all source languages. The cleaned transcriptions of the Chinese spontaneous-speech recordings were translated into English, Japanese, Arabic, and Italian by human translators. For English, two native speakers produced three alternative translations each resulting in a total of seven reference translations for the dev4 and eval data set, respectively. The source language texts were read aloud by 20 native speakers of the respective source language 4 and recognition results were obtained using ASR engines provided by the C-STAR partners. Table 4 summarizes the out-of-vocabulary (OOV) rates of the obtained data sets. The OOV rates are listed for all source languages and input conditions (CRR, 1BEST, NBEST) and for the English reference translations using the 20K/40K training corpus. In general, the OOV rates of CRR are higher than the OOV rates of the 1BEST data sets, because unknown words might either be ignored or mis-recognized as known words by the ASR engine. For NBEST lists, OOV rates are naturally higher than those of the 1BEST data sets. 2.7 / 1.9 Cs: spontaneous speech, Cr: read speech The lowest OOV rates for the CRR data are found for Japanese and Chinese (1.2-2.6%). The figures for Italian are twice as high. However, very large OOV rates of 13-17% are obtained for Arabic which are caused mainly by word segmentation issues (prefix/postfix attachment) and spelling variations in Arabic. The spontaneous speech data sets have slightly lower OOV rates than the read speech data.",
                "cite_spans": [
                    {
                        "start": 471,
                        "end": 482,
                        "text": "IWSLT 2006.",
                        "ref_id": null
                    },
                    {
                        "start": 1174,
                        "end": 1175,
                        "text": "4",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 121,
                        "end": 128,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    },
                    {
                        "start": 357,
                        "end": 364,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 1265,
                        "end": 1272,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "2.1.2."
            },
            {
                "text": "The recognition accuracies of the utilized ASR engines for the Challenge Task 2006 data sets are summarized in Table 5. The lattice accuracy figures show the percentage of correct recognition results contained in the lattices, where the 1BEST accuracy is the accuracy of the best path 5 extracted from each lattice. Besides for Italian, the word accuracies of the read-speech recordings ranged between 82%-90% (lattice) and 74%-85% (1BEST), where the percentages of correctly recognized sentences (sentence accuracy) ranged between 30%-50% (lattice) and 20%-40% (1BEST). However, a large difference can be seen between the different source languages. The lattice accuracies of Chinese were 5%-8% lower than those obtained for Japanese and Arabic. For Chinese and Arabic, a large drop in recognition performance was seen when comparing lattice and 1BEST accuracies.",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 82,
                        "text": "Challenge Task 2006",
                        "ref_id": null
                    },
                    {
                        "start": 285,
                        "end": 286,
                        "text": "5",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "2.1.2."
            },
            {
                "text": "Concerning different speech types, a drop in recognition performance of 3%-6% in word accuracy and 5%-8% in sentence accuracy was seen for the spontaneous-speech data compared to the read-speech results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "2.1.2."
            },
            {
                "text": "In order to investigate the effects of recognition errors on the MT performance, the participants were asked to translate two types of input using the same MT engine:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Input Conditions",
                "sec_num": "2.2."
            },
            {
                "text": "1. speech input (wave forms) or ASR output (lattices, NBEST/1BEST lists) 2. correct recognition results (plain text)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Input Conditions",
                "sec_num": "2.2."
            },
            {
                "text": "The translation of the correct recognition results was mandatory for all participants. For the ASR output, most of the participants applied their MT engines to the 1BEST recognition results. Three research groups reported a gain in translation performance by translating NBEST lists and combining the obtained translation hypotheses. In addition, three groups exploited the ASR lattices directly to obtain its translation results. Concerning the speech input, the participants were allowed to use their own ASR engine, however none of the participants took this opportunity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Translation Input Conditions",
                "sec_num": "2.2."
            },
            {
                "text": "For training purpose, the spoken language corpus described in Section 2.1 was provided to all participating research groups. In addition, the participants were free to use additional resources 6 as well.",
                "cite_spans": [
                    {
                        "start": 193,
                        "end": 194,
                        "text": "6",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Track Conditions",
                "sec_num": "2.3."
            },
            {
                "text": "The past IWSLT workshop results have shown that the amount of BTEC sentence pairs used for training has a dominant effect on the performance of the MT systems on the given task. However, only C-STAR partners have access to the full BTEC corpus 7 consisting of 172K sentence pairs. In order to allow a fair comparison between the systems, the following two data tracks were distinguished:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Track Conditions",
                "sec_num": "2.3."
            },
            {
                "text": "\u2022 Open Data Track:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Track Conditions",
                "sec_num": "2.3."
            },
            {
                "text": "Any resources, except for the full BTEC corpus and proprietary data, can be used as the training data for the MT engines. Concerning the BTEC and proprietary data, only the Supplied Resources (see Section 2.1.1) were allowed to be used for training purposes.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Track Conditions",
                "sec_num": "2.3."
            },
            {
                "text": "\u2022 C-STAR Data Track: Any resources (including the full BTEC corpus and proprietary data) can be used as the training data of MT engines.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data Track Conditions",
                "sec_num": "2.3."
            },
            {
                "text": "The supplied resources of IWSLT 2006 were released three months ahead of the official run submissions. The organizers also set-up an online evaluation server that could be used to evaluate system performance on the provided development data sets using automatic scoring metrics (see Section 2.5.1).",
                "cite_spans": [
                    {
                        "start": 26,
                        "end": 36,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Run Submissions",
                "sec_num": "2.4."
            },
            {
                "text": "The official run submission period was limited to three days during which the automatic scoring result feedback to the participant via email was made unavailable in order to avoid any system tuning towards the eval data. The schedule of the evaluation campaign is summarized in Table 6 . In total, 19 research groups took part in this year's evaluation campaign and two groups registered multiple translation systems. Information on the organisations and the utilized translation systems is summarized in Appendix A. Most participants used statistical machine translation (SMT) systems. In addition, example-based MT (EBMT) systems, rule-based MT (RBMT) systems and hybrid approaches combining multiple MT engines were also exploited. Five of the MT systems were applied to all input conditions. Each participant submitted at least one run. In total, 73 official and 83 contrastive runs were submitted for the eval. The distribution of run submissions for the respective data track/input condition is summarized in Table 7 . After the official run submission period, the participants still had access to the evaluation server and in order to do additional experiments.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 278,
                        "end": 285,
                        "text": "Table 6",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 1015,
                        "end": 1022,
                        "text": "Table 7",
                        "ref_id": "TABREF6"
                    }
                ],
                "eq_spans": [],
                "section": "Run Submissions",
                "sec_num": "2.4."
            },
            {
                "text": "In order to deliver more usable translations, both for reading and for listening, and to make the IWSLT evaluation 7 http://cstar.atr.jp/cstar-corpus campaign results more comparable to outcomes of other MT evaluation workshops like those organized by NIST 8 or TC-STAR 9 , the official evaluation specifications of this year's IWSLT were defined as:",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 116,
                        "text": "7",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 257,
                        "end": 258,
                        "text": "8",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 270,
                        "end": 271,
                        "text": "9",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "\u2022 case-sensitive",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "\u2022 with punctuation marks ('.' ',' '?' '!' '\"') tokenized",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "However, in order to be able to compare this year's IWSLT results to the outcomes of previous IWSLT workshops, the evaluation specifications of last year were also applied as an additional evaluation:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "\u2022 case-insensitive (lower-case only)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "\u2022 no punctuation marks (remove '.' ',' '?' '!' '\"')",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "\u2022 no word compounds (replace hyphens '-' with space)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "The focus of this year's evaluation campaign was the translation of speech data. Therefore, all input data files (see Section 2.2) were case-insensitive and without punctuation information. However, true-case and punctuation information was provided for all training data sets that could be used for recovering case/punctuation information according to the official evaluation specifications. Instructions 10 on how to build a baseline tool for case/punctuation insertions using the SRI Language Modeling Toolkit was provided to all participants.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "2.5."
            },
            {
                "text": "The automatic evaluation of run submissions was carried out using an online evaluation server. The participants had to upload two translation files (see Section 2.2). Text preprocessing was carried out automatically according to the evaluation specification described above. For the official evaluation, an English tokenizer tool, that was made available to all participants, was applied. For the additional evaluation all punctuation marks were removed and the text was converted to lower-case. For development purposes, the participants had access to the online evaluation server of the dev4 data set three weeks before the eval run submission period. For the official evaluation results 11 of the IWSLT 2006 workshop, we utilized the following three metrics: ",
                "cite_spans": [
                    {
                        "start": 690,
                        "end": 692,
                        "text": "11",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Automatic Evaluation",
                "sec_num": "2.5.1."
            },
            {
                "text": "Human assessments of translation quality were carried out with respect to the fluency and adequacy of the translation. Fluency indicates how the evaluation segment sounds to a native speaker of English. For adequacy, the evaluator was presented with the source language input as well as a \"gold standard\" translation and has to judge how much of the information from the original translation is expressed in the translation. The fluency and adequacy judgments consist of one of the grades listed in Table 9 . The subjective evaluation was carried out only for the most popular track, i.e., the translation of Chinese ASR output into English. In order to compare different translation input conditions (CE spont, CE read, CE CRR), 7 MT systems that were applied to all input conditions were selected according to the automatic scoring results. In total, 21 run submissions were evaluated by humans. The human assessment was limited to the translation outputs of 400 input sentences selected randomly from the eval data. In order to reduce the costs further, all translation results were pooled, i.e., in case of identical translations of the same source sentence by multiple MT engines, the translation was graded only once, and the respective rank was assigned to all MT engines with the same output.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 499,
                        "end": 506,
                        "text": "Table 9",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Subjective Evaluation",
                "sec_num": "2.5.2."
            },
            {
                "text": "Each translation of a single MT engine was evaluated by three judges where each system score is calculated as the median of the assigned grades. For fluency, only native speakers of English were used. The adequcay evaluation was carried out by native speakers and non-native speakers with sufficient knowledge of English. In total, 12 English native speakers and 11 non-native speakers were involved in this year's evaluation task. A total of 38,198 grading operations were performed.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subjective Evaluation",
                "sec_num": "2.5.2."
            },
            {
                "text": "The evaluation results of the IWSLT 2006 workshop are summarized in Appendix B (human assessment) and Appendix C (automatic evaluation). For each translation condition/evaluation metric, the best score is marked in bold-face.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Results",
                "sec_num": "3."
            },
            {
                "text": "Based on the obtained evaluation results, the respective MT engines were ranked. In order to decide whether the translation output of one MT engine is significantly better than another one, we used the bootStrap 12 method that (1) performs a random sampling with replacement from the eval data set, (2) calculates the respective evaluation metric score of each engine for the sampled test sentences and the difference between the two MT system scores, (3) repeats the sampling/scoring step iteratively 13 , and (4) applies the Student's t-test at a significance level of 95% confidence to test whether the score differences are significant [9] . In this paper, we omit a horizontal line between two MT engines in the MT engine ranking tables, if the system performances do not differ significantly according to the bootStrap method.",
                "cite_spans": [
                    {
                        "start": 502,
                        "end": 504,
                        "text": "13",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 640,
                        "end": 643,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Results",
                "sec_num": "3."
            },
            {
                "text": "Each sentence was evaluated by three human judges. Due to different levels of experience and background of the evaluators, variations in judgments were to be expected. The grader consistency is investigated in Section 3.1.1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subjective Evaluation Results",
                "sec_num": "3.1."
            },
            {
                "text": "The subjective evaluation results of the MT outputs for the CE translation tasks are summarized in Appendix B.1. where the MT engines are in descending order with respect to the adequacy score. Some general findings are given in Section 3.1.2.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Subjective Evaluation Results",
                "sec_num": "3.1."
            },
            {
                "text": "In order to investigate the degree of grading consistency between the human evaluators, the Kappa statistics for the agreement of fluency and adequacy ratings were calculated. Only low agreement levels (fluency: 0.24, adequacy: 0.31) were obtained for both metrics. In addition, the average grading difference between two graders was 0.80 points for fluency and 0.68 points for adequacy.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Grader Consistency",
                "sec_num": "3.1.1."
            },
            {
                "text": "In order to check the self-consistency of subjective evaluations, each grader had to evaluate a set of 100 sentences a second time. Based on these grades, the average difference between the first and second grade (fluency: 0.50, adequacy: 0.40) and the probability that the grader will assign a different grade (fluency: 0.44, adequacy: 0.39) were calculated.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Grader Consistency",
                "sec_num": "3.1.1."
            },
            {
                "text": "The grader consistency figures are slightly worse than those obtained in the previous IWSLT workshops, which might be partly caused by the lower translation quality of the MT outputs. In order to minimize the impact of grader inconsistencies, the median of the three assigned grades was selected as the final judgment for each sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Grader Consistency",
                "sec_num": "3.1.1."
            },
            {
                "text": "The highest fluency and adequacy scores were obtained for the translation of the correct recognition results (1.67 for adequacy, 1.59 for fluency). Speech recognition errors for read speech input led to a drop in MT performance of 0.33-0.47 points for adequacy and 0.12-0.35 points for fluency. This indicates that recognition errors affected primarily the information content of the translation output. Moreover, only minor degradations in both metrics can be seen when comparing read-speech with spontaneous speech results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Performance",
                "sec_num": "3.1.2."
            },
            {
                "text": "However, the degree of degradation varies between MT engines. The smallest drop in performance can be seen for the JHU WS06 system [16] . Although it does not achieve the best performance on the CRR task, it seems to be quite robust against recognition errors. One reason might be that it does not restrict its input to 1BEST ASR outputs, instead it uses information from the word lattice to overcome recognition problems. In contrast, the MIT-LL AFRL system [18] achieved the highest adequacy score on the CRR task, but performance became worse on the CE spont task. Curiously, its fluency score for spontaneous speech is higher than its read speech score.",
                "cite_spans": [
                    {
                        "start": 131,
                        "end": 135,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 459,
                        "end": 463,
                        "text": "[18]",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Performance",
                "sec_num": "3.1.2."
            },
            {
                "text": "Such system specific phenomena lead to quite different MT engine rankings depending on which metric is used (see Appendix B.2.). In order to get an idea on the \"overall\" performance of each system, MT engine rankings of multiple metrics are combined by simply calculating the average rank for each MT engine. If no significant difference between two MT engine scores could be determined, the same rank was assigned to both MT engines. Table 10 summarizes the MT engine rankings when combining fluency and adequacy results. An omitted horizontal line between MT engines indicates the systems were not significantly different. ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 435,
                        "end": 443,
                        "text": "Table 10",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "System Performance",
                "sec_num": "3.1.2."
            },
            {
                "text": "The automatic evaluation results of all MT engines using the official as well as the additional evaluation specifications are listed in Appendix C.1. The MT systems are ordered according to the BLEU4 metrics. The correct recognition results of all MT systems that were applied to the CE spont as well as the CE read translation task are identical and they are listed redundantly for the convenience of the reader. The MT engine rankings are summarized in Appendix C.2. Similar to the subjective evaluation results, the rankings vary with respect to the utilized automatic evaluation metrics. In order to get an idea of how closely the respective metrics are related, the Pearson correlation coefficients were calculated for all automatic evaluation metric combinations. For each translation direction, we used the official run submissions for both (ASR, CRR) input conditions, i.e., 24 runs for CE spont, 28 runs for CE read, 28 for JE, 22 runs for AE, and 24 runs for IE, respectively. The correlation coefficients are given in Table 11 . On the left hand side of the table, the BLEU4 metric is compared to the NIST and METEOR metric. The correlation between NIST and METEOR is given on the right hand side. With the exception of the CE translation task, very high correlation coefficients were obtained, but large differences can be seen for each source language. BLEU4 seems to correlate better with NIST for JE, but better with METEOR for AE. These characteristics also affect the MT engine rankings (see Appendix B.2.). Analogous to the subjective evaluation, an \"overall\" MT engine ranking combining all automatic evaluation metrics for the translation of ASR output is given in Table 12 . Again, an omitted horizontal line between MT engines indicates the systems were not significantly different.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 1029,
                        "end": 1037,
                        "text": "Table 11",
                        "ref_id": "TABREF10"
                    },
                    {
                        "start": 1685,
                        "end": 1693,
                        "text": "Table 12",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Automatic Evaluation Results",
                "sec_num": "3.2."
            },
            {
                "text": "The evaluation metrics listed in Table 8 were selected because the outcomes of last year's IWSLT workshop showed that these metrics were closely related to human judgement. Table 13 summarizes the Pearson correlation coefficients between BLEU4/NIST/METEOR and adequacy/fluency for this year's CE translation task. The results confirm previous findings that fluency correlates best with BLEU4 and that adequacy correlates best with METEOR. The NIST metric has only moderate correlation to both subjective evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 33,
                        "end": 40,
                        "text": "Table 8",
                        "ref_id": "TABREF7"
                    },
                    {
                        "start": 173,
                        "end": 181,
                        "text": "Table 13",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Correlation between Subjective and Automatic Evaluation Results",
                "sec_num": "3.3."
            },
            {
                "text": "Interestingly, the correlation coefficients are much higher for correct recognition results than for the translation of ASR outputs. This is especially so for the spontaneous speech translation task where only low correlations were obtained for adequacy. This indicates that standard evaluation metrics might not be appropriate for dealing with spontaneous speech translation tasks. Future investigations should focus on how to measure the impact of spontaneity aspects on the MT translation quality in order to improve the reliability of automatic evaluation metrics.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Correlation between Subjective and Automatic Evaluation Results",
                "sec_num": "3.3."
            },
            {
                "text": "As indicated by the English language perplexity figures listed in Table 3 , the Challenge Task 2006 of this year's evaluation campaign was much more difficult than the translation tasks of previous IWSLT workshops. The MT performance for all translation conditions on this year's evaluation set was much lower compared to the results of previous IWSLT evaluation campaigns.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 66,
                        "end": 73,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "4.1."
            },
            {
                "text": "One of the reasons is the discrepancy between the supplied resources and this year's evaluation data set. The supplied resources contain mainly short sentences, whereas the evaluation data sentences were much longer. In addition, the OOV rate is quite high for this year's IWSLT 2006 evaluation data. Hence, current state-of-the-art MT systems need to improve their capability to deal with input sentences having characteristics not covered by the training corpus or containing phrases never seen before. Further research on automatic text preprocessing techniques (sentence splitting, word segmentation, etc,), model adaptation and the translation of unknown words is necessary to fill the gap.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Challenge Task 2006",
                "sec_num": "4.1."
            },
            {
                "text": "Comparing the Open Data Track with the CSTAR Data Track results improvements of up to 4%-5% in BLEU as well as METEOR and 0.5-0.7 points in NIST were obtained when using additional in-domain training data for CE and JE.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Resources",
                "sec_num": "4.2."
            },
            {
                "text": "In addition, some participants also investigated in the utilization of additional out-of-domain training resources [14, 29] and reported mixed success depending on the input condition and translation task.",
                "cite_spans": [
                    {
                        "start": 115,
                        "end": 119,
                        "text": "[14,",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 120,
                        "end": 123,
                        "text": "29]",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Additional Resources",
                "sec_num": "4.2."
            },
            {
                "text": "When comparing the results of the official and additional evaluation specification, the utilized evaluation metrics showed quite different phenomena. The NIST scores are generally lower for the evaluation taking into account punctuation and case information.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "4.3."
            },
            {
                "text": "Very similar scores were obtained for METEOR. However, the current version of this metric is not compatible with the official evaluation specifications. The script removes punctuation/case information and separates word compounds, differing from the additional evaluation specifications and therefore resulting in slightly different scores.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "4.3."
            },
            {
                "text": "An unexpected effect, however, was seen for the BLEU metric. In contrast to NIST, many MT engines achieved higher BLEU scores for the official evaluation specifications, despite punctuation/case errors in the MT output. The extent of this phenomenon, however, differed between the language pairs (JE: 50%, AE: 30%, CE: 30% of the utilized MT engines). Interestingly, this phenomenon was not found for the translation of Italian where the BLEU scores of the additional evaluation specifications were always higher.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation Specifications",
                "sec_num": "4.3."
            },
            {
                "text": "For the IWSLT 2006 evaluation data, the same set of English reference translations were used for the evaluation of all translations outputs. Therefore, the translation results of MT engines using different source languages as the input can be directly compared.",
                "cite_spans": [
                    {
                        "start": 8,
                        "end": 18,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Dependency",
                "sec_num": "4.4."
            },
            {
                "text": "Looking at the automatic evaluation results of the Open Data Track, the highest scores were obtained on the IE translation task for the CRR and the ASR output translation conditions. The latter was surprising given Italian had the worst recognition accuracies. One reason might be the close relationship between these two languages.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Dependency",
                "sec_num": "4.4."
            },
            {
                "text": "For Arabic, the high OOV rate caused problems for MT systems that relied on the supplied word segmentations. However, resegmenting the data set proved to be effective for increasing the vocabulary coverage and improving translation quality [14] .",
                "cite_spans": [
                    {
                        "start": 240,
                        "end": 244,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Dependency",
                "sec_num": "4.4."
            },
            {
                "text": "For Japanese, the highest recognition accuracy was obtained. However, due to large differences in syntactic structure and word order, the JE translation task seems to be one of the most difficult tasks and the best performing systems obtained lower scores compared to the AE and IE results. Interestingly, the JE task featured the largest number of non-SMT engines including a commercial system that achieved quite good performances (see [24, 17] ).",
                "cite_spans": [
                    {
                        "start": 438,
                        "end": 442,
                        "text": "[24,",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 443,
                        "end": 446,
                        "text": "17]",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Dependency",
                "sec_num": "4.4."
            },
            {
                "text": "For Chinese, the recognition accuracy for read speech is similar to the Arabic recognition results, but the automatic evaluation scores obtained for the top-scoring MT engines are much lower. The complexity of the CE translation task seems to be similar to JE. Altogether, the complexity 14 of the translation tasks of this year's IWSLT evaluation campaign can be summarized as: CE \u2248 JE > AE IE",
                "cite_spans": [
                    {
                        "start": 288,
                        "end": 290,
                        "text": "14",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Language Dependency",
                "sec_num": "4.4."
            },
            {
                "text": "When comparing the results of the ASR Output condition and the CRR data sets, all MT engines achieved lower scores for the translation of ASR output. The complexity of the translation input conditions can be summarized as:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Robustness towards ASR Output",
                "sec_num": "4.5."
            },
            {
                "text": "ASR spont > ASR read CRR",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Robustness towards ASR Output",
                "sec_num": "4.5."
            },
            {
                "text": "The impact of recognition errors, however, differs between the languages and is closely related to the recognition accuracy obtained for the respective speech input. A moderate degradation was seen for the JE/AE/CE translation tasks (0.5-3% for BLEU, 0.3-0.7 points for NIST, 3-7% for ME-TEOR). However, the low recognition performance for Italian caused the largest difference (5-8% for BLEU, 0.9-1.2 points for NIST, 6-12% for METEOR) for IE. In addition, MT engines that were only applied to the first-best recognition output showed a larger drop in performance than MT engines that directly used information from the word lattice. In order to make MT systems more robust against speech recognition errors and to tap the full potential of the ASR systems, more research on how to directly exploit word lattices efficiently is required. The results on using confusion networks reported by IWSLT 2006 participants [15, 16, 29] are promising and lead into the right direction.",
                "cite_spans": [
                    {
                        "start": 891,
                        "end": 901,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    },
                    {
                        "start": 915,
                        "end": 919,
                        "text": "[15,",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 920,
                        "end": 923,
                        "text": "16,",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 924,
                        "end": 927,
                        "text": "29]",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Robustness towards ASR Output",
                "sec_num": "4.5."
            },
            {
                "text": "This year's workshop provided a testbed for applying novel ideas on how to deal with problems in the area of spontaneous speech translation. Various innovative ideas were explored, most notably the usage of out-of-domain training data [14, 29] , new methods for distortion modeling [15, 26] , topic-dependent model adaptation [20, 23] , efficient decoding of word lattices [16] , and rescoring/reranking methods of NBEST list [22, 23, 29] . Although not all ideas proved to be effective, new insights into the complexity of combining speech recognition and machine translation technologies were obtained that will help to advance the current state-ofthe-art in speech translation.",
                "cite_spans": [
                    {
                        "start": 235,
                        "end": 239,
                        "text": "[14,",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 240,
                        "end": 243,
                        "text": "29]",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 282,
                        "end": 286,
                        "text": "[15,",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 287,
                        "end": 290,
                        "text": "26]",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 326,
                        "end": 330,
                        "text": "[20,",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 331,
                        "end": 334,
                        "text": "23]",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 373,
                        "end": 377,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 426,
                        "end": 430,
                        "text": "[22,",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 431,
                        "end": 434,
                        "text": "23,",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 435,
                        "end": 438,
                        "text": "29]",
                        "ref_id": "BIBREF28"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "5."
            },
            {
                "text": "I thank the C-STAR partners for their accomplishments during the preparation of this workshop and the subjective evaluation task. In particular, I would like to thank Roldano Cattoni, Roger Hsiao, Gen Itoh, Shigeki Matsuda, Jinsong Zhang, Shuwu Zhang for their support in recording the speech data sets and generating the ASR outputs. Special thanks to Matthias Eck for his extensive technical support in setting-up and maintaining the online evaluation servers. I also thank the program committee members for reviewing a large number of MT system descriptions and technical paper submissions. Last, but not least, I thank all research groups for their active participation in the IWSLT 2006 evaluation campaign and for making the IWSLT 2006 workshop a success.",
                "cite_spans": [
                    {
                        "start": 681,
                        "end": 691,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    },
                    {
                        "start": 731,
                        "end": 741,
                        "text": "IWSLT 2006",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": "6."
            },
            {
                "text": "http://www.slc.atr.jp/IWSLT2006 2 http://www.c-star.org/",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "An exception was Arabic with only one native speaker.5 We used the lattice-toolkit of the SRI Language Modeling Toolkit (http://www.speech.sri.com/projects/srilm) to automatically extract NBEST lists from ASR lattices.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "Please refer to the MT system descriptions of each participant for details on what kind of additional resources were used.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://www.nist.gov/speech/tests/{mt|gale} 9 http://www.elda.org/en/proj/tcstar-wp4/index.htm 10 http://www.slc.atr.jp/IWSLT2006/downloads/case+punc tool using SR ILM.instructions.txt",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "In addition to the official evaluation metrics used for IWSLT 2006, the word error rate (WER)[4] and position-independent WER (PER)[5] were also calculated by the evaluation server and provided to the participants for the analysis of their systems.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "http://projectile.is.cs.cmu.edu/research/public/tools/bootStrap/tutorial.htm13 2000 iterations were used for the analysis of the IWSLT 2006 results",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u2248 : \"similar\", > : \"more difficult\", : \"much more difficult\".",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "' * ' indicates late run submissions that were submitted after the official run submission period.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "Open",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "AE -read speech",
                "sec_num": null
            },
            {
                "text": "Research",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Appendix A. MT System Overview",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Overview of the IWSLT04 evaluation campaign",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Akiba",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Kando",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Nakaiwa",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Tsujii",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "1--12",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Akiba, M. Federico, N. Kando, H. Nakaiwa, M. Paul, and J. Tsujii, \"Overview of the IWSLT04 evaluation campaign,\" in Proc. of the International Workshop on Spoken Language Translation, Kyoto, Japan, 2004, pp. 1-12.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Overview of the IWSLT 2005 evaluation campaign",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Eck",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Hori",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "11--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Eck and C. Hori, \"Overview of the IWSLT 2005 evaluation campaign,\" in Proc. of the International Workshop on Spoken Language Translation, Pittsburgh, USA, 2005, pp. 11-32.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Creating corpora for speech-to-speech translation",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Kikui",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takezawa",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the EUROSPEECH03",
                "volume": "",
                "issue": "",
                "pages": "381--384",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Kikui, E. Sumita, T. Takezawa, and S. Yamamoto, \"Creating corpora for speech-to-speech translation,\" in Proc. of the EUROSPEECH03, Geneve, Switzerland, 2003, pp. 381-384.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "An evaluation tool for machine translation: Fast evaluation for machine translation research",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Niessen",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Leusch",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2000,
                "venue": "Proc. of the 2nd LREC",
                "volume": "",
                "issue": "",
                "pages": "39--45",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Niessen, F. J. Och, G. Leusch, and H. Ney, \"An evaluation tool for machine translation: Fast evaluation for machine translation research,\" in Proc. of the 2nd LREC, Athens, Greece, 2000, pp. 39-45.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the 41st ACL",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, \"Minimum error rate training in statistical machine translation,\" in Proc. of the 41st ACL, Sapporo, Japan, 2003, pp. 160-167.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "BLEU: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the 40th ACL",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Papineni, S. Roukos, T. Ward, and W. Zhu, \"BLEU: a method for automatic evaluation of machine trans- lation,\" in Proc. of the 40th ACL, Philadelphia, USA, 2002, pp. 311-318.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the HLT 2002",
                "volume": "",
                "issue": "",
                "pages": "257--258",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Doddington, \"Automatic evaluation of machine translation quality using n-gram co-occurrence statis- tics,\" in Proc. of the HLT 2002, San Diego, USA, 2002, pp. 257-258.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "65--72",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Banerjee and A. Lavie, \"METEOR: An automatic metric for MT evaluation with improved correlation with human judgments,\" in Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Mea- sures for Machine Translation and/or Summarization, Ann Arbor, Michigan, 2005, pp. 65-72.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Interpreting Bleu/NIST Scores: How Much Improvement do We Need to Have a Better System",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc of the LREC",
                "volume": "",
                "issue": "",
                "pages": "2051--2054",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Zhang, S. Vogel, and A. Waibel, \"Interpreting Bleu/NIST Scores: How Much Improvement do We Need to Have a Better System?\" in Proc of the LREC, 2004, pp. 2051-2054.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Finite-State Transducer-based Statistical Machine Translation using Joint Probabilities",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Bangalore",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kanthak",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Haffner",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "16--22",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Bangalore, S. Kanthak, and P. Haffner, \"Finite-State Transducer-based Statistical Machine Translation using Joint Probabilities,\" in Proc. of the International Work- shop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 16-22.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "IWSLT-06: experiments with commercial MT systems and lessons from subjective evaluations",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Boitet",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Bey",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Tomokiyo",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Cao",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Blanchon",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "23--30",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Boitet, Y. Bey, M. Tomokiyo, W. Cao, and H. Blan- chon, \"IWSLT-06: experiments with commercial MT systems and lessons from subjective evaluations,\" in Proc. of the International Workshop on Spoken Lan- guage Translation, Kyoto, Japan, 2006, pp. 23-30.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "MATREX: DCU Machine Translation System for IWSLT 2006",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Stroppa",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Way",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "31--36",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Stroppa and A. Way, \"MATREX: DCU Machine Translation System for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Transla- tion, Kyoto, Japan, 2006, pp. 31-36.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Toward Integrating Word Sense and Entity Disambiguation into Statistical Machine Translation",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Carpuat",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "37--44",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Carpuat, Y. Shen, X. Yu, and D. Wu, \"Toward In- tegrating Word Sense and Entity Disambiguation into Statistical Machine Translation,\" in Proc. of the Inter- national Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 37-44.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "IBM Arabic-to-English Translation for IWSLT 2006",
                "authors": [
                    {
                        "first": "Y.-S",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "45--52",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y.-S. Lee, \"IBM Arabic-to-English Translation for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 45-52.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "The ITC-irst SMT System for IWSLT 2006",
                "authors": [
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cattoni",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Cetello",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "53--58",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "B. Chen, R. Cattoni, N. Bertoldi, M. Cetello, and M. Federico, \"The ITC-irst SMT System for IWSLT 2006,\" in Proc. of the International Workshop on Spo- ken Language Translation, Kyoto, Japan, 2006, pp. 53- 58.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "The JHU Workshop 2006 IWSLT System",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "59--63",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Shen, R. Zens, N. Bertoldi, and M. Federico, \"The JHU Workshop 2006 IWSLT System,\" in Proc. of the International Workshop on Spoken Language Transla- tion, Kyoto, Japan, 2006, pp. 59-63.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Example-based Machine Translation based on Deeper NLP",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Nakazawa",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yu",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Kawahara",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kurohashi",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "64--70",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Nakazawa, K. Yu, D. Kawahara, and S. Kurohashi, \"Example-based Machine Translation based on Deeper NLP,\" in Proc. of the International Workshop on Spo- ken Language Translation, Kyoto, Japan, 2006, pp. 64- 70.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "The MIT-LL/AFRL IWSLT-2006 MT System",
                "authors": [
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Delaney",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Anderson",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "71--76",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. Shen, B. Delaney, and T. Anderson, \"The MIT- LL/AFRL IWSLT-2006 MT System,\" in Proc. of the International Workshop on Spoken Language Transla- tion, Kyoto, Japan, 2006, pp. 71-76.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "Phrase Reordering for Statistical Machine Translation Based on Predicate-Argument Structure",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Komachi",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Nagata",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Matsumoto",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "77--82",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Komachi, M. Nagata, and Y. Matsumoto, \"Phrase Reordering for Statistical Machine Translation Based on Predicate-Argument Structure,\" in Proc. of the Inter- national Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 77-82.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "The NiCT-ATR Statistical Machine Translation System for IWSLT 2006",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Paul",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Okuma",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yasuda",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Lepage",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Denoual",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Mochihashi",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Finch",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "83--90",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zhang, H. Yamamoto, M. Paul, H. Okuma, K. Ya- suda, Y. Lepage, E. Denoual, D. Mochihashi, A. Finch, and E. Sumita, \"The NiCT-ATR Statistical Machine Translation System for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Transla- tion, Kyoto, Japan, 2006, pp. 83-90.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "NLPR Translation System for IWSLT 2006 Evaluation Campaign",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Chai",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Du",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [],
                        "last": "Wei",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Liu",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "He",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zong",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "91--94",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Chai, J. Du, W. Wei, P. Liu, K. Zhou, Y. He, and C. Zong, \"NLPR Translation System for IWSLT 2006 Evaluation Campaign,\" in Proc. of the Interna- tional Workshop on Spoken Language Translation, Ky- oto, Japan, 2006, pp. 91-94.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "NTT Statistical Machine Translation for IWSLT 2006",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Watanabe",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Suzuki",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Tsukada",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Isozaki",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "95--102",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Watanabe, J. Suzuki, H. Tsukada, and H. Isozaki, \"NTT Statistical Machine Translation for IWSLT 2006,\" in Proc. of the International Workshop on Spo- ken Language Translation, Kyoto, Japan, 2006, pp. 95- 102.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Mauser",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Hasan",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "103--110",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney, \"The RWTH Statistical Machine Translation System for the IWSLT 2006 Evaluation,\" in Proc. of the Inter- national Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 103-110.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "The SLE Example-Based Translation System",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Whitelock",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Poznanski",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "111--115",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Whitelock and V. Poznanski, \"The SLE Example- Based Translation System,\" in Proc. of the Interna- tional Workshop on Spoken Language Translation, Ky- oto, Japan, 2006, pp. 111-115.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "The TALP Ngram-based SMT System for IWSLT 2006",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Crego",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gispert",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Lambert",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Khalilov",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "B"
                        ],
                        "last": "Mari\u00f1o",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Banchs",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "A"
                        ],
                        "last": "Fonollosa",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "116--122",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. M. Crego, A. de Gispert, P. Lambert, M. Khalilov, M. R. Costa-juss\u00e0, J. B. Mari\u00f1o, R. Banchs, and J. A. Fonollosa, \"The TALP Ngram-based SMT System for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 116-122.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "TALP Phrase-Based System and TALP System Combination for IWSLT 2006",
                "authors": [
                    {
                        "first": "M",
                        "middle": [
                            "R"
                        ],
                        "last": "Costa-Juss\u00e0",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "M"
                        ],
                        "last": "Crego",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Gispert",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Lambert",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Khalilov",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "A"
                        ],
                        "last": "Fonollosa",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "B"
                        ],
                        "last": "Mari\u00f1o",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Banchs",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "123--129",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. R. Costa-juss\u00e0, J. M. Crego, A. de Gispert, P. Lam- bert, M. Khalilov, J. A. Fonollosa, J. B. Mari\u00f1o, and R. Banchs, \"TALP Phrase-Based System and TALP System Combination for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Transla- tion, Kyoto, Japan, 2006, pp. 123-129.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "The UKA/CMU Statistical Machine Translation System for IWSLT 2006",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Eck",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [],
                        "last": "Lane",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Bach",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Hewavitharana",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Kolss",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [],
                        "last": "Zhao",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [
                            "S"
                        ],
                        "last": "Hildebrand",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "130--137",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "M. Eck, I. Lane, N. Bach, S. Hewavitharana, M. Kolss, B. Zhao, A. S. Hildebrand, S. Vogel, and A. Waibel, \"The UKA/CMU Statistical Machine Translation Sys- tem for IWSLT 2006,\" in Proc. of the International Workshop on Spoken Language Translation, Kyoto, Japan, 2006, pp. 130-137.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "The CMU-UKA Syntax Augmented Machine Translation System for IWSLT-06",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Zollmann",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Venugopal",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Vogel",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Waibel",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "138--144",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Zollmann, A. Venugopal, S. Vogel, and A. Waibel, \"The CMU-UKA Syntax Augmented Machine Trans- lation System for IWSLT-06,\" in Proc. of the Interna- tional Workshop on Spoken Language Translation, Ky- oto, Japan, 2006, pp. 138-144.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The University of Washington Machine Translation System for IWSLT 2006",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Kirchhoff",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Duh",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Lim",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "145--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Kirchhoff, K. Duh, and C. Lim, \"The University of Washington Machine Translation System for IWSLT 2006,\" in Proc. of the International Workshop on Spo- ken Language Translation, Kyoto, Japan, 2006, pp. 145-152.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "The XMU Phrase-Based Statistical Machine Translation System for IWSLT 2006",
                "authors": [
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "X",
                        "middle": [],
                        "last": "Shi",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Zhou",
                        "suffix": ""
                    }
                ],
                "year": 2006,
                "venue": "Proc. of the International Workshop on Spoken Language Translation",
                "volume": "",
                "issue": "",
                "pages": "153--157",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Y. Chen, X. Shi, and C. Zhou, \"The XMU Phrase-Based Statistical Machine Translation System for IWSLT 2006,\" in Proc. of the International Workshop on Spo- ken Language Translation, Kyoto, Japan, 2006, pp. 153-157.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "text": "avoid direct recitation of answer keys \u2022 in case of Yes/No-questions, try to explain the reason 3 20 speakers, gender: 10x female/male each, age: 21 -32 (avg: 25.7)",
                "uris": null,
                "num": null
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>scene: [airplane] passenger asks flight attendance for help</td></tr><tr><td>question: Okay. Where can I put my luggage? Is it here okay?</td></tr><tr><td>key: (not here, overhead compartement)</td></tr><tr><td>answer: \"sorry you'd better put it in the overhead comparte-</td></tr><tr><td>ment\"</td></tr><tr><td>scene: [airport] asking directions</td></tr><tr><td>question: Take me to this address. How long will it take?</td></tr><tr><td>key: (depending on traffic condition, around 20 minutes)</td></tr><tr><td>answer: \"it's hard to say it depends on the traffic conditions</td></tr><tr><td>it should take only twenty minutes or so if there's no</td></tr><tr><td>traffic jam\"</td></tr></table>",
                "text": "Data preparation of Challenge Task 2006"
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td colspan=\"4\">: English language perplexity of IWSLT 2006 transla-</td></tr><tr><td>tion tasks</td><td/><td/></tr><tr><td colspan=\"2\">translation</td><td colspan=\"2\">training data</td></tr><tr><td>type</td><td colspan=\"3\">task 40K (CE/JE) 20K (AE/IE)</td></tr><tr><td colspan=\"2\">development dev1</td><td>27.5</td><td>32.6</td></tr><tr><td/><td>dev2</td><td>31.4</td><td>36.7</td></tr><tr><td/><td>dev3</td><td>32.9</td><td>38.8</td></tr><tr><td/><td>dev4</td><td>85.6</td><td>98.3</td></tr><tr><td colspan=\"2\">evaluation eval</td><td>105.9</td><td>113.9</td></tr></table>",
                "text": ""
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>type lang</td><td/><td colspan=\"2\">OOV rates (%)</td></tr><tr><td colspan=\"4\">uage CRR 1BEST NBEST</td></tr><tr><td>dev4 Cs</td><td>2.0</td><td>2.0</td><td>2.3</td></tr><tr><td>Cr</td><td>2.0</td><td>1.7</td><td>2.3</td></tr><tr><td>J</td><td>1.7</td><td>1.3</td><td>1.3</td></tr><tr><td>A</td><td>13.1</td><td>14.2</td><td>15.4</td></tr><tr><td>I</td><td>3.6</td><td>2.1</td><td>2.2</td></tr><tr><td>E 7</td><td/><td>1.7 / 1.4</td><td/></tr><tr><td>eval Cs</td><td>2.6</td><td>2.1</td><td>2.4</td></tr><tr><td>Cr</td><td>2.6</td><td>2.4</td><td>2.5</td></tr><tr><td>J</td><td>2.2</td><td>1.6</td><td>2.3</td></tr><tr><td>A</td><td>14.3</td><td>16.0</td><td>17.1</td></tr><tr><td>I</td><td>4.3</td><td>2.5</td><td>2.6</td></tr><tr><td>E 7</td><td/><td/><td/></tr></table>",
                "text": "OOV rates ofIWSLT 2006  spoken language corpus"
            },
            "TABREF4": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>80</td></tr></table>",
                "text": "Recognition accuracy of IWSLT 2006 spoken language corpus type lang word (%) sentence (%) uage lattice 1BEST lattice 1BEST dev4 Cs 76.95 67.38 22.49 18.00 Cr 83.24 74.78 30.47 23.31 J 88.95 84.35 50.31 40.08 A 86.71 73.36 41.10 19.84 I 76.02 74.10 15.34 13.91 eval Cs 79.08 68.11 22.80 16.60 Cr 82.07 73.64 28.40 22."
            },
            "TABREF5": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>Event</td><td>Date</td></tr><tr><td>Training Corpus Release</td><td>May 12, 2006</td></tr><tr><td colspan=\"2\">Development Corpus Release June 30, 2006</td></tr><tr><td>Evaluation Corpus Release</td><td>August 7, 2006</td></tr><tr><td>Result Submission Due</td><td>August 9, 2006</td></tr></table>",
                "text": "IWSLT 2006 evaluation campaign schedule"
            },
            "TABREF6": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>Translation</td><td colspan=\"2\">Open Data Track</td><td colspan=\"2\">CSTAR Data Track</td></tr><tr><td>Input</td><td>Research</td><td>Official</td><td>Research</td><td>Official</td></tr><tr><td colspan=\"5\">Condition Groups (Contrastive) Groups (Contrastive)</td></tr><tr><td>CE spont</td><td>12</td><td>12 (11)</td><td>2</td><td>3 (3)</td></tr><tr><td>read</td><td>12</td><td>14 (17)</td><td>2</td><td>3 (3)</td></tr><tr><td>JE read</td><td>12</td><td>14 (14)</td><td>2</td><td>2 (3)</td></tr><tr><td>AE read</td><td>9</td><td>11 (14)</td><td>1</td><td>1 (1)</td></tr><tr><td>IE read</td><td>10</td><td>12 (14)</td><td>1</td><td>1 (3)</td></tr><tr><td>TOTAL</td><td>19</td><td>63 (70)</td><td>2</td><td>10 (13)</td></tr></table>",
                "text": "Distribution of run submissions"
            },
            "TABREF7": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td/><td>Scores range between 0 (worst) and 1 (best) [6]</td></tr><tr><td>NIST:</td><td>a variant of BLEU4 using the arithmetic mean of</td></tr><tr><td/><td>weighted n-gram precision values. Scores are posi-</td></tr><tr><td/><td>tive with 0 being the worst possible [7]</td></tr><tr><td colspan=\"2\">METEOR: calculates unigram overlaps between a translations</td></tr><tr><td/><td>and reference texts using various levels of matches</td></tr><tr><td/><td>(exact, stem, synonym) are taken into account.</td></tr><tr><td/><td>Scores range between 0 (worst) and 1 (best) [8]</td></tr></table>",
                "text": "Automatic evaluation metrics BLEU4: the geometric mean of n-gram precision by the system output with respect to reference translations."
            },
            "TABREF8": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>Fluency</td><td>Adequacy</td></tr><tr><td>4 Flawless English</td><td>4 All Information</td></tr><tr><td>3 Good English</td><td>3 Most Information</td></tr><tr><td>2 Non-native English</td><td>2 Much Information</td></tr><tr><td>1 Disfluent English</td><td>1 Little Information</td></tr><tr><td>0 Incomprehensible</td><td>0 None</td></tr></table>",
                "text": "Human assessment"
            },
            "TABREF9": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>CE spont</td><td>CE read</td><td>CRR</td></tr><tr><td>JHU WS06</td><td>JHU WS06</td><td>MIT-LL AFRL</td></tr><tr><td>RWTH</td><td>MIT-LL AFRL</td><td>RWTH</td></tr><tr><td>NTT</td><td>RWTH</td><td>NTT</td></tr><tr><td>MIT-LL AFRL</td><td>NTT</td><td>JHU WS06</td></tr><tr><td>UKACMU SMT</td><td>NiCT-ATR</td><td>NiCT-ATR</td></tr><tr><td>NiCT-ATR</td><td>UKACMU SMT</td><td>UKACMU SMT</td></tr></table>",
                "text": "Combination of Subjective Evaluation Rankings"
            },
            "TABREF10": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>BLEU4</td><td colspan=\"2\">NIST METEOR</td><td>NIST</td><td>METEOR</td></tr><tr><td>CE spont</td><td>0.78</td><td>0.86</td><td>CE spont</td><td>0.86</td></tr><tr><td>CE read</td><td>0.69</td><td>0.73</td><td>CE read</td><td>0.72</td></tr><tr><td>JE</td><td>0.95</td><td>0.88</td><td>JE</td><td>0.91</td></tr><tr><td>AE</td><td>0.85</td><td>0.98</td><td>AE</td><td>0.90</td></tr><tr><td>IE</td><td>0.98</td><td>0.95</td><td>IE</td><td>0.97</td></tr></table>",
                "text": "Correlation between Automatic Evaluation Metrics"
            },
            "TABREF11": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td>CE spont</td><td>CE read</td><td>JE read</td><td>AE read</td><td>IE read</td></tr><tr><td>RWTH</td><td>RWTH</td><td>RWTH</td><td>IBM</td><td>Washington-U</td></tr><tr><td>JHU WS06</td><td>MIT-LL AFRL</td><td>NiCT-ATR</td><td>NiCT-ATR</td><td>NiCT-ATR</td></tr><tr><td>NiCT-ATR</td><td>NiCT-ATR</td><td>UKACMU SMT</td><td>TALP tuples</td><td>TALP tuples</td></tr><tr><td>UKACMU SMT</td><td>JHU WS06</td><td>NTT</td><td>TALP comb</td><td>MIT-LL AFRL</td></tr><tr><td>HKUST</td><td>ITC-irst</td><td>MIT-LL AFRL</td><td>NTT</td><td>TALP comb</td></tr><tr><td>ITC-irst</td><td>TALP tuples</td><td>ITC-irst</td><td>UKACMU SMT</td><td>ITC-irst</td></tr><tr><td>MIT-LL AFRL</td><td>TALP phrases</td><td>SLE</td><td>TALP phrases</td><td>TALP phrases</td></tr><tr><td>NTT</td><td>UKACMU SMT</td><td>HKUST</td><td>ITC-irst</td><td>NTT</td></tr><tr><td>Xiamen-U</td><td>HKUST</td><td>TALP tuples</td><td>DCU</td><td>DCU</td></tr><tr><td>ATT</td><td>TALP comb</td><td>NAIST</td><td>HKUST</td><td>UKACMU SMT</td></tr><tr><td>NLPR</td><td>NTT</td><td>Kyoto-U</td><td>CLIPS</td><td>HKUST</td></tr><tr><td>CLIPS</td><td>Xiamen-U</td><td>TALP comb</td><td/><td>CLIPS</td></tr><tr><td/><td>NLPR</td><td>TALP phrases</td><td/><td/></tr><tr><td/><td>ATT</td><td>CLIPS</td><td/><td/></tr></table>",
                "text": "Combination of Automatic Evaluation Rankings"
            },
            "TABREF12": {
                "type_str": "table",
                "html": null,
                "num": null,
                "content": "<table><tr><td colspan=\"3\">CE spon BLEU4 NIST METEOR</td></tr><tr><td>Fluency</td><td>0.88 0.55</td><td>0.72</td></tr><tr><td colspan=\"2\">Adequacy 0.34 0.57</td><td>0.54</td></tr><tr><td colspan=\"3\">CE read BLEU4 NIST METEOR</td></tr><tr><td>Fluency</td><td>0.89 0.63</td><td>0.66</td></tr><tr><td colspan=\"2\">Adequacy 0.83 0.64</td><td>0.89</td></tr><tr><td colspan=\"3\">CE CRR BLEU4 NIST METEOR</td></tr><tr><td>Fluency</td><td>0.96 0.84</td><td>0.93</td></tr><tr><td colspan=\"2\">Adequacy 0.95 0.82</td><td>0.96</td></tr></table>",
                "text": "Correlation between Subjective and Automatic Evaluation Metrics"
            }
        }
    }
}