File size: 114,455 Bytes
6fa4bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 |
{
"paper_id": "2005",
"header": {
"generated_with": "S2ORC 1.0.0",
"date_generated": "2023-01-19T07:22:18.694303Z"
},
"title": "The RWTH Phrase-based Statistical Machine Translation System",
"authors": [
{
"first": "Richard",
"middle": [],
"last": "Zens",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "zens@cs.rwth-aachen.de"
},
{
"first": "Oliver",
"middle": [],
"last": "Bender",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "bender@cs.rwth-aachen.de"
},
{
"first": "Sa\u0161a",
"middle": [],
"last": "Hasan",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "hasan@cs.rwth-aachen.de"
},
{
"first": "Shahram",
"middle": [],
"last": "Khadivi",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "khadivi@cs.rwth-aachen.de"
},
{
"first": "Evgeny",
"middle": [],
"last": "Matusov",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "matusov@cs.rwth-aachen.de"
},
{
"first": "Jia",
"middle": [],
"last": "Xu",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "xujia@cs.rwth-aachen.de"
},
{
"first": "Yuqi",
"middle": [],
"last": "Zhang",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "yzhang@cs.rwth-aachen.de"
},
{
"first": "Hermann",
"middle": [],
"last": "Ney",
"suffix": "",
"affiliation": {
"laboratory": "",
"institution": "RWTH Aachen University",
"location": {
"postCode": "D-52056",
"settlement": "Aachen",
"country": "Germany"
}
},
"email": "ney@cs.rwth-aachen.de"
}
],
"year": "",
"venue": null,
"identifiers": {},
"abstract": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation 2005. We use a two pass approach. In the first pass, we generate a list of the N best translation candidates. The second pass consists of rescoring and reranking this N-best list. We will give a description of the search algorithm as well as the models that are used in each pass. We participated in the supplied data tracks for manual transcriptions for the following translation directions: Arabic-English, Chinese-English, English-Chinese and Japanese-English. For Japanese-English, we also participated in the C-Star track. In addition, we performed translations of automatic speech recognition output for Chinese-English and Japanese-English. For both language pairs, we translated the single-best ASR hypotheses. Additionally, we translated Chinese ASR lattices.",
"pdf_parse": {
"paper_id": "2005",
"_pdf_hash": "",
"abstract": [
{
"text": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation 2005. We use a two pass approach. In the first pass, we generate a list of the N best translation candidates. The second pass consists of rescoring and reranking this N-best list. We will give a description of the search algorithm as well as the models that are used in each pass. We participated in the supplied data tracks for manual transcriptions for the following translation directions: Arabic-English, Chinese-English, English-Chinese and Japanese-English. For Japanese-English, we also participated in the C-Star track. In addition, we performed translations of automatic speech recognition output for Chinese-English and Japanese-English. For both language pairs, we translated the single-best ASR hypotheses. Additionally, we translated Chinese ASR lattices.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Abstract",
"sec_num": null
}
],
"body_text": [
{
"text": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2005.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "We use a two pass approach. First, we generate a word graph and extract a list of the N best translation candidates. Then, we apply additional models in a rescoring/reranking approach.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "This work is structured as follows: first, we will review the statistical approach to machine translation and introduce the notation that we will use in the later sections. Then, we will describe the models and algorithms that are used for generating the N -best lists, i.e., the first pass. In Section 4, we will describe the models that are used to rescore and rerank this N -best list, i.e., the second pass. Afterward, we will give an overview of the tasks and discuss the experimental results.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Introduction",
"sec_num": "1."
},
{
"text": "In statistical machine translation, we are given a source language sentence f J 1 = f 1 . . . f j . . . f J , which is to be translated into a target language sentence e I 1 = e 1 . . . e i . . . e I . Among all possible target language sentences, we will choose the sentence with the highest probability: ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Source-channel approach to SMT",
"sec_num": "1.1."
},
{
"text": "e\u00ce 1 =",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Source-channel approach to SMT",
"sec_num": "1.1."
},
{
"text": "This decomposition into two knowledge sources is known as the source-channel approach to statistical machine translation [1] . It allows an independent modeling of the target language model P r(e I 1 ) and the translation model P r(f J 1 |e I 1 ) 1 . The target language model describes the well-formedness of the target language sentence. The translation model links the source language sentence to the target language sentence. The argmax operation denotes the search problem, i.e., the generation of the output sentence in the target language.",
"cite_spans": [
{
"start": 121,
"end": 124,
"text": "[1]",
"ref_id": "BIBREF0"
},
{
"start": 247,
"end": 248,
"text": "1",
"ref_id": "BIBREF0"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Source-channel approach to SMT",
"sec_num": "1.1."
},
{
"text": "An alternative to the classical source-channel approach is the direct modeling of the posterior probability P r(e I 1 |f J 1 ). Using a log-linear model [2] , we obtain:",
"cite_spans": [
{
"start": 153,
"end": 156,
"text": "[2]",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Log-linear model",
"sec_num": "1.2."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "P r(e I 1 |f J 1 ) = exp M m=1 \u03bb m h m (e I 1 , f J 1 ) e I 1 exp M m=1 \u03bb m h m (e I 1 , f J 1 )",
"eq_num": "(3)"
}
],
"section": "Log-linear model",
"sec_num": "1.2."
},
{
"text": "The denominator represents a normalization factor that depends only on the source sentence f J 1 . Therefore, we can omit it during the search process. As a decision rule, we obtain:\u00ea\u00ce",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Log-linear model",
"sec_num": "1.2."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "1 = argmax I,e I 1 M m=1 \u03bb m h m (e I 1 , f J 1 )",
"eq_num": "(4)"
}
],
"section": "Log-linear model",
"sec_num": "1.2."
},
{
"text": "This approach is a generalization of the source-channel approach. It has the advantage that additional models h(\u2022) can be easily integrated into the overall system. The model scaling factors \u03bb M 1 are trained according to the maximum entropy principle, e.g., using the GIS algorithm. Alternatively, one can train them with respect to the final translation quality measured by an error criterion [3] . For the IWSLT evaluation campaign, we optimized the scaling factors with respect to a linear interpolation of WER, PER, BLEU and NIST using the Downhill Simplex algorithm from [4] .",
"cite_spans": [
{
"start": 395,
"end": 398,
"text": "[3]",
"ref_id": "BIBREF2"
},
{
"start": 577,
"end": 580,
"text": "[4]",
"ref_id": "BIBREF3"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Log-linear model",
"sec_num": "1.2."
},
{
"text": "The basic idea of phrase-based translation is to segment the given source sentence into phrases, then translate each phrase and finally compose the target sentence from these phrase translations. This idea is illustrated in Figure 1 . Formally, we define a segmentation of a given sentence pair (f J",
"cite_spans": [],
"ref_spans": [
{
"start": 224,
"end": 232,
"text": "Figure 1",
"ref_id": "FIGREF0"
}
],
"eq_spans": [],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "1 , e I 1 ) into K blocks:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "k \u2192 s k := (i k ; b k , j k ), for k = 1 . . . K.",
"eq_num": "(5)"
}
],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "Here, i k denotes the last position of the k th target phrase; we set i 0 := 0. The pair (b k , j k ) denotes the start and end positions of the source phrase that is aligned to the k th target phrase; we set j 0 := 0. Phrases are defined as nonempty contiguous sequences of words. We constrain the segmentations so that all words in the source and the target sentence are covered by exactly one phrase. Thus, there are no gaps and there is no overlap. For a given sentence pair (f J 1 , e I 1 ) and a given segmentation s K 1 , we define the bilingual phrases as: e k := e i k\u22121 +1 . . . e i k (6) f",
"cite_spans": [
{
"start": 523,
"end": 524,
"text": "K",
"ref_id": null
},
{
"start": 595,
"end": 598,
"text": "(6)",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "k := f b k . . . f j k (7) i 3 b 2 j 2 b 1 j 1 b 3 j 3 b 4 j 4 = J i 1 i 2 0 = j 0 0 = i 0 I = i 4",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "source positions target positions Note that the segmentation s K 1 contains the information on the phrase-level reordering. The segmentation s K 1 is introduced as a hidden variable in the translation model. Therefore, it would be theoretically correct to sum over all possible segmentations. In practice, we use the maximum approximation for this sum. As a result, the models h(\u2022) depend not only on the sentence pair (f J 1 , e I 1 ), but also on the segmentation s K 1 , i.e., we have models h(f J 1 , e I 1 , s K 1 ).",
"cite_spans": [
{
"start": 63,
"end": 64,
"text": "K",
"ref_id": null
},
{
"start": 143,
"end": 144,
"text": "K",
"ref_id": null
},
{
"start": 468,
"end": 469,
"text": "K",
"ref_id": null
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based approach",
"sec_num": "1.3."
},
{
"text": "The RWTH phrase-based system supports two alternative search strategies that will be described in this section. Translating a source language word graph. The first search strategy that our system supports takes a source language word graph as input and translates this graph in a monotone way [5] . The input graph can represent different reorderings of the input sentence so that the overall search can generate nonmonotone translations. Using this approach, it is very simple to experiment with various reordering constraints, e.g., the constraints proposed in [6] .",
"cite_spans": [
{
"start": 293,
"end": 296,
"text": "[5]",
"ref_id": "BIBREF4"
},
{
"start": 563,
"end": 566,
"text": "[6]",
"ref_id": "BIBREF5"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Search algorithms",
"sec_num": "2."
},
{
"text": "Alternatively, we can use ASR lattices as input and translate them without changing the search algorithm, cf. [7] . A disadvantage when translating lattices with this method is that the search is monotone. To overcome this problem, we extended the monotone search algorithm from [5, 7] so that it is possible to reorder the target phrases. We implemented the following idea: while traversing the input graph, a phrase can be skipped and processed later.",
"cite_spans": [
{
"start": 110,
"end": 113,
"text": "[7]",
"ref_id": "BIBREF6"
},
{
"start": 279,
"end": 282,
"text": "[5,",
"ref_id": "BIBREF4"
},
{
"start": 283,
"end": 285,
"text": "7]",
"ref_id": "BIBREF6"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Search algorithms",
"sec_num": "2."
},
{
"text": "Source cardinality synchronous search. For singleword based models, this search strategy is described in [8] . The idea is that the search proceeds synchronously with the cardinality of the already translated source positions. Here, we use a phrase-based version of this idea. To make the search problem feasible, the reorderings are constrained as in [9] .",
"cite_spans": [
{
"start": 105,
"end": 108,
"text": "[8]",
"ref_id": "BIBREF7"
},
{
"start": 352,
"end": 355,
"text": "[9]",
"ref_id": "BIBREF8"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Search algorithms",
"sec_num": "2."
},
{
"text": "Word graphs and N -best lists. The two described search algorithms generate a word graph containing the most likely translation hypotheses. Out of this word graph we extract N -best lists. For more details on word graphs and Nbest list extraction, see [10, 11] .",
"cite_spans": [
{
"start": 252,
"end": 256,
"text": "[10,",
"ref_id": "BIBREF9"
},
{
"start": 257,
"end": 260,
"text": "11]",
"ref_id": "BIBREF10"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Search algorithms",
"sec_num": "2."
},
{
"text": "We use a log-linear combination of several models (also called feature functions). In this section, we will describe the models that are used in the first pass, i.e., during search. This is an improved version of the system described in [12] . More specifically the models are: a phrase translation model, a word-based translation model, a deletion model, word and phrase penalty, a target language model and a reordering model.",
"cite_spans": [
{
"start": 237,
"end": 241,
"text": "[12]",
"ref_id": "BIBREF11"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Models used during search",
"sec_num": "3."
},
{
"text": "The phrase-based translation model is the main component of our translation system. The hypotheses are generated by concatenating target language phrases. The pairs of source and corresponding target phrases are extracted from the wordaligned bilingual training corpus. The phrase extraction algorithm is described in detail in [5] . The main idea is to extract phrase pairs that are consistent with the word alignment. Thus, the words of the source phrase are aligned only to words in the target phrase and vice versa. This criterion is identical to the alignment template criterion described in [13] .",
"cite_spans": [
{
"start": 328,
"end": 331,
"text": "[5]",
"ref_id": "BIBREF4"
},
{
"start": 597,
"end": 601,
"text": "[13]",
"ref_id": "BIBREF12"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "We use relative frequencies to estimate the phrase translation probabilities:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "p(f |\u1ebd) = N (f ,\u1ebd) N (\u1ebd)",
"eq_num": "(8)"
}
],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "Here, the number of co-occurrences of a phrase pair (f ,\u1ebd) that are consistent with the word alignment is denoted as N (f ,\u1ebd). If one occurrence of a target phrase\u1ebd has N > 1 possible translations, each of them contributes to N (f ,\u1ebd) with 1/N . The marginal count N (\u1ebd) is the number of occurrences of the target phrase\u1ebd in the training corpus. The resulting feature function is:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h Phr (f J 1 , e I 1 , s K 1 ) = log K k=1 p(f k |\u1ebd k )",
"eq_num": "(9)"
}
],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "To obtain a more symmetric model, we use the phrase-based model in both directions p(f |\u1ebd) and p(\u1ebd|f ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Phrase-based model",
"sec_num": "3.1."
},
{
"text": "We are using relative frequencies to estimate the phrase translation probabilities. Most of the longer phrases occur only once in the training corpus. Therefore, pure relative frequencies overestimate the probability of those phrases. To overcome this problem, we use a word-based lexicon model to smooth the phrase translation probabilities. The score of a phrase pair is computed similar to the IBM model 1, but here, we are summing only within a phrase pair and not over the whole target language sentence:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word-based lexicon model",
"sec_num": "3.2."
},
{
"text": "h Lex (f J 1 , e I 1 , s K 1 ) = log K k=1 j k j=b k i k i=i k\u22121 +1 p(f j |e i ) (10)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word-based lexicon model",
"sec_num": "3.2."
},
{
"text": "The word translation probabilities p(f |e) are estimated as relative frequencies from the word-aligned training corpus.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word-based lexicon model",
"sec_num": "3.2."
},
{
"text": "The word-based lexicon model is also used in both directions p(f |e) and p(e|f ).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word-based lexicon model",
"sec_num": "3.2."
},
{
"text": "The deletion model [14] is designed to penalize hypotheses that miss the translation of a word. For each source word, we check if a target word with a probability higher than a given threshold \u03c4 exists. If not, this word is considered a deletion. The feature simply counts the number of deletions. Last year [15] , we used this model during rescoring only, whereas this year, we integrated a within-phrase variant of the deletion model into the search:",
"cite_spans": [
{
"start": 19,
"end": 23,
"text": "[14]",
"ref_id": "BIBREF13"
},
{
"start": 308,
"end": 312,
"text": "[15]",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Deletion model",
"sec_num": "3.3."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h Del (f J 1 , e I 1 , s K 1 ) = K k=1 j k j=b k i k i=i k\u22121 +1 [ p(f j |e i ) < \u03c4 ]",
"eq_num": "(11)"
}
],
"section": "Deletion model",
"sec_num": "3.3."
},
{
"text": "The word translation probabilities p(f |e) are the same as for the word-based lexicon model. We use [\u2022] to denote a true or false statement [16] , i.e., the result is 1 if the statement is true, and 0 otherwise. In general, we use the following convention:",
"cite_spans": [
{
"start": 140,
"end": 144,
"text": "[16]",
"ref_id": "BIBREF15"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Deletion model",
"sec_num": "3.3."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "[ C ] = 1, if condition C is true 0, if condition C is false",
"eq_num": "(12)"
}
],
"section": "Deletion model",
"sec_num": "3.3."
},
{
"text": "In addition, we use two simple heuristics, namely word penalty and phrase penalty:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word and phrase penalty model",
"sec_num": "3.4."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h WP (f J 1 , e I 1 , s K 1 ) = I (13) h PP (f J 1 , e I 1 , s K 1 ) = K",
"eq_num": "(14)"
}
],
"section": "Word and phrase penalty model",
"sec_num": "3.4."
},
{
"text": "These two models affect the average sentence and phrase lengths. The model scaling factors can be adjusted to prefer longer sentences and longer phrases.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word and phrase penalty model",
"sec_num": "3.4."
},
{
"text": "We use the SRI language modeling toolkit [17] to train a standard n-gram language model. The smoothing technique we apply is the modified Kneser-Ney discounting with interpolation. The order of the language model depends on the translation direction. For most tasks, we use a trigram model, except for Chinese-English, where we use a fivegram language model. The resulting feature function is:",
"cite_spans": [
{
"start": 41,
"end": 45,
"text": "[17]",
"ref_id": "BIBREF16"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Target language model",
"sec_num": "3.5."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h LM (f J 1 , e I 1 , s K 1 ) = log I i=1 p(e i |e i\u22121 i\u2212n+1 )",
"eq_num": "(15)"
}
],
"section": "Target language model",
"sec_num": "3.5."
},
{
"text": "We use a very simple reordering model that is also used in, for instance, [13, 15] . It assigns costs based on the jump width:",
"cite_spans": [
{
"start": 74,
"end": 78,
"text": "[13,",
"ref_id": "BIBREF12"
},
{
"start": 79,
"end": 82,
"text": "15]",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering model",
"sec_num": "3.6."
},
{
"text": "h RM (f J 1 , e I 1 , s K 1 ) = K k=1 |b k \u2212 j k\u22121 \u2212 1| + J \u2212 j k (16)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Reordering model",
"sec_num": "3.6."
},
{
"text": "The usage of N -best lists in machine translation has several advantages. It alleviates the effects of the huge search space which is represented in word graphs by using a compact excerpt of the N best hypotheses generated by the system. Especially for small tasks, such as the IWSLT supplied data track, rather small N -best lists are already sufficient to obtain good oracle error rates, i.e., the error rate of the best hypothesis with respect to an error measure (such as WER or BLEU). N -best lists are suitable for easily applying several rescoring techniques because the hypotheses are already fully generated. In comparison, word graph rescoring techniques need specialized tools which traverse the graph appropriately. Additionally, because a node within a word graph allows for many histories, one can only apply local rescoring techniques, whereas for N -best lists, techniques can be used that consider properties of the whole target sentence.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Rescoring models",
"sec_num": "4."
},
{
"text": "In the next sections, we will present several rescoring techniques.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Rescoring models",
"sec_num": "4."
},
{
"text": "One of the first ideas in rescoring is to use additional language models that were not used in the generation procedure. In our system, we use clustered language models based on regular expressions [18] . Each hypothesis is classified by matching it to regular expressions that identify the type of the sentence. Then, a cluster-specific (or sentence-type-specific) language model is interpolated into a global language model to compute the score of the sentence:",
"cite_spans": [
{
"start": 198,
"end": 202,
"text": "[18]",
"ref_id": "BIBREF17"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Clustered language models",
"sec_num": "4.1."
},
{
"text": "h CLM (f J 1 , e I 1 ) = (17) log c R c (e I 1 ) \u03b1 c p c (e I 1 ) + (1 \u2212 \u03b1 c )p g (e I 1 ) ,",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Clustered language models",
"sec_num": "4.1."
},
{
"text": "where",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Clustered language models",
"sec_num": "4.1."
},
{
"text": "p g (e I 1 )",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Clustered language models",
"sec_num": "4.1."
},
{
"text": "is the global language model, p c (e I 1 ) the cluster-specific language model, and R c (e I 1 ) denotes the true-or-false statement (cf. Equation 12) which is 1 if the c th regular expression R c (\u2022) matches the target sentence e I 1 and 0 otherwise. 2 ",
"cite_spans": [
{
"start": 252,
"end": 253,
"text": "2",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Clustered language models",
"sec_num": "4.1."
},
{
"text": "IBM model 1 rescoring rates the quality of a sentence by using the probabilities of one of the easiest single-word based translation models:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "IBM model 1",
"sec_num": "4.2."
},
{
"text": "h IBM1 (f J 1 , e I 1 ) = log \uf8eb \uf8ed 1 (I + 1) J J j=1 I i=0 p(f j |e i ) \uf8f6 \uf8f8 (18)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "IBM model 1",
"sec_num": "4.2."
},
{
"text": "Despite its simplicity, this model achieves good improvements [14] .",
"cite_spans": [
{
"start": 62,
"end": 66,
"text": "[14]",
"ref_id": "BIBREF13"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "IBM model 1",
"sec_num": "4.2."
},
{
"text": "During the IBM model 1 rescoring step, we make use of another rescoring technique that benefits from the IBM model 1 lexical probabilities:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "IBM1 deletion model",
"sec_num": "4.3."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h Del (f J 1 , e I 1 ) = J j=1 I i=0 [ p(f j |e i ) < \u03c4 ]",
"eq_num": "(19)"
}
],
"section": "IBM1 deletion model",
"sec_num": "4.3."
},
{
"text": "We call this the IBM1 deletion model. It counts all source words whose lexical probability given each target word is below a threshold \u03c4 . In the experiments, \u03c4 was chosen between 10 \u22121 and 10 \u22124 .",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "IBM1 deletion model",
"sec_num": "4.3."
},
{
"text": "The next step after IBM model 1 rescoring is HMM rescoring. We use the HMM to compute the log-likelihood of a 2 The clusters are disjunct, thus only one regular expression matches.",
"cite_spans": [
{
"start": 110,
"end": 111,
"text": "2",
"ref_id": "BIBREF1"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Markov alignment model",
"sec_num": "4.4."
},
{
"text": "sentence pair (f J 1 , e I 1 ):",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Markov alignment model",
"sec_num": "4.4."
},
{
"text": "EQUATION",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [
{
"start": 0,
"end": 8,
"text": "EQUATION",
"ref_id": "EQREF",
"raw_str": "h HMM (f J 1 , e I 1 ) = log a J 1 J j=1 p(a j |a j\u22121 , I) \u2022 p(f j |e a j )",
"eq_num": "(20)"
}
],
"section": "Hidden Markov alignment model",
"sec_num": "4.4."
},
{
"text": "In our experiments, we use a refined alignment probability p(a j \u2212 a j\u22121 |G(e aj ), I) that conditions the jump widths of the alignment positions a j \u2212 a j\u22121 on the word class G(e aj ). This is the so-called homogeneous HMM [19] .",
"cite_spans": [
{
"start": 224,
"end": 228,
"text": "[19]",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Hidden Markov alignment model",
"sec_num": "4.4."
},
{
"text": "Several word penalties are used in the rescoring step:",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word penalties",
"sec_num": "4.5."
},
{
"text": "h WP (f J 1 , e I 1 ) = \uf8f1 \uf8f2 \uf8f3 I (a) I/J (b) 2|I \u2212 J|/(I + J) (c) (21)",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word penalties",
"sec_num": "4.5."
},
{
"text": "The word penalties are heuristics that affect the generated hypothesis length. In general, sentences that are too short should be avoided.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Word penalties",
"sec_num": "4.5."
},
{
"text": "In the experiments on coupling speech recognition and machine translation, we used the phrase-based MT system described in Section 2 to translate ASR lattices. In addition to the models described in Section 3, we use the acoustic model and the source language model of the ASR system in the loglinear model. These models are integrated into the search and the scaling factors are also optimized.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Integrating ASR and MT",
"sec_num": "5."
},
{
"text": "A significant obstacle for integrating speech recognition and translation is the mismatch between the vocabularies of the ASR and MT system. For the Chinese-English task, the number of out-of-vocabulary (OOV) words was rather high. Ideally, the vocabulary of the recognition system should be a subset of the translation system source vocabulary. In the IWSLT evaluation, we had no control over the recognition experiments. For this reason, the reported improvements might have been larger with a proper handling of the vocabularies.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Integrating ASR and MT",
"sec_num": "5."
},
{
"text": "The experiments were carried out on the Basic Travel Expression Corpus (BTEC) task [20] . This is a multilingual speech corpus which contains tourism-related sentences similar to those that are found in phrase books. The corpus statistics are shown in Table 1 . For the supplied data track, 20 000 sentences training corpus and two test sets (C-Star'03 and IWSLT'04) were made available for each language pair. As additional training resources for the C-Star track, we used the full BTEC for Japanese-English and the Spoken Language DataBase (SLDB) [21] , which consists of transcriptions of spoken dialogs in the domain of hotel reservations 3 . For the Japanese-English supplied data track, the number of OOVs in the IWSLT'05 test set is rather high, both in comparison with the C-Star'03 and IWSLT'04 test sets and in comparison with the number of OOVs for the other language pairs. As for any data-driven approach, the performance of our system deteriorates due to the high number of OOVs. Using the additional corpora in the C-Star track, we are able to reduce the number of OOVs to a noncritical number.",
"cite_spans": [
{
"start": 83,
"end": 87,
"text": "[20]",
"ref_id": "BIBREF19"
},
{
"start": 549,
"end": 553,
"text": "[21]",
"ref_id": "BIBREF20"
}
],
"ref_spans": [
{
"start": 252,
"end": 259,
"text": "Table 1",
"ref_id": "TABREF3"
}
],
"eq_spans": [],
"section": "Tasks and corpora",
"sec_num": "6."
},
{
"text": "As the BTEC is a rather clean corpus, the preprocessing consisted mainly of tokenization, i.e., separating punctuation marks from words. Additionally, we replaced contractions such as it's or I'm in the English corpus and we removed the case information. For Arabic, we removed the diacritics and we split common prefixes: Al, w, f, b, l. There was no special preprocessing for the Chinese and the Japanese training corpora.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Tasks and corpora",
"sec_num": "6."
},
{
"text": "We used the C-Star'03 corpus as development set to optimize the system, for instance, the model scaling factors and the GIZA++ [19] parameter settings. The IWSLT'04 test set was used as a blind test corpus. After the optimization, we added the C-Star'03 and the IWSLT'04 test sets to the training corpus and retrained the whole system.",
"cite_spans": [
{
"start": 127,
"end": 131,
"text": "[19]",
"ref_id": "BIBREF18"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Tasks and corpora",
"sec_num": "6."
},
{
"text": "We performed speech translation experiments on the Chinese-English and Japanese-English supplied data tracks. For Japanese-English we translated the single-best ASR hypotheses only, whereas for Chinese-English we also translated ASR lattices. The preprocessing and postprocessing steps are the same as for text translation. Table 2 contains the Chinese ASR word lattice statistics for the three test sets. The ASR WER and the graph error rate (GER) were measured at the word level (and not at the character level). The GER is the minimum WER among all paths through the lattice.",
"cite_spans": [],
"ref_spans": [
{
"start": 324,
"end": 331,
"text": "Table 2",
"ref_id": "TABREF1"
}
],
"eq_spans": [],
"section": "Tasks and corpora",
"sec_num": "6."
},
{
"text": "The automatic evaluation criteria are computed using the IWSLT 2005 evaluation server. For all the experiments, we report the two accuracy measures BLEU [22] and NIST [23] as well as the two error rates WER and PER. For the primary submissions, we also report the two accuracy measures Meteor [24] and GTM [25] . All those criteria are computed with respect to multiple references (with the exception of English-Chinese where only one reference is available).",
"cite_spans": [
{
"start": 153,
"end": 157,
"text": "[22]",
"ref_id": "BIBREF21"
},
{
"start": 167,
"end": 171,
"text": "[23]",
"ref_id": "BIBREF22"
},
{
"start": 293,
"end": 297,
"text": "[24]",
"ref_id": "BIBREF23"
},
{
"start": 306,
"end": 310,
"text": "[25]",
"ref_id": "BIBREF24"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "7."
},
{
"text": "Research Laboratories, Kyoto, Japan. ",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Experimental results",
"sec_num": "7."
},
{
"text": "The translation results of the RWTH primary submissions are summarized in Table 3 . Note that for English-Chinese, only one reference was used. Therefore the scores are in a different range.",
"cite_spans": [],
"ref_spans": [
{
"start": 74,
"end": 81,
"text": "Table 3",
"ref_id": "TABREF4"
}
],
"eq_spans": [],
"section": "Primary submissions",
"sec_num": "7.1."
},
{
"text": "In Table 4 , we compare the translation performance of the RWTH 2004 system [15] and our current system. The evaluation is done on the IWSLT'04 test set for the supplied data track using the IWSLT 2005 evaluation server. Note that the reported numbers for the 2004 system differ slightly from the numbers in [15] due to a somewhat different computation. We observe significant improvements for all evaluation criteria and for both language pairs. For the Chinese-English system, for instance, the BLEU score increases by 4.9% and the WER decreases by 5%. Similar improvements are obtained for the Japanese-English system. In Table 5 , we present some translation examples for Japanese-English. As already mentioned in the previous section, our data-driven approach suffers from the high number of OOVs for the supplied data track. This becomes apparent when looking at the translation hypotheses. Furthermore, the incorporation of additional training data improves the translation quality significantly, not only in terms of the official results (cf. Table 3 ) but also when considering the examples in Table 5 . In all three examples, the C-Star data track system is able to produce one of the reference translations. On the other hand, the output of the supplied data track system is of much lower quality. In the first example, we see the effect of a single unknown word. In the second example, the word choice is more or less correct, but the fluency of the output is very poor. The translation in the final example is entirely incomprehensible for the supplied data track system.",
"cite_spans": [
{
"start": 76,
"end": 80,
"text": "[15]",
"ref_id": "BIBREF14"
},
{
"start": 308,
"end": 312,
"text": "[15]",
"ref_id": "BIBREF14"
}
],
"ref_spans": [
{
"start": 3,
"end": 10,
"text": "Table 4",
"ref_id": "TABREF2"
},
{
"start": 625,
"end": 632,
"text": "Table 5",
"ref_id": "TABREF5"
},
{
"start": 1051,
"end": 1058,
"text": "Table 3",
"ref_id": "TABREF4"
},
{
"start": 1103,
"end": 1110,
"text": "Table 5",
"ref_id": "TABREF5"
}
],
"eq_spans": [],
"section": "Results for text input",
"sec_num": "7.2."
},
{
"text": "The effects of the N -best list rescoring for the IWSLT'04 test set are summarized in Table 6 . On the development set (C-Star'03), which was used to optimize the model scaling factors, all models gradually help to enhance the overall performance of the system, e.g., BLEU is improved from 45.5% to 47.4%. For the IWSLT'04 blind test set, the results are not as smooth, but still the overall system (using all models that were described in Section 4) achieves improvements in Table 7 , we show some examples where the impact of the rescoring models can be seen.",
"cite_spans": [],
"ref_spans": [
{
"start": 86,
"end": 93,
"text": "Table 6",
"ref_id": "TABREF6"
},
{
"start": 476,
"end": 483,
"text": "Table 7",
"ref_id": "TABREF7"
}
],
"eq_spans": [],
"section": "Results for text input",
"sec_num": "7.2."
},
{
"text": "The translation results for the IWSLT'05 test set for ASR input in the Chinese-English supplied data track are summa- Table 8 .",
"cite_spans": [],
"ref_spans": [
{
"start": 118,
"end": 125,
"text": "Table 8",
"ref_id": "TABREF8"
}
],
"eq_spans": [],
"section": "Results for ASR input",
"sec_num": "7.3."
},
{
"text": "We report the results for the two search strategies described in Section 2. Using the first strategy (Graph), we are able to translate ASR lattices. We observe significant improvements in translation quality over the translations of the single-best (1-Best) recognition results. This is true for the monotone search (Mon) as well as for the version which allows for reordering of target phrases (Skip). The improvements are consistent among all evaluation criteria. Using the second search strategy (SCSS), we are limited to the single-best ASR hypotheses as input. This is the same system that is used to translate the manual transcriptions. Despite the limitation to the single-best hypotheses, this system performs best in terms of the automatic evaluation measures (except for the NIST score).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results for ASR input",
"sec_num": "7.3."
},
{
"text": "The RWTH Chinese-English primary systems for ASR did not include rescoring. After the evaluation, we applied the rescoring techniques (described in Section 4) to the primary system. The improvements from rescoring are similar to the text system, e.g., 1.9% for the BLEU score.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Results for ASR input",
"sec_num": "7.3."
},
{
"text": "Even if our primary system did not use lattices, a subjective comparison of the two systems showed positive effects when translating lattices for a large number of sentences. Recognition errors that occur in the single-best ASR hypotheses are often corrected when lattices are used. Some translation examples for improvements with lattices are shown in Table 9 . ",
"cite_spans": [],
"ref_spans": [
{
"start": 353,
"end": 360,
"text": "Table 9",
"ref_id": "TABREF9"
}
],
"eq_spans": [],
"section": "Results for ASR input",
"sec_num": "7.3."
},
{
"text": "We have described the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the IWSLT 2005. We use a two pass approach. In the first pass, we use a dynamic programming beam search algorithm to generate an N -best list. The second pass consists of rescoring and reranking of this N -best list.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "8."
},
{
"text": "One important advantage of our data-driven machine translation systems is that virtually the same system can be used for the different translation directions. Only a marginal portion of the overall performance can be attributed to language-specific methods.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "8."
},
{
"text": "We have shown significant improvements compared to the RWTH system of 2004 [15] .",
"cite_spans": [
{
"start": 75,
"end": 79,
"text": "[15]",
"ref_id": "BIBREF14"
}
],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "8."
},
{
"text": "We have shown that the translation of ASR lattices can yield significant improvements over the translation of the ASR single-best hypotheses.",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Conclusions",
"sec_num": "8."
},
{
"text": "The notational convention will be as follows: we use the symbol P r(\u2022) to denote general probability distributions with (nearly) no specific assumptions. In contrast, for model-based probability distributions, we use the generic symbol p(\u2022).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
},
{
"text": "The Japanese-English training corpora (BTEC, SLDB) that we used in the C-Star track were kindly provided by ATR Spoken Language Translation",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "",
"sec_num": null
}
],
"back_matter": [
{
"text": "This work was partly funded by the DFG (Deutsche Forschungsgemeinschaft) under the grant NE572/5-1, project \"Statistische Text\u00fcbersetzung\" and by the European Union under the integrated project TC-Star (Technology and Corpora for Speech to Speech Translation, IST-2002-FP6-506738, http://www.tc-star.org).",
"cite_spans": [],
"ref_spans": [],
"eq_spans": [],
"section": "Acknowledgments",
"sec_num": "9."
}
],
"bib_entries": {
"BIBREF0": {
"ref_id": "b0",
"title": "A statistical approach to machine translation",
"authors": [
{
"first": "P",
"middle": [
"F"
],
"last": "Brown",
"suffix": ""
},
{
"first": "J",
"middle": [],
"last": "Cocke",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Della Pietra",
"suffix": ""
},
{
"first": "V",
"middle": [
"J"
],
"last": "Della Pietra",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Jelinek",
"suffix": ""
},
{
"first": "J",
"middle": [
"D"
],
"last": "Lafferty",
"suffix": ""
},
{
"first": "R",
"middle": [
"L"
],
"last": "Mercer",
"suffix": ""
},
{
"first": "P",
"middle": [
"S"
],
"last": "Roossin",
"suffix": ""
}
],
"year": 1990,
"venue": "Computational Linguistics",
"volume": "16",
"issue": "2",
"pages": "79--85",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin, \"A statistical approach to machine translation,\" Computational Linguistics, vol. 16, no. 2, pp. 79-85, June 1990.",
"links": null
},
"BIBREF1": {
"ref_id": "b1",
"title": "Discriminative training and maximum entropy models for statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "295--302",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och and H. Ney, \"Discriminative training and maximum entropy models for statistical machine translation,\" in Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, July 2002, pp. 295-302.",
"links": null
},
"BIBREF2": {
"ref_id": "b2",
"title": "Minimum error rate training in statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
}
],
"year": 2003,
"venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "160--167",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och, \"Minimum error rate training in statistical machine translation,\" in Proc. of the 41th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), Sapporo, Japan, July 2003, pp. 160-167.",
"links": null
},
"BIBREF3": {
"ref_id": "b3",
"title": "Flannery, Numerical Recipes in C++",
"authors": [
{
"first": "W",
"middle": [
"H"
],
"last": "Press",
"suffix": ""
},
{
"first": "S",
"middle": [
"A"
],
"last": "Teukolsky",
"suffix": ""
},
{
"first": "W",
"middle": [
"T"
],
"last": "Vetterling",
"suffix": ""
},
{
"first": "B",
"middle": [
"P"
],
"last": "",
"suffix": ""
}
],
"year": 2002,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- nery, Numerical Recipes in C++. Cambridge, UK: Cam- bridge University Press, 2002.",
"links": null
},
"BIBREF4": {
"ref_id": "b4",
"title": "Phrase-based statistical machine translation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2002,
"venue": "25th German Conf. on Artificial Intelligence (KI2002), ser. Lecture Notes in Artificial Intelligence (LNAI), M. Jarke",
"volume": "2479",
"issue": "",
"pages": "18--32",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Zens, F. J. Och, and H. Ney, \"Phrase-based statistical ma- chine translation,\" in 25th German Conf. on Artificial Intel- ligence (KI2002), ser. Lecture Notes in Artificial Intelligence (LNAI), M. Jarke, J. Koehler, and G. Lakemeyer, Eds., vol. 2479. Aachen, Germany: Springer Verlag, September 2002, pp. 18-32.",
"links": null
},
"BIBREF5": {
"ref_id": "b5",
"title": "Novel reordering approaches in phrase-based statistical machine translation",
"authors": [
{
"first": "S",
"middle": [],
"last": "Kanthak",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Vilar",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Matusov",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2005,
"venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
"volume": "",
"issue": "",
"pages": "167--174",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney, \"Novel reordering approaches in phrase-based statistical ma- chine translation,\" in 43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, Ann Arbor, MI, June 2005, pp. 167-174.",
"links": null
},
"BIBREF6": {
"ref_id": "b6",
"title": "Phrase-based translation of speech recognizer word lattices using loglinear model combination",
"authors": [
{
"first": "E",
"middle": [],
"last": "Matusov",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. IEEE Automatic Speech Recognition and Understanding Workshop",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "E. Matusov and H. Ney, \"Phrase-based translation of speech recognizer word lattices using loglinear model combination,\" in Proc. IEEE Automatic Speech Recognition and Under- standing Workshop, Cancun, Mexiko, Nov/Dec 2005, to ap- pear.",
"links": null
},
"BIBREF7": {
"ref_id": "b7",
"title": "Word reordering and a dynamic programming beam search algorithm for statistical machine translation",
"authors": [
{
"first": "C",
"middle": [],
"last": "Tillmann",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2003,
"venue": "Computational Linguistics",
"volume": "29",
"issue": "1",
"pages": "97--133",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "C. Tillmann and H. Ney, \"Word reordering and a dynamic programming beam search algorithm for statistical machine translation,\" Computational Linguistics, vol. 29, no. 1, pp. 97- 133, March 2003.",
"links": null
},
"BIBREF8": {
"ref_id": "b8",
"title": "Reordering constraints for phrase-based statistical machine translation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Watanabe",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Sumita",
"suffix": ""
}
],
"year": 2004,
"venue": "COLING '04: The 20th Int. Conf. on Computational Linguistics",
"volume": "",
"issue": "",
"pages": "205--211",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Zens, H. Ney, T. Watanabe, and E. Sumita, \"Reordering constraints for phrase-based statistical machine translation,\" in COLING '04: The 20th Int. Conf. on Computational Lin- guistics, Geneva, Switzerland, August 2004, pp. 205-211.",
"links": null
},
"BIBREF9": {
"ref_id": "b9",
"title": "Word graphs for statistical machine translation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2005,
"venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
"volume": "",
"issue": "",
"pages": "191--198",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Zens and H. Ney, \"Word graphs for statistical machine translation,\" in 43rd Annual Meeting of the Assoc. for Com- putational Linguistics: Proc. Workshop on Building and Us- ing Parallel Texts: Data-Driven Machine Translation and Be- yond, Ann Arbor, MI, June 2005, pp. 191-198.",
"links": null
},
"BIBREF10": {
"ref_id": "b10",
"title": "Generation of word graphs in statistical machine translation",
"authors": [
{
"first": "N",
"middle": [],
"last": "Ueffing",
"suffix": ""
},
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the Conf. on Empirical Methods for Natural Language Processing (EMNLP)",
"volume": "",
"issue": "",
"pages": "156--163",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "N. Ueffing, F. J. Och, and H. Ney, \"Generation of word graphs in statistical machine translation,\" in Proc. of the Conf. on Em- pirical Methods for Natural Language Processing (EMNLP), Philadelphia, PA, July 2002, pp. 156-163.",
"links": null
},
"BIBREF11": {
"ref_id": "b11",
"title": "Improvements in phrase-based statistical machine translation",
"authors": [
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of the Human Language Technology Conf. (HLT-NAACL)",
"volume": "",
"issue": "",
"pages": "257--264",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. Zens and H. Ney, \"Improvements in phrase-based statis- tical machine translation,\" in Proc. of the Human Language Technology Conf. (HLT-NAACL), Boston, MA, May 2004, pp. 257-264.",
"links": null
},
"BIBREF12": {
"ref_id": "b12",
"title": "Improved alignment models for statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "C",
"middle": [],
"last": "Tillmann",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 1999,
"venue": "Proc. Joint SIG-DAT Conf. on Empirical Methods in Natural Language Processing and Very Large Corpora",
"volume": "",
"issue": "",
"pages": "20--28",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och, C. Tillmann, and H. Ney, \"Improved alignment models for statistical machine translation,\" in Proc. Joint SIG- DAT Conf. on Empirical Methods in Natural Language Pro- cessing and Very Large Corpora, University of Maryland, College Park, MD, June 1999, pp. 20-28.",
"links": null
},
"BIBREF13": {
"ref_id": "b13",
"title": "Syntax for statistical machine translation",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Gildea",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Khudanpur",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Sarkar",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Yamada",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Fraser",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Kumar",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Smith",
"suffix": ""
},
{
"first": "K",
"middle": [],
"last": "Eng",
"suffix": ""
},
{
"first": "V",
"middle": [],
"last": "Jain",
"suffix": ""
},
{
"first": "Z",
"middle": [],
"last": "Jin",
"suffix": ""
},
{
"first": "D",
"middle": [],
"last": "Radev",
"suffix": ""
}
],
"year": 2003,
"venue": "Johns Hopkins University 2003 Summer Workshop on Language Engineering",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, and D. Radev, \"Syntax for statistical machine trans- lation,\" Johns Hopkins University 2003 Summer Workshop on Language Engineering, Center for Language and Speech Processing, Baltimore, MD, Tech. Rep., August 2003.",
"links": null
},
"BIBREF14": {
"ref_id": "b14",
"title": "Alignment Templates: the RWTH SMT System",
"authors": [
{
"first": "O",
"middle": [],
"last": "Bender",
"suffix": ""
},
{
"first": "R",
"middle": [],
"last": "Zens",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Matusov",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2004,
"venue": "Proc. of the Int. Workshop on Spoken Language Translation (IWSLT)",
"volume": "",
"issue": "",
"pages": "79--84",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "O. Bender, R. Zens, E. Matusov, and H. Ney, \"Alignment Tem- plates: the RWTH SMT System,\" in Proc. of the Int. Work- shop on Spoken Language Translation (IWSLT), Kyoto, Japan, September 2004, pp. 79-84.",
"links": null
},
"BIBREF15": {
"ref_id": "b15",
"title": "Concrete Mathematics",
"authors": [
{
"first": "R",
"middle": [
"L"
],
"last": "Graham",
"suffix": ""
},
{
"first": "D",
"middle": [
"E"
],
"last": "Knuth",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Patashnik",
"suffix": ""
}
],
"year": 1994,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Math- ematics, 2nd ed. Reading, Mass.: Addison-Wesley Publish- ing Company, 1994.",
"links": null
},
"BIBREF16": {
"ref_id": "b16",
"title": "SRILM -an extensible language modeling toolkit",
"authors": [
{
"first": "A",
"middle": [],
"last": "Stolcke",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. Int. Conf. on Spoken Language Processing",
"volume": "2",
"issue": "",
"pages": "901--904",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "A. Stolcke, \"SRILM -an extensible language modeling toolkit,\" in Proc. Int. Conf. on Spoken Language Processing, vol. 2, Denver, CO, 2002, pp. 901-904.",
"links": null
},
"BIBREF17": {
"ref_id": "b17",
"title": "Clustered language models based on regular expressions for SMT",
"authors": [
{
"first": "S",
"middle": [],
"last": "Hasan",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2005,
"venue": "Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT)",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Hasan and H. Ney, \"Clustered language models based on regular expressions for SMT,\" in Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT), Budapest, Hungary, May 2005.",
"links": null
},
"BIBREF18": {
"ref_id": "b18",
"title": "A systematic comparison of various statistical alignment models",
"authors": [
{
"first": "F",
"middle": [
"J"
],
"last": "Och",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Ney",
"suffix": ""
}
],
"year": 2003,
"venue": "Computational Linguistics",
"volume": "29",
"issue": "1",
"pages": "19--51",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "F. J. Och and H. Ney, \"A systematic comparison of vari- ous statistical alignment models,\" Computational Linguistics, vol. 29, no. 1, pp. 19-51, March 2003.",
"links": null
},
"BIBREF19": {
"ref_id": "b19",
"title": "Toward a broad-coverage bilingual corpus for speech translation of travel conversations in the real world",
"authors": [
{
"first": "T",
"middle": [],
"last": "Takezawa",
"suffix": ""
},
{
"first": "E",
"middle": [],
"last": "Sumita",
"suffix": ""
},
{
"first": "F",
"middle": [],
"last": "Sugaya",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Yamamoto",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Yamamoto",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC)",
"volume": "",
"issue": "",
"pages": "147--152",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto, \"Toward a broad-coverage bilingual corpus for speech translation of travel conversations in the real world,\" in Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC), Las Palmas, Spain, May 2002, pp. 147- 152.",
"links": null
},
"BIBREF20": {
"ref_id": "b20",
"title": "A speech and language database for speech translation research",
"authors": [
{
"first": "T",
"middle": [],
"last": "Morimoto",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Uratani",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Takezawa",
"suffix": ""
},
{
"first": "O",
"middle": [],
"last": "Furuse",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Sobashima",
"suffix": ""
},
{
"first": "H",
"middle": [],
"last": "Iida",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Nakamura",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Sagisaka",
"suffix": ""
},
{
"first": "N",
"middle": [],
"last": "Higuchi",
"suffix": ""
},
{
"first": "Y",
"middle": [],
"last": "Yamazaki",
"suffix": ""
}
],
"year": 1994,
"venue": "Proc. of the 3rd Int. Conf. on Spoken Language Processing (ICSLP'94)",
"volume": "",
"issue": "",
"pages": "1791--1794",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "T. Morimoto, N. Uratani, T. Takezawa, O. Furuse, Y. Sobashima, H. Iida, A. Nakamura, Y. Sagisaka, N. Higuchi, and Y. Yamazaki, \"A speech and language database for speech translation research,\" in Proc. of the 3rd Int. Conf. on Spo- ken Language Processing (ICSLP'94), Yokohama, Japan, September 1994, pp. 1791-1794.",
"links": null
},
"BIBREF21": {
"ref_id": "b21",
"title": "Bleu: a method for automatic evaluation of machine translation",
"authors": [
{
"first": "K",
"middle": [],
"last": "Papineni",
"suffix": ""
},
{
"first": "S",
"middle": [],
"last": "Roukos",
"suffix": ""
},
{
"first": "T",
"middle": [],
"last": "Ward",
"suffix": ""
},
{
"first": "W.-J",
"middle": [],
"last": "Zhu",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
"volume": "",
"issue": "",
"pages": "311--318",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, \"Bleu: a method for automatic evaluation of machine translation,\" in Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), Philadelphia, PA, July 2002, pp. 311-318.",
"links": null
},
"BIBREF22": {
"ref_id": "b22",
"title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
"authors": [
{
"first": "G",
"middle": [],
"last": "Doddington",
"suffix": ""
}
],
"year": 2002,
"venue": "Proc. ARPA Workshop on Human Language Technology",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "G. Doddington, \"Automatic evaluation of machine translation quality using n-gram co-occurrence statistics,\" in Proc. ARPA Workshop on Human Language Technology, 2002.",
"links": null
},
"BIBREF23": {
"ref_id": "b23",
"title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
"authors": [
{
"first": "S",
"middle": [],
"last": "Banerjee",
"suffix": ""
},
{
"first": "A",
"middle": [],
"last": "Lavie",
"suffix": ""
}
],
"year": 2005,
"venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "S. Banerjee and A. Lavie, \"METEOR: An automatic met- ric for MT evaluation with improved correlation with human judgments,\" in 43rd Annual Meeting of the Assoc. for Compu- tational Linguistics: Proc. Workshop on Intrinsic and Extrin- sic Evaluation Measures for MT and/or Summarization, Ann Arbor, MI, June 2005.",
"links": null
},
"BIBREF24": {
"ref_id": "b24",
"title": "Evaluation of machine translation and its evaluation",
"authors": [
{
"first": "J",
"middle": [
"P"
],
"last": "Turian",
"suffix": ""
},
{
"first": "L",
"middle": [],
"last": "Shen",
"suffix": ""
},
{
"first": "I",
"middle": [
"D"
],
"last": "Melamed",
"suffix": ""
}
],
"year": 2003,
"venue": "",
"volume": "",
"issue": "",
"pages": "",
"other_ids": {},
"num": null,
"urls": [],
"raw_text": "J. P. Turian, L. Shen, and I. D. Melamed, \"Evaluation of ma- chine translation and its evaluation,\" Computer Science De- partment, New York University, Tech. Rep. Proteus technical report 03-005, 2003.",
"links": null
}
},
"ref_entries": {
"FIGREF0": {
"num": null,
"uris": null,
"type_str": "figure",
"text": "Illustration of the phrase segmentation."
},
"TABREF1": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>Test Set</td><td colspan=\"3\">WER [%] GER [%] Density</td></tr><tr><td>C-Star'03</td><td>41.4</td><td>16.9</td><td>13</td></tr><tr><td>IWSLT'04</td><td>44.5</td><td>20.2</td><td>13</td></tr><tr><td>IWSLT'05</td><td>42.0</td><td>18.2</td><td>14</td></tr></table>",
"text": "Statistics for the Chinese ASR lattices of the three test sets.",
"num": null
},
"TABREF2": {
"html": null,
"type_str": "table",
"content": "<table><tr><td colspan=\"6\">Translation System BLEU NIST WER PER</td></tr><tr><td>Direction</td><td/><td>[%]</td><td/><td>[%]</td><td>[%]</td></tr><tr><td colspan=\"2\">Chin.-Engl. 2004</td><td>40.4</td><td>8.59</td><td colspan=\"2\">52.4 42.2</td></tr><tr><td/><td>2005</td><td>46.3</td><td>8.73</td><td colspan=\"2\">47.4 39.7</td></tr><tr><td>Jap.-Engl.</td><td>2004</td><td>44.8</td><td>9.41</td><td colspan=\"2\">50.0 37.7</td></tr><tr><td/><td>2005</td><td>49.8</td><td>9.52</td><td colspan=\"2\">46.5 36.8</td></tr></table>",
"text": "Progress over time: comparison of the RWTH systems of the years 2004 and 2005 for the supplied data track on the IWSLT'04 test set.",
"num": null
},
"TABREF3": {
"html": null,
"type_str": "table",
"content": "<table><tr><td/><td/><td/><td colspan=\"2\">Supplied Data Track</td><td/><td colspan=\"2\">C-Star Track</td></tr><tr><td/><td/><td colspan=\"4\">Arabic Chinese Japanese English</td><td>Japanese</td><td>English</td></tr><tr><td>Train</td><td>Sentences</td><td/><td colspan=\"2\">20 000</td><td/><td colspan=\"2\">240 672</td></tr><tr><td/><td colspan=\"3\">Running Words 180 075 176 199</td><td colspan=\"4\">198 453 189 927 1 951 311 1 775 213</td></tr><tr><td/><td>Vocabulary</td><td>15 371</td><td>8 687</td><td>9 277</td><td>6 870</td><td>26 036</td><td>14 120</td></tr><tr><td/><td>Singletons</td><td>8 319</td><td>4 006</td><td>4 431</td><td>2 888</td><td>8 975</td><td>3 538</td></tr><tr><td>C-Star'03</td><td>Sentences</td><td/><td/><td>506</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 552</td><td>3 630</td><td>4 130</td><td>3 823</td><td>4 130</td><td>3 823</td></tr><tr><td/><td>OOVs (Running Words)</td><td>133</td><td>114</td><td>61</td><td>65</td><td>34</td><td>-</td></tr><tr><td>IWSLT'04</td><td>Sentences</td><td/><td/><td>500</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 597</td><td>3 681</td><td>4 131</td><td>3 837</td><td>4 131</td><td>3 837</td></tr><tr><td/><td>OOVs (Running Words)</td><td>142</td><td>83</td><td>71</td><td>58</td><td>36</td><td>-</td></tr><tr><td>IWSLT'05</td><td>Sentences</td><td/><td/><td>506</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 562</td><td>3 918</td><td>4 226</td><td>3 909</td><td>4 226</td><td>3 909</td></tr><tr><td/><td>OOVs (Running Words)</td><td>146</td><td>90</td><td>293</td><td>69</td><td>10</td><td>-</td></tr></table>",
"text": "Corpus statistics after preprocessing.",
"num": null
},
"TABREF4": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>Data</td><td>Input</td><td>Translation</td><td/><td colspan=\"2\">Accuracy Measures</td><td/><td colspan=\"2\">Error Rates</td></tr><tr><td>Track</td><td/><td>Direction</td><td colspan=\"6\">BLEU [%] NIST Meteor [%] GTM [%] WER [%] PER [%]</td></tr><tr><td colspan=\"3\">Supplied Manual Arabic-English</td><td>54.7</td><td>9.78</td><td>70.8</td><td>65.6</td><td>37.1</td><td>31.9</td></tr><tr><td/><td/><td>Chinese-English</td><td>51.1</td><td>9.57</td><td>66.5</td><td>60.1</td><td>42.8</td><td>35.8</td></tr><tr><td/><td/><td>English-Chinese</td><td>20.0</td><td>5.09</td><td>12.6</td><td>55.2</td><td>61.2</td><td>52.7</td></tr><tr><td/><td/><td>Japanese-English</td><td>40.8</td><td>7.86</td><td>58.6</td><td>48.6</td><td>53.6</td><td>44.4</td></tr><tr><td/><td>ASR</td><td>Chinese-English</td><td>38.3</td><td>7.39</td><td>54.0</td><td>48.8</td><td>56.5</td><td>47.2</td></tr><tr><td/><td/><td>Japanese-English</td><td>42.7</td><td>8.53</td><td>62.0</td><td>49.6</td><td>51.2</td><td>41.2</td></tr><tr><td>C-Star</td><td colspan=\"2\">Manual Japanese-English</td><td>77.6</td><td>12.91</td><td>85.4</td><td>78.7</td><td>24.3</td><td>18.6</td></tr></table>",
"text": "Official results for the RWTH primary submissions on the IWSLT'05 test set.",
"num": null
},
"TABREF5": {
"html": null,
"type_str": "table",
"content": "<table><tr><td colspan=\"2\">Translation examples for the Japanese-English sup-</td></tr><tr><td colspan=\"2\">plied and C-Star data tracks.</td></tr><tr><td colspan=\"2\">Data Track Translation</td></tr><tr><td>Supplied</td><td>What would you like</td></tr><tr><td>C-Star</td><td>What would you like for the main course</td></tr><tr><td>Reference</td><td>What would you like for the main course</td></tr><tr><td>Supplied</td><td>Is that flight two seats available</td></tr><tr><td>C-Star</td><td>Are there two seats available on that flight</td></tr><tr><td>Reference</td><td>Are there two seats available on that flight</td></tr><tr><td>Supplied</td><td>Have a good I anything new</td></tr><tr><td>C-Star</td><td>I prefer something different</td></tr><tr><td>Reference</td><td>I prefer something different</td></tr><tr><td colspan=\"2\">all evaluation criteria. In</td></tr></table>",
"text": "",
"num": null
},
"TABREF6": {
"html": null,
"type_str": "table",
"content": "<table><tr><td colspan=\"5\">Rescoring: effect of successively adding models for</td></tr><tr><td colspan=\"4\">the Chinese-English IWSLT'04 test set.</td></tr><tr><td>System</td><td colspan=\"4\">BLEU NIST WER PER</td></tr><tr><td/><td>[%]</td><td/><td>[%]</td><td>[%]</td></tr><tr><td>Baseline</td><td>45.1</td><td>8.56</td><td colspan=\"2\">48.9 40.1</td></tr><tr><td>+CLM</td><td>45.9</td><td>8.24</td><td colspan=\"2\">48.6 40.7</td></tr><tr><td>+IBM1</td><td>45.9</td><td>8.48</td><td colspan=\"2\">47.8 39.7</td></tr><tr><td>+WP</td><td>45.4</td><td>8.91</td><td colspan=\"2\">47.8 39.4</td></tr><tr><td>+Del</td><td>46.0</td><td>8.71</td><td colspan=\"2\">47.8 39.6</td></tr><tr><td>+HMM</td><td>46.3</td><td>8.73</td><td colspan=\"2\">47.4 39.7</td></tr><tr><td>rized in</td><td/><td/><td/></tr></table>",
"text": "",
"num": null
},
"TABREF7": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>System</td><td>Translation</td></tr><tr><td>Baseline</td><td>Your coffee or tea</td></tr><tr><td colspan=\"2\">+Rescoring Would you like coffee or tea</td></tr><tr><td>Reference</td><td>Would you like coffee or tea</td></tr><tr><td>Baseline</td><td>A room with a bath</td></tr><tr><td colspan=\"2\">+Rescoring I would like a twin room with a bath</td></tr><tr><td>Reference</td><td>A twin room with bath</td></tr><tr><td>Baseline</td><td>How much is that will be that room</td></tr><tr><td colspan=\"2\">+Rescoring How much is that room including tax</td></tr><tr><td>Reference</td><td>How much is the room including tax</td></tr><tr><td>Baseline</td><td>Onions</td></tr><tr><td colspan=\"2\">+Rescoring I would like onion</td></tr><tr><td>Reference</td><td>I would like onions please</td></tr></table>",
"text": "Translation examples for the Chinese-English supplied data track: effect of rescoring.",
"num": null
},
"TABREF8": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>: late</td></tr></table>",
"text": "Translation results for ASR input in the Chinese-English supplied data track on the IWSLT'05 test set (",
"num": null
},
"TABREF9": {
"html": null,
"type_str": "table",
"content": "<table><tr><td>Input</td><td>Translation</td></tr><tr><td>1-Best</td><td>Is there a pair of room with a bath</td></tr><tr><td>Lattice</td><td>I would like a twin room with a bath</td></tr><tr><td colspan=\"2\">Reference A double room including a bath</td></tr><tr><td>1-Best</td><td>Please take a picture of our</td></tr><tr><td>Lattice</td><td>May I take a picture here</td></tr><tr><td colspan=\"2\">Reference Am I permitted to take photos here</td></tr><tr><td>1-Best</td><td>I'm in a does the interesting</td></tr><tr><td>Lattice</td><td>I'm in an interesting movie</td></tr><tr><td colspan=\"2\">Reference A good movie is on</td></tr></table>",
"text": "Translation examples for ASR input in the Chinese-English supplied data track.",
"num": null
}
}
}
} |