File size: 114,455 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
{
    "paper_id": "2005",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:22:18.694303Z"
    },
    "title": "The RWTH Phrase-based Statistical Machine Translation System",
    "authors": [
        {
            "first": "Richard",
            "middle": [],
            "last": "Zens",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "zens@cs.rwth-aachen.de"
        },
        {
            "first": "Oliver",
            "middle": [],
            "last": "Bender",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "bender@cs.rwth-aachen.de"
        },
        {
            "first": "Sa\u0161a",
            "middle": [],
            "last": "Hasan",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "hasan@cs.rwth-aachen.de"
        },
        {
            "first": "Shahram",
            "middle": [],
            "last": "Khadivi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "khadivi@cs.rwth-aachen.de"
        },
        {
            "first": "Evgeny",
            "middle": [],
            "last": "Matusov",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "matusov@cs.rwth-aachen.de"
        },
        {
            "first": "Jia",
            "middle": [],
            "last": "Xu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "xujia@cs.rwth-aachen.de"
        },
        {
            "first": "Yuqi",
            "middle": [],
            "last": "Zhang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "yzhang@cs.rwth-aachen.de"
        },
        {
            "first": "Hermann",
            "middle": [],
            "last": "Ney",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "RWTH Aachen University",
                "location": {
                    "postCode": "D-52056",
                    "settlement": "Aachen",
                    "country": "Germany"
                }
            },
            "email": "ney@cs.rwth-aachen.de"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation 2005. We use a two pass approach. In the first pass, we generate a list of the N best translation candidates. The second pass consists of rescoring and reranking this N-best list. We will give a description of the search algorithm as well as the models that are used in each pass. We participated in the supplied data tracks for manual transcriptions for the following translation directions: Arabic-English, Chinese-English, English-Chinese and Japanese-English. For Japanese-English, we also participated in the C-Star track. In addition, we performed translations of automatic speech recognition output for Chinese-English and Japanese-English. For both language pairs, we translated the single-best ASR hypotheses. Additionally, we translated Chinese ASR lattices.",
    "pdf_parse": {
        "paper_id": "2005",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation 2005. We use a two pass approach. In the first pass, we generate a list of the N best translation candidates. The second pass consists of rescoring and reranking this N-best list. We will give a description of the search algorithm as well as the models that are used in each pass. We participated in the supplied data tracks for manual transcriptions for the following translation directions: Arabic-English, Chinese-English, English-Chinese and Japanese-English. For Japanese-English, we also participated in the C-Star track. In addition, we performed translations of automatic speech recognition output for Chinese-English and Japanese-English. For both language pairs, we translated the single-best ASR hypotheses. Additionally, we translated Chinese ASR lattices.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "We give an overview of the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the International Workshop on Spoken Language Translation (IWSLT) 2005.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "We use a two pass approach. First, we generate a word graph and extract a list of the N best translation candidates. Then, we apply additional models in a rescoring/reranking approach.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "This work is structured as follows: first, we will review the statistical approach to machine translation and introduce the notation that we will use in the later sections. Then, we will describe the models and algorithms that are used for generating the N -best lists, i.e., the first pass. In Section 4, we will describe the models that are used to rescore and rerank this N -best list, i.e., the second pass. Afterward, we will give an overview of the tasks and discuss the experimental results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "In statistical machine translation, we are given a source language sentence f J 1 = f 1 . . . f j . . . f J , which is to be translated into a target language sentence e I 1 = e 1 . . . e i . . . e I . Among all possible target language sentences, we will choose the sentence with the highest probability: ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Source-channel approach to SMT",
                "sec_num": "1.1."
            },
            {
                "text": "e\u00ce 1 =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Source-channel approach to SMT",
                "sec_num": "1.1."
            },
            {
                "text": "This decomposition into two knowledge sources is known as the source-channel approach to statistical machine translation [1] . It allows an independent modeling of the target language model P r(e I 1 ) and the translation model P r(f J 1 |e I 1 ) 1 . The target language model describes the well-formedness of the target language sentence. The translation model links the source language sentence to the target language sentence. The argmax operation denotes the search problem, i.e., the generation of the output sentence in the target language.",
                "cite_spans": [
                    {
                        "start": 121,
                        "end": 124,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 247,
                        "end": 248,
                        "text": "1",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Source-channel approach to SMT",
                "sec_num": "1.1."
            },
            {
                "text": "An alternative to the classical source-channel approach is the direct modeling of the posterior probability P r(e I 1 |f J 1 ). Using a log-linear model [2] , we obtain:",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 156,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-linear model",
                "sec_num": "1.2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "P r(e I 1 |f J 1 ) = exp M m=1 \u03bb m h m (e I 1 , f J 1 ) e I 1 exp M m=1 \u03bb m h m (e I 1 , f J 1 )",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Log-linear model",
                "sec_num": "1.2."
            },
            {
                "text": "The denominator represents a normalization factor that depends only on the source sentence f J 1 . Therefore, we can omit it during the search process. As a decision rule, we obtain:\u00ea\u00ce",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-linear model",
                "sec_num": "1.2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "1 = argmax I,e I 1 M m=1 \u03bb m h m (e I 1 , f J 1 )",
                        "eq_num": "(4)"
                    }
                ],
                "section": "Log-linear model",
                "sec_num": "1.2."
            },
            {
                "text": "This approach is a generalization of the source-channel approach. It has the advantage that additional models h(\u2022) can be easily integrated into the overall system. The model scaling factors \u03bb M 1 are trained according to the maximum entropy principle, e.g., using the GIS algorithm. Alternatively, one can train them with respect to the final translation quality measured by an error criterion [3] . For the IWSLT evaluation campaign, we optimized the scaling factors with respect to a linear interpolation of WER, PER, BLEU and NIST using the Downhill Simplex algorithm from [4] .",
                "cite_spans": [
                    {
                        "start": 395,
                        "end": 398,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 577,
                        "end": 580,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-linear model",
                "sec_num": "1.2."
            },
            {
                "text": "The basic idea of phrase-based translation is to segment the given source sentence into phrases, then translate each phrase and finally compose the target sentence from these phrase translations. This idea is illustrated in Figure 1 . Formally, we define a segmentation of a given sentence pair (f J",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 224,
                        "end": 232,
                        "text": "Figure 1",
                        "ref_id": "FIGREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "1 , e I 1 ) into K blocks:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "k \u2192 s k := (i k ; b k , j k ), for k = 1 . . . K.",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "Here, i k denotes the last position of the k th target phrase; we set i 0 := 0. The pair (b k , j k ) denotes the start and end positions of the source phrase that is aligned to the k th target phrase; we set j 0 := 0. Phrases are defined as nonempty contiguous sequences of words. We constrain the segmentations so that all words in the source and the target sentence are covered by exactly one phrase. Thus, there are no gaps and there is no overlap. For a given sentence pair (f J 1 , e I 1 ) and a given segmentation s K 1 , we define the bilingual phrases as: e k := e i k\u22121 +1 . . . e i k (6) f",
                "cite_spans": [
                    {
                        "start": 523,
                        "end": 524,
                        "text": "K",
                        "ref_id": null
                    },
                    {
                        "start": 595,
                        "end": 598,
                        "text": "(6)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "k := f b k . . . f j k (7) i 3 b 2 j 2 b 1 j 1 b 3 j 3 b 4 j 4 = J i 1 i 2 0 = j 0 0 = i 0 I = i 4",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "source positions target positions Note that the segmentation s K 1 contains the information on the phrase-level reordering. The segmentation s K 1 is introduced as a hidden variable in the translation model. Therefore, it would be theoretically correct to sum over all possible segmentations. In practice, we use the maximum approximation for this sum. As a result, the models h(\u2022) depend not only on the sentence pair (f J 1 , e I 1 ), but also on the segmentation s K 1 , i.e., we have models h(f J 1 , e I 1 , s K 1 ).",
                "cite_spans": [
                    {
                        "start": 63,
                        "end": 64,
                        "text": "K",
                        "ref_id": null
                    },
                    {
                        "start": 143,
                        "end": 144,
                        "text": "K",
                        "ref_id": null
                    },
                    {
                        "start": 468,
                        "end": 469,
                        "text": "K",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based approach",
                "sec_num": "1.3."
            },
            {
                "text": "The RWTH phrase-based system supports two alternative search strategies that will be described in this section. Translating a source language word graph. The first search strategy that our system supports takes a source language word graph as input and translates this graph in a monotone way [5] . The input graph can represent different reorderings of the input sentence so that the overall search can generate nonmonotone translations. Using this approach, it is very simple to experiment with various reordering constraints, e.g., the constraints proposed in [6] .",
                "cite_spans": [
                    {
                        "start": 293,
                        "end": 296,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 563,
                        "end": 566,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search algorithms",
                "sec_num": "2."
            },
            {
                "text": "Alternatively, we can use ASR lattices as input and translate them without changing the search algorithm, cf. [7] . A disadvantage when translating lattices with this method is that the search is monotone. To overcome this problem, we extended the monotone search algorithm from [5, 7] so that it is possible to reorder the target phrases. We implemented the following idea: while traversing the input graph, a phrase can be skipped and processed later.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 113,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 279,
                        "end": 282,
                        "text": "[5,",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 283,
                        "end": 285,
                        "text": "7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search algorithms",
                "sec_num": "2."
            },
            {
                "text": "Source cardinality synchronous search. For singleword based models, this search strategy is described in [8] . The idea is that the search proceeds synchronously with the cardinality of the already translated source positions. Here, we use a phrase-based version of this idea. To make the search problem feasible, the reorderings are constrained as in [9] .",
                "cite_spans": [
                    {
                        "start": 105,
                        "end": 108,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 352,
                        "end": 355,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search algorithms",
                "sec_num": "2."
            },
            {
                "text": "Word graphs and N -best lists. The two described search algorithms generate a word graph containing the most likely translation hypotheses. Out of this word graph we extract N -best lists. For more details on word graphs and Nbest list extraction, see [10, 11] .",
                "cite_spans": [
                    {
                        "start": 252,
                        "end": 256,
                        "text": "[10,",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 257,
                        "end": 260,
                        "text": "11]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Search algorithms",
                "sec_num": "2."
            },
            {
                "text": "We use a log-linear combination of several models (also called feature functions). In this section, we will describe the models that are used in the first pass, i.e., during search. This is an improved version of the system described in [12] . More specifically the models are: a phrase translation model, a word-based translation model, a deletion model, word and phrase penalty, a target language model and a reordering model.",
                "cite_spans": [
                    {
                        "start": 237,
                        "end": 241,
                        "text": "[12]",
                        "ref_id": "BIBREF11"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Models used during search",
                "sec_num": "3."
            },
            {
                "text": "The phrase-based translation model is the main component of our translation system. The hypotheses are generated by concatenating target language phrases. The pairs of source and corresponding target phrases are extracted from the wordaligned bilingual training corpus. The phrase extraction algorithm is described in detail in [5] . The main idea is to extract phrase pairs that are consistent with the word alignment. Thus, the words of the source phrase are aligned only to words in the target phrase and vice versa. This criterion is identical to the alignment template criterion described in [13] .",
                "cite_spans": [
                    {
                        "start": 328,
                        "end": 331,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    },
                    {
                        "start": 597,
                        "end": 601,
                        "text": "[13]",
                        "ref_id": "BIBREF12"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "We use relative frequencies to estimate the phrase translation probabilities:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p(f |\u1ebd) = N (f ,\u1ebd) N (\u1ebd)",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "Here, the number of co-occurrences of a phrase pair (f ,\u1ebd) that are consistent with the word alignment is denoted as N (f ,\u1ebd). If one occurrence of a target phrase\u1ebd has N > 1 possible translations, each of them contributes to N (f ,\u1ebd) with 1/N . The marginal count N (\u1ebd) is the number of occurrences of the target phrase\u1ebd in the training corpus. The resulting feature function is:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h Phr (f J 1 , e I 1 , s K 1 ) = log K k=1 p(f k |\u1ebd k )",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "To obtain a more symmetric model, we use the phrase-based model in both directions p(f |\u1ebd) and p(\u1ebd|f ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase-based model",
                "sec_num": "3.1."
            },
            {
                "text": "We are using relative frequencies to estimate the phrase translation probabilities. Most of the longer phrases occur only once in the training corpus. Therefore, pure relative frequencies overestimate the probability of those phrases. To overcome this problem, we use a word-based lexicon model to smooth the phrase translation probabilities. The score of a phrase pair is computed similar to the IBM model 1, but here, we are summing only within a phrase pair and not over the whole target language sentence:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-based lexicon model",
                "sec_num": "3.2."
            },
            {
                "text": "h Lex (f J 1 , e I 1 , s K 1 ) = log K k=1 j k j=b k i k i=i k\u22121 +1 p(f j |e i ) (10)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-based lexicon model",
                "sec_num": "3.2."
            },
            {
                "text": "The word translation probabilities p(f |e) are estimated as relative frequencies from the word-aligned training corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-based lexicon model",
                "sec_num": "3.2."
            },
            {
                "text": "The word-based lexicon model is also used in both directions p(f |e) and p(e|f ).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word-based lexicon model",
                "sec_num": "3.2."
            },
            {
                "text": "The deletion model [14] is designed to penalize hypotheses that miss the translation of a word. For each source word, we check if a target word with a probability higher than a given threshold \u03c4 exists. If not, this word is considered a deletion. The feature simply counts the number of deletions. Last year [15] , we used this model during rescoring only, whereas this year, we integrated a within-phrase variant of the deletion model into the search:",
                "cite_spans": [
                    {
                        "start": 19,
                        "end": 23,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    },
                    {
                        "start": 308,
                        "end": 312,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deletion model",
                "sec_num": "3.3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h Del (f J 1 , e I 1 , s K 1 ) = K k=1 j k j=b k i k i=i k\u22121 +1 [ p(f j |e i ) < \u03c4 ]",
                        "eq_num": "(11)"
                    }
                ],
                "section": "Deletion model",
                "sec_num": "3.3."
            },
            {
                "text": "The word translation probabilities p(f |e) are the same as for the word-based lexicon model. We use [\u2022] to denote a true or false statement [16] , i.e., the result is 1 if the statement is true, and 0 otherwise. In general, we use the following convention:",
                "cite_spans": [
                    {
                        "start": 140,
                        "end": 144,
                        "text": "[16]",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deletion model",
                "sec_num": "3.3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "[ C ] = 1, if condition C is true 0, if condition C is false",
                        "eq_num": "(12)"
                    }
                ],
                "section": "Deletion model",
                "sec_num": "3.3."
            },
            {
                "text": "In addition, we use two simple heuristics, namely word penalty and phrase penalty:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word and phrase penalty model",
                "sec_num": "3.4."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h WP (f J 1 , e I 1 , s K 1 ) = I (13) h PP (f J 1 , e I 1 , s K 1 ) = K",
                        "eq_num": "(14)"
                    }
                ],
                "section": "Word and phrase penalty model",
                "sec_num": "3.4."
            },
            {
                "text": "These two models affect the average sentence and phrase lengths. The model scaling factors can be adjusted to prefer longer sentences and longer phrases.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word and phrase penalty model",
                "sec_num": "3.4."
            },
            {
                "text": "We use the SRI language modeling toolkit [17] to train a standard n-gram language model. The smoothing technique we apply is the modified Kneser-Ney discounting with interpolation. The order of the language model depends on the translation direction. For most tasks, we use a trigram model, except for Chinese-English, where we use a fivegram language model. The resulting feature function is:",
                "cite_spans": [
                    {
                        "start": 41,
                        "end": 45,
                        "text": "[17]",
                        "ref_id": "BIBREF16"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Target language model",
                "sec_num": "3.5."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h LM (f J 1 , e I 1 , s K 1 ) = log I i=1 p(e i |e i\u22121 i\u2212n+1 )",
                        "eq_num": "(15)"
                    }
                ],
                "section": "Target language model",
                "sec_num": "3.5."
            },
            {
                "text": "We use a very simple reordering model that is also used in, for instance, [13, 15] . It assigns costs based on the jump width:",
                "cite_spans": [
                    {
                        "start": 74,
                        "end": 78,
                        "text": "[13,",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 79,
                        "end": 82,
                        "text": "15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering model",
                "sec_num": "3.6."
            },
            {
                "text": "h RM (f J 1 , e I 1 , s K 1 ) = K k=1 |b k \u2212 j k\u22121 \u2212 1| + J \u2212 j k (16)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Reordering model",
                "sec_num": "3.6."
            },
            {
                "text": "The usage of N -best lists in machine translation has several advantages. It alleviates the effects of the huge search space which is represented in word graphs by using a compact excerpt of the N best hypotheses generated by the system. Especially for small tasks, such as the IWSLT supplied data track, rather small N -best lists are already sufficient to obtain good oracle error rates, i.e., the error rate of the best hypothesis with respect to an error measure (such as WER or BLEU). N -best lists are suitable for easily applying several rescoring techniques because the hypotheses are already fully generated. In comparison, word graph rescoring techniques need specialized tools which traverse the graph appropriately. Additionally, because a node within a word graph allows for many histories, one can only apply local rescoring techniques, whereas for N -best lists, techniques can be used that consider properties of the whole target sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rescoring models",
                "sec_num": "4."
            },
            {
                "text": "In the next sections, we will present several rescoring techniques.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Rescoring models",
                "sec_num": "4."
            },
            {
                "text": "One of the first ideas in rescoring is to use additional language models that were not used in the generation procedure. In our system, we use clustered language models based on regular expressions [18] . Each hypothesis is classified by matching it to regular expressions that identify the type of the sentence. Then, a cluster-specific (or sentence-type-specific) language model is interpolated into a global language model to compute the score of the sentence:",
                "cite_spans": [
                    {
                        "start": 198,
                        "end": 202,
                        "text": "[18]",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustered language models",
                "sec_num": "4.1."
            },
            {
                "text": "h CLM (f J 1 , e I 1 ) = (17) log c R c (e I 1 ) \u03b1 c p c (e I 1 ) + (1 \u2212 \u03b1 c )p g (e I 1 ) ,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustered language models",
                "sec_num": "4.1."
            },
            {
                "text": "where",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustered language models",
                "sec_num": "4.1."
            },
            {
                "text": "p g (e I 1 )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustered language models",
                "sec_num": "4.1."
            },
            {
                "text": "is the global language model, p c (e I 1 ) the cluster-specific language model, and R c (e I 1 ) denotes the true-or-false statement (cf. Equation 12) which is 1 if the c th regular expression R c (\u2022) matches the target sentence e I 1 and 0 otherwise. 2 ",
                "cite_spans": [
                    {
                        "start": 252,
                        "end": 253,
                        "text": "2",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Clustered language models",
                "sec_num": "4.1."
            },
            {
                "text": "IBM model 1 rescoring rates the quality of a sentence by using the probabilities of one of the easiest single-word based translation models:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IBM model 1",
                "sec_num": "4.2."
            },
            {
                "text": "h IBM1 (f J 1 , e I 1 ) = log \uf8eb \uf8ed 1 (I + 1) J J j=1 I i=0 p(f j |e i ) \uf8f6 \uf8f8 (18)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IBM model 1",
                "sec_num": "4.2."
            },
            {
                "text": "Despite its simplicity, this model achieves good improvements [14] .",
                "cite_spans": [
                    {
                        "start": 62,
                        "end": 66,
                        "text": "[14]",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IBM model 1",
                "sec_num": "4.2."
            },
            {
                "text": "During the IBM model 1 rescoring step, we make use of another rescoring technique that benefits from the IBM model 1 lexical probabilities:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IBM1 deletion model",
                "sec_num": "4.3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h Del (f J 1 , e I 1 ) = J j=1 I i=0 [ p(f j |e i ) < \u03c4 ]",
                        "eq_num": "(19)"
                    }
                ],
                "section": "IBM1 deletion model",
                "sec_num": "4.3."
            },
            {
                "text": "We call this the IBM1 deletion model. It counts all source words whose lexical probability given each target word is below a threshold \u03c4 . In the experiments, \u03c4 was chosen between 10 \u22121 and 10 \u22124 .",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "IBM1 deletion model",
                "sec_num": "4.3."
            },
            {
                "text": "The next step after IBM model 1 rescoring is HMM rescoring. We use the HMM to compute the log-likelihood of a 2 The clusters are disjunct, thus only one regular expression matches.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 111,
                        "text": "2",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Markov alignment model",
                "sec_num": "4.4."
            },
            {
                "text": "sentence pair (f J 1 , e I 1 ):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Markov alignment model",
                "sec_num": "4.4."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "h HMM (f J 1 , e I 1 ) = log a J 1 J j=1 p(a j |a j\u22121 , I) \u2022 p(f j |e a j )",
                        "eq_num": "(20)"
                    }
                ],
                "section": "Hidden Markov alignment model",
                "sec_num": "4.4."
            },
            {
                "text": "In our experiments, we use a refined alignment probability p(a j \u2212 a j\u22121 |G(e aj ), I) that conditions the jump widths of the alignment positions a j \u2212 a j\u22121 on the word class G(e aj ). This is the so-called homogeneous HMM [19] .",
                "cite_spans": [
                    {
                        "start": 224,
                        "end": 228,
                        "text": "[19]",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Hidden Markov alignment model",
                "sec_num": "4.4."
            },
            {
                "text": "Several word penalties are used in the rescoring step:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word penalties",
                "sec_num": "4.5."
            },
            {
                "text": "h WP (f J 1 , e I 1 ) = \uf8f1 \uf8f2 \uf8f3 I (a) I/J (b) 2|I \u2212 J|/(I + J) (c) (21)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word penalties",
                "sec_num": "4.5."
            },
            {
                "text": "The word penalties are heuristics that affect the generated hypothesis length. In general, sentences that are too short should be avoided.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word penalties",
                "sec_num": "4.5."
            },
            {
                "text": "In the experiments on coupling speech recognition and machine translation, we used the phrase-based MT system described in Section 2 to translate ASR lattices. In addition to the models described in Section 3, we use the acoustic model and the source language model of the ASR system in the loglinear model. These models are integrated into the search and the scaling factors are also optimized.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integrating ASR and MT",
                "sec_num": "5."
            },
            {
                "text": "A significant obstacle for integrating speech recognition and translation is the mismatch between the vocabularies of the ASR and MT system. For the Chinese-English task, the number of out-of-vocabulary (OOV) words was rather high. Ideally, the vocabulary of the recognition system should be a subset of the translation system source vocabulary. In the IWSLT evaluation, we had no control over the recognition experiments. For this reason, the reported improvements might have been larger with a proper handling of the vocabularies.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Integrating ASR and MT",
                "sec_num": "5."
            },
            {
                "text": "The experiments were carried out on the Basic Travel Expression Corpus (BTEC) task [20] . This is a multilingual speech corpus which contains tourism-related sentences similar to those that are found in phrase books. The corpus statistics are shown in Table 1 . For the supplied data track, 20 000 sentences training corpus and two test sets (C-Star'03 and IWSLT'04) were made available for each language pair. As additional training resources for the C-Star track, we used the full BTEC for Japanese-English and the Spoken Language DataBase (SLDB) [21] , which consists of transcriptions of spoken dialogs in the domain of hotel reservations 3 . For the Japanese-English supplied data track, the number of OOVs in the IWSLT'05 test set is rather high, both in comparison with the C-Star'03 and IWSLT'04 test sets and in comparison with the number of OOVs for the other language pairs. As for any data-driven approach, the performance of our system deteriorates due to the high number of OOVs. Using the additional corpora in the C-Star track, we are able to reduce the number of OOVs to a noncritical number.",
                "cite_spans": [
                    {
                        "start": 83,
                        "end": 87,
                        "text": "[20]",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 549,
                        "end": 553,
                        "text": "[21]",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 252,
                        "end": 259,
                        "text": "Table 1",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Tasks and corpora",
                "sec_num": "6."
            },
            {
                "text": "As the BTEC is a rather clean corpus, the preprocessing consisted mainly of tokenization, i.e., separating punctuation marks from words. Additionally, we replaced contractions such as it's or I'm in the English corpus and we removed the case information. For Arabic, we removed the diacritics and we split common prefixes: Al, w, f, b, l. There was no special preprocessing for the Chinese and the Japanese training corpora.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tasks and corpora",
                "sec_num": "6."
            },
            {
                "text": "We used the C-Star'03 corpus as development set to optimize the system, for instance, the model scaling factors and the GIZA++ [19] parameter settings. The IWSLT'04 test set was used as a blind test corpus. After the optimization, we added the C-Star'03 and the IWSLT'04 test sets to the training corpus and retrained the whole system.",
                "cite_spans": [
                    {
                        "start": 127,
                        "end": 131,
                        "text": "[19]",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Tasks and corpora",
                "sec_num": "6."
            },
            {
                "text": "We performed speech translation experiments on the Chinese-English and Japanese-English supplied data tracks. For Japanese-English we translated the single-best ASR hypotheses only, whereas for Chinese-English we also translated ASR lattices. The preprocessing and postprocessing steps are the same as for text translation. Table 2 contains the Chinese ASR word lattice statistics for the three test sets. The ASR WER and the graph error rate (GER) were measured at the word level (and not at the character level). The GER is the minimum WER among all paths through the lattice.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 324,
                        "end": 331,
                        "text": "Table 2",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Tasks and corpora",
                "sec_num": "6."
            },
            {
                "text": "The automatic evaluation criteria are computed using the IWSLT 2005 evaluation server. For all the experiments, we report the two accuracy measures BLEU [22] and NIST [23] as well as the two error rates WER and PER. For the primary submissions, we also report the two accuracy measures Meteor [24] and GTM [25] . All those criteria are computed with respect to multiple references (with the exception of English-Chinese where only one reference is available).",
                "cite_spans": [
                    {
                        "start": 153,
                        "end": 157,
                        "text": "[22]",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 167,
                        "end": 171,
                        "text": "[23]",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 293,
                        "end": 297,
                        "text": "[24]",
                        "ref_id": "BIBREF23"
                    },
                    {
                        "start": 306,
                        "end": 310,
                        "text": "[25]",
                        "ref_id": "BIBREF24"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "7."
            },
            {
                "text": "Research Laboratories, Kyoto, Japan. ",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Experimental results",
                "sec_num": "7."
            },
            {
                "text": "The translation results of the RWTH primary submissions are summarized in Table 3 . Note that for English-Chinese, only one reference was used. Therefore the scores are in a different range.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 74,
                        "end": 81,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Primary submissions",
                "sec_num": "7.1."
            },
            {
                "text": "In Table 4 , we compare the translation performance of the RWTH 2004 system [15] and our current system. The evaluation is done on the IWSLT'04 test set for the supplied data track using the IWSLT 2005 evaluation server. Note that the reported numbers for the 2004 system differ slightly from the numbers in [15] due to a somewhat different computation. We observe significant improvements for all evaluation criteria and for both language pairs. For the Chinese-English system, for instance, the BLEU score increases by 4.9% and the WER decreases by 5%. Similar improvements are obtained for the Japanese-English system. In Table 5 , we present some translation examples for Japanese-English. As already mentioned in the previous section, our data-driven approach suffers from the high number of OOVs for the supplied data track. This becomes apparent when looking at the translation hypotheses. Furthermore, the incorporation of additional training data improves the translation quality significantly, not only in terms of the official results (cf. Table 3 ) but also when considering the examples in Table 5 . In all three examples, the C-Star data track system is able to produce one of the reference translations. On the other hand, the output of the supplied data track system is of much lower quality. In the first example, we see the effect of a single unknown word. In the second example, the word choice is more or less correct, but the fluency of the output is very poor. The translation in the final example is entirely incomprehensible for the supplied data track system.",
                "cite_spans": [
                    {
                        "start": 76,
                        "end": 80,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 308,
                        "end": 312,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 3,
                        "end": 10,
                        "text": "Table 4",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 625,
                        "end": 632,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    },
                    {
                        "start": 1051,
                        "end": 1058,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    },
                    {
                        "start": 1103,
                        "end": 1110,
                        "text": "Table 5",
                        "ref_id": "TABREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Results for text input",
                "sec_num": "7.2."
            },
            {
                "text": "The effects of the N -best list rescoring for the IWSLT'04 test set are summarized in Table 6 . On the development set (C-Star'03), which was used to optimize the model scaling factors, all models gradually help to enhance the overall performance of the system, e.g., BLEU is improved from 45.5% to 47.4%. For the IWSLT'04 blind test set, the results are not as smooth, but still the overall system (using all models that were described in Section 4) achieves improvements in Table 7 , we show some examples where the impact of the rescoring models can be seen.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 86,
                        "end": 93,
                        "text": "Table 6",
                        "ref_id": "TABREF6"
                    },
                    {
                        "start": 476,
                        "end": 483,
                        "text": "Table 7",
                        "ref_id": "TABREF7"
                    }
                ],
                "eq_spans": [],
                "section": "Results for text input",
                "sec_num": "7.2."
            },
            {
                "text": "The translation results for the IWSLT'05 test set for ASR input in the Chinese-English supplied data track are summa- Table 8 .",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 118,
                        "end": 125,
                        "text": "Table 8",
                        "ref_id": "TABREF8"
                    }
                ],
                "eq_spans": [],
                "section": "Results for ASR input",
                "sec_num": "7.3."
            },
            {
                "text": "We report the results for the two search strategies described in Section 2. Using the first strategy (Graph), we are able to translate ASR lattices. We observe significant improvements in translation quality over the translations of the single-best (1-Best) recognition results. This is true for the monotone search (Mon) as well as for the version which allows for reordering of target phrases (Skip). The improvements are consistent among all evaluation criteria. Using the second search strategy (SCSS), we are limited to the single-best ASR hypotheses as input. This is the same system that is used to translate the manual transcriptions. Despite the limitation to the single-best hypotheses, this system performs best in terms of the automatic evaluation measures (except for the NIST score).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for ASR input",
                "sec_num": "7.3."
            },
            {
                "text": "The RWTH Chinese-English primary systems for ASR did not include rescoring. After the evaluation, we applied the rescoring techniques (described in Section 4) to the primary system. The improvements from rescoring are similar to the text system, e.g., 1.9% for the BLEU score.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results for ASR input",
                "sec_num": "7.3."
            },
            {
                "text": "Even if our primary system did not use lattices, a subjective comparison of the two systems showed positive effects when translating lattices for a large number of sentences. Recognition errors that occur in the single-best ASR hypotheses are often corrected when lattices are used. Some translation examples for improvements with lattices are shown in Table 9 . ",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 353,
                        "end": 360,
                        "text": "Table 9",
                        "ref_id": "TABREF9"
                    }
                ],
                "eq_spans": [],
                "section": "Results for ASR input",
                "sec_num": "7.3."
            },
            {
                "text": "We have described the RWTH phrase-based statistical machine translation system that was used in the evaluation campaign of the IWSLT 2005. We use a two pass approach. In the first pass, we use a dynamic programming beam search algorithm to generate an N -best list. The second pass consists of rescoring and reranking of this N -best list.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8."
            },
            {
                "text": "One important advantage of our data-driven machine translation systems is that virtually the same system can be used for the different translation directions. Only a marginal portion of the overall performance can be attributed to language-specific methods.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8."
            },
            {
                "text": "We have shown significant improvements compared to the RWTH system of 2004 [15] .",
                "cite_spans": [
                    {
                        "start": 75,
                        "end": 79,
                        "text": "[15]",
                        "ref_id": "BIBREF14"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8."
            },
            {
                "text": "We have shown that the translation of ASR lattices can yield significant improvements over the translation of the ASR single-best hypotheses.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8."
            },
            {
                "text": "The notational convention will be as follows: we use the symbol P r(\u2022) to denote general probability distributions with (nearly) no specific assumptions. In contrast, for model-based probability distributions, we use the generic symbol p(\u2022).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The Japanese-English training corpora (BTEC, SLDB) that we used in the C-Star track were kindly provided by ATR Spoken Language Translation",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was partly funded by the DFG (Deutsche Forschungsgemeinschaft) under the grant NE572/5-1, project \"Statistische Text\u00fcbersetzung\" and by the European Union under the integrated project TC-Star (Technology and Corpora for Speech to Speech Translation, IST-2002-FP6-506738, http://www.tc-star.org).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": "9."
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A statistical approach to machine translation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Cocke",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Jelinek",
                        "suffix": ""
                    },
                    {
                        "first": "J",
                        "middle": [
                            "D"
                        ],
                        "last": "Lafferty",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    },
                    {
                        "first": "P",
                        "middle": [
                            "S"
                        ],
                        "last": "Roossin",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Computational Linguistics",
                "volume": "16",
                "issue": "2",
                "pages": "79--85",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. F. Brown, J. Cocke, S. A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer, and P. S. Roossin, \"A statistical approach to machine translation,\" Computational Linguistics, vol. 16, no. 2, pp. 79-85, June 1990.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Discriminative training and maximum entropy models for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "295--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney, \"Discriminative training and maximum entropy models for statistical machine translation,\" in Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL), Philadelphia, PA, July 2002, pp. 295-302.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the 41th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, \"Minimum error rate training in statistical machine translation,\" in Proc. of the 41th Annual Meeting of the Asso- ciation for Computational Linguistics (ACL), Sapporo, Japan, July 2003, pp. 160-167.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Flannery, Numerical Recipes in C++",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "H"
                        ],
                        "last": "Press",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Teukolsky",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "T"
                        ],
                        "last": "Vetterling",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "P"
                        ],
                        "last": "",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan- nery, Numerical Recipes in C++. Cambridge, UK: Cam- bridge University Press, 2002.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "25th German Conf. on Artificial Intelligence (KI2002), ser. Lecture Notes in Artificial Intelligence (LNAI), M. Jarke",
                "volume": "2479",
                "issue": "",
                "pages": "18--32",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens, F. J. Och, and H. Ney, \"Phrase-based statistical ma- chine translation,\" in 25th German Conf. on Artificial Intel- ligence (KI2002), ser. Lecture Notes in Artificial Intelligence (LNAI), M. Jarke, J. Koehler, and G. Lakemeyer, Eds., vol. 2479. Aachen, Germany: Springer Verlag, September 2002, pp. 18-32.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Novel reordering approaches in phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kanthak",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Vilar",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
                "volume": "",
                "issue": "",
                "pages": "167--174",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Kanthak, D. Vilar, E. Matusov, R. Zens, and H. Ney, \"Novel reordering approaches in phrase-based statistical ma- chine translation,\" in 43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, Ann Arbor, MI, June 2005, pp. 167-174.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Phrase-based translation of speech recognizer word lattices using loglinear model combination",
                "authors": [
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. IEEE Automatic Speech Recognition and Understanding Workshop",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "E. Matusov and H. Ney, \"Phrase-based translation of speech recognizer word lattices using loglinear model combination,\" in Proc. IEEE Automatic Speech Recognition and Under- standing Workshop, Cancun, Mexiko, Nov/Dec 2005, to ap- pear.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Word reordering and a dynamic programming beam search algorithm for statistical machine translation",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "97--133",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "C. Tillmann and H. Ney, \"Word reordering and a dynamic programming beam search algorithm for statistical machine translation,\" Computational Linguistics, vol. 29, no. 1, pp. 97- 133, March 2003.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Reordering constraints for phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Watanabe",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "COLING '04: The 20th Int. Conf. on Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "205--211",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens, H. Ney, T. Watanabe, and E. Sumita, \"Reordering constraints for phrase-based statistical machine translation,\" in COLING '04: The 20th Int. Conf. on Computational Lin- guistics, Geneva, Switzerland, August 2004, pp. 205-211.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Word graphs for statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond",
                "volume": "",
                "issue": "",
                "pages": "191--198",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens and H. Ney, \"Word graphs for statistical machine translation,\" in 43rd Annual Meeting of the Assoc. for Com- putational Linguistics: Proc. Workshop on Building and Us- ing Parallel Texts: Data-Driven Machine Translation and Be- yond, Ann Arbor, MI, June 2005, pp. 191-198.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Generation of word graphs in statistical machine translation",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Ueffing",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the Conf. on Empirical Methods for Natural Language Processing (EMNLP)",
                "volume": "",
                "issue": "",
                "pages": "156--163",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Ueffing, F. J. Och, and H. Ney, \"Generation of word graphs in statistical machine translation,\" in Proc. of the Conf. on Em- pirical Methods for Natural Language Processing (EMNLP), Philadelphia, PA, July 2002, pp. 156-163.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "Improvements in phrase-based statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of the Human Language Technology Conf. (HLT-NAACL)",
                "volume": "",
                "issue": "",
                "pages": "257--264",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens and H. Ney, \"Improvements in phrase-based statis- tical machine translation,\" in Proc. of the Human Language Technology Conf. (HLT-NAACL), Boston, MA, May 2004, pp. 257-264.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Improved alignment models for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Tillmann",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 1999,
                "venue": "Proc. Joint SIG-DAT Conf. on Empirical Methods in Natural Language Processing and Very Large Corpora",
                "volume": "",
                "issue": "",
                "pages": "20--28",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, C. Tillmann, and H. Ney, \"Improved alignment models for statistical machine translation,\" in Proc. Joint SIG- DAT Conf. on Empirical Methods in Natural Language Pro- cessing and Very Large Corpora, University of Maryland, College Park, MD, June 1999, pp. 20-28.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Syntax for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Gildea",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Khudanpur",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Sarkar",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Yamada",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Fraser",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Kumar",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Eng",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Jain",
                        "suffix": ""
                    },
                    {
                        "first": "Z",
                        "middle": [],
                        "last": "Jin",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Radev",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Johns Hopkins University 2003 Summer Workshop on Language Engineering",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, and D. Radev, \"Syntax for statistical machine trans- lation,\" Johns Hopkins University 2003 Summer Workshop on Language Engineering, Center for Language and Speech Processing, Baltimore, MD, Tech. Rep., August 2003.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "Alignment Templates: the RWTH SMT System",
                "authors": [
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Bender",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Matusov",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of the Int. Workshop on Spoken Language Translation (IWSLT)",
                "volume": "",
                "issue": "",
                "pages": "79--84",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "O. Bender, R. Zens, E. Matusov, and H. Ney, \"Alignment Tem- plates: the RWTH SMT System,\" in Proc. of the Int. Work- shop on Spoken Language Translation (IWSLT), Kyoto, Japan, September 2004, pp. 79-84.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Concrete Mathematics",
                "authors": [
                    {
                        "first": "R",
                        "middle": [
                            "L"
                        ],
                        "last": "Graham",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [
                            "E"
                        ],
                        "last": "Knuth",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Patashnik",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Math- ematics, 2nd ed. Reading, Mass.: Addison-Wesley Publish- ing Company, 1994.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "SRILM -an extensible language modeling toolkit",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Stolcke",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. Int. Conf. on Spoken Language Processing",
                "volume": "2",
                "issue": "",
                "pages": "901--904",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Stolcke, \"SRILM -an extensible language modeling toolkit,\" in Proc. Int. Conf. on Spoken Language Processing, vol. 2, Denver, CO, 2002, pp. 901-904.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Clustered language models based on regular expressions for SMT",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Hasan",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT)",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Hasan and H. Ney, \"Clustered language models based on regular expressions for SMT,\" in Proc. of the 10th Annual Conf. of the European Association for Machine Translation (EAMT), Budapest, Hungary, May 2005.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "A systematic comparison of various statistical alignment models",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Computational Linguistics",
                "volume": "29",
                "issue": "1",
                "pages": "19--51",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F. J. Och and H. Ney, \"A systematic comparison of vari- ous statistical alignment models,\" Computational Linguistics, vol. 29, no. 1, pp. 19-51, March 2003.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Toward a broad-coverage bilingual corpus for speech translation of travel conversations in the real world",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takezawa",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sugaya",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC)",
                "volume": "",
                "issue": "",
                "pages": "147--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto, \"Toward a broad-coverage bilingual corpus for speech translation of travel conversations in the real world,\" in Proc. of the Third Int. Conf. on Language Resources and Evaluation (LREC), Las Palmas, Spain, May 2002, pp. 147- 152.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "A speech and language database for speech translation research",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Morimoto",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Uratani",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takezawa",
                        "suffix": ""
                    },
                    {
                        "first": "O",
                        "middle": [],
                        "last": "Furuse",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Sobashima",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Iida",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Nakamura",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Sagisaka",
                        "suffix": ""
                    },
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Higuchi",
                        "suffix": ""
                    },
                    {
                        "first": "Y",
                        "middle": [],
                        "last": "Yamazaki",
                        "suffix": ""
                    }
                ],
                "year": 1994,
                "venue": "Proc. of the 3rd Int. Conf. on Spoken Language Processing (ICSLP'94)",
                "volume": "",
                "issue": "",
                "pages": "1791--1794",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Morimoto, N. Uratani, T. Takezawa, O. Furuse, Y. Sobashima, H. Iida, A. Nakamura, Y. Sagisaka, N. Higuchi, and Y. Yamazaki, \"A speech and language database for speech translation research,\" in Proc. of the 3rd Int. Conf. on Spo- ken Language Processing (ICSLP'94), Yokohama, Japan, September 1994, pp. 1791-1794.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "W.-J",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the 40th Annual Meeting of the Association for Computational Linguistics (ACL)",
                "volume": "",
                "issue": "",
                "pages": "311--318",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, \"Bleu: a method for automatic evaluation of machine translation,\" in Proc. of the 40th Annual Meeting of the Association for Com- putational Linguistics (ACL), Philadelphia, PA, July 2002, pp. 311-318.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Automatic evaluation of machine translation quality using n-gram co-occurrence statistics",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Doddington",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. ARPA Workshop on Human Language Technology",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "G. Doddington, \"Automatic evaluation of machine translation quality using n-gram co-occurrence statistics,\" in Proc. ARPA Workshop on Human Language Technology, 2002.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "METEOR: An automatic metric for MT evaluation with improved correlation with human judgments",
                "authors": [
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Banerjee",
                        "suffix": ""
                    },
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Lavie",
                        "suffix": ""
                    }
                ],
                "year": 2005,
                "venue": "43rd Annual Meeting of the Assoc. for Computational Linguistics: Proc. Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "S. Banerjee and A. Lavie, \"METEOR: An automatic met- ric for MT evaluation with improved correlation with human judgments,\" in 43rd Annual Meeting of the Assoc. for Compu- tational Linguistics: Proc. Workshop on Intrinsic and Extrin- sic Evaluation Measures for MT and/or Summarization, Ann Arbor, MI, June 2005.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Evaluation of machine translation and its evaluation",
                "authors": [
                    {
                        "first": "J",
                        "middle": [
                            "P"
                        ],
                        "last": "Turian",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Shen",
                        "suffix": ""
                    },
                    {
                        "first": "I",
                        "middle": [
                            "D"
                        ],
                        "last": "Melamed",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "J. P. Turian, L. Shen, and I. D. Melamed, \"Evaluation of ma- chine translation and its evaluation,\" Computer Science De- partment, New York University, Tech. Rep. Proteus technical report 03-005, 2003.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "num": null,
                "uris": null,
                "type_str": "figure",
                "text": "Illustration of the phrase segmentation."
            },
            "TABREF1": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Test Set</td><td colspan=\"3\">WER [%] GER [%] Density</td></tr><tr><td>C-Star'03</td><td>41.4</td><td>16.9</td><td>13</td></tr><tr><td>IWSLT'04</td><td>44.5</td><td>20.2</td><td>13</td></tr><tr><td>IWSLT'05</td><td>42.0</td><td>18.2</td><td>14</td></tr></table>",
                "text": "Statistics for the Chinese ASR lattices of the three test sets.",
                "num": null
            },
            "TABREF2": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"6\">Translation System BLEU NIST WER PER</td></tr><tr><td>Direction</td><td/><td>[%]</td><td/><td>[%]</td><td>[%]</td></tr><tr><td colspan=\"2\">Chin.-Engl. 2004</td><td>40.4</td><td>8.59</td><td colspan=\"2\">52.4 42.2</td></tr><tr><td/><td>2005</td><td>46.3</td><td>8.73</td><td colspan=\"2\">47.4 39.7</td></tr><tr><td>Jap.-Engl.</td><td>2004</td><td>44.8</td><td>9.41</td><td colspan=\"2\">50.0 37.7</td></tr><tr><td/><td>2005</td><td>49.8</td><td>9.52</td><td colspan=\"2\">46.5 36.8</td></tr></table>",
                "text": "Progress over time: comparison of the RWTH systems of the years 2004 and 2005 for the supplied data track on the IWSLT'04 test set.",
                "num": null
            },
            "TABREF3": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td/><td/><td/><td colspan=\"2\">Supplied Data Track</td><td/><td colspan=\"2\">C-Star Track</td></tr><tr><td/><td/><td colspan=\"4\">Arabic Chinese Japanese English</td><td>Japanese</td><td>English</td></tr><tr><td>Train</td><td>Sentences</td><td/><td colspan=\"2\">20 000</td><td/><td colspan=\"2\">240 672</td></tr><tr><td/><td colspan=\"3\">Running Words 180 075 176 199</td><td colspan=\"4\">198 453 189 927 1 951 311 1 775 213</td></tr><tr><td/><td>Vocabulary</td><td>15 371</td><td>8 687</td><td>9 277</td><td>6 870</td><td>26 036</td><td>14 120</td></tr><tr><td/><td>Singletons</td><td>8 319</td><td>4 006</td><td>4 431</td><td>2 888</td><td>8 975</td><td>3 538</td></tr><tr><td>C-Star'03</td><td>Sentences</td><td/><td/><td>506</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 552</td><td>3 630</td><td>4 130</td><td>3 823</td><td>4 130</td><td>3 823</td></tr><tr><td/><td>OOVs (Running Words)</td><td>133</td><td>114</td><td>61</td><td>65</td><td>34</td><td>-</td></tr><tr><td>IWSLT'04</td><td>Sentences</td><td/><td/><td>500</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 597</td><td>3 681</td><td>4 131</td><td>3 837</td><td>4 131</td><td>3 837</td></tr><tr><td/><td>OOVs (Running Words)</td><td>142</td><td>83</td><td>71</td><td>58</td><td>36</td><td>-</td></tr><tr><td>IWSLT'05</td><td>Sentences</td><td/><td/><td>506</td><td/><td/></tr><tr><td/><td>Running Words</td><td>3 562</td><td>3 918</td><td>4 226</td><td>3 909</td><td>4 226</td><td>3 909</td></tr><tr><td/><td>OOVs (Running Words)</td><td>146</td><td>90</td><td>293</td><td>69</td><td>10</td><td>-</td></tr></table>",
                "text": "Corpus statistics after preprocessing.",
                "num": null
            },
            "TABREF4": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Data</td><td>Input</td><td>Translation</td><td/><td colspan=\"2\">Accuracy Measures</td><td/><td colspan=\"2\">Error Rates</td></tr><tr><td>Track</td><td/><td>Direction</td><td colspan=\"6\">BLEU [%] NIST Meteor [%] GTM [%] WER [%] PER [%]</td></tr><tr><td colspan=\"3\">Supplied Manual Arabic-English</td><td>54.7</td><td>9.78</td><td>70.8</td><td>65.6</td><td>37.1</td><td>31.9</td></tr><tr><td/><td/><td>Chinese-English</td><td>51.1</td><td>9.57</td><td>66.5</td><td>60.1</td><td>42.8</td><td>35.8</td></tr><tr><td/><td/><td>English-Chinese</td><td>20.0</td><td>5.09</td><td>12.6</td><td>55.2</td><td>61.2</td><td>52.7</td></tr><tr><td/><td/><td>Japanese-English</td><td>40.8</td><td>7.86</td><td>58.6</td><td>48.6</td><td>53.6</td><td>44.4</td></tr><tr><td/><td>ASR</td><td>Chinese-English</td><td>38.3</td><td>7.39</td><td>54.0</td><td>48.8</td><td>56.5</td><td>47.2</td></tr><tr><td/><td/><td>Japanese-English</td><td>42.7</td><td>8.53</td><td>62.0</td><td>49.6</td><td>51.2</td><td>41.2</td></tr><tr><td>C-Star</td><td colspan=\"2\">Manual Japanese-English</td><td>77.6</td><td>12.91</td><td>85.4</td><td>78.7</td><td>24.3</td><td>18.6</td></tr></table>",
                "text": "Official results for the RWTH primary submissions on the IWSLT'05 test set.",
                "num": null
            },
            "TABREF5": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"2\">Translation examples for the Japanese-English sup-</td></tr><tr><td colspan=\"2\">plied and C-Star data tracks.</td></tr><tr><td colspan=\"2\">Data Track Translation</td></tr><tr><td>Supplied</td><td>What would you like</td></tr><tr><td>C-Star</td><td>What would you like for the main course</td></tr><tr><td>Reference</td><td>What would you like for the main course</td></tr><tr><td>Supplied</td><td>Is that flight two seats available</td></tr><tr><td>C-Star</td><td>Are there two seats available on that flight</td></tr><tr><td>Reference</td><td>Are there two seats available on that flight</td></tr><tr><td>Supplied</td><td>Have a good I anything new</td></tr><tr><td>C-Star</td><td>I prefer something different</td></tr><tr><td>Reference</td><td>I prefer something different</td></tr><tr><td colspan=\"2\">all evaluation criteria. In</td></tr></table>",
                "text": "",
                "num": null
            },
            "TABREF6": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td colspan=\"5\">Rescoring: effect of successively adding models for</td></tr><tr><td colspan=\"4\">the Chinese-English IWSLT'04 test set.</td></tr><tr><td>System</td><td colspan=\"4\">BLEU NIST WER PER</td></tr><tr><td/><td>[%]</td><td/><td>[%]</td><td>[%]</td></tr><tr><td>Baseline</td><td>45.1</td><td>8.56</td><td colspan=\"2\">48.9 40.1</td></tr><tr><td>+CLM</td><td>45.9</td><td>8.24</td><td colspan=\"2\">48.6 40.7</td></tr><tr><td>+IBM1</td><td>45.9</td><td>8.48</td><td colspan=\"2\">47.8 39.7</td></tr><tr><td>+WP</td><td>45.4</td><td>8.91</td><td colspan=\"2\">47.8 39.4</td></tr><tr><td>+Del</td><td>46.0</td><td>8.71</td><td colspan=\"2\">47.8 39.6</td></tr><tr><td>+HMM</td><td>46.3</td><td>8.73</td><td colspan=\"2\">47.4 39.7</td></tr><tr><td>rized in</td><td/><td/><td/></tr></table>",
                "text": "",
                "num": null
            },
            "TABREF7": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>System</td><td>Translation</td></tr><tr><td>Baseline</td><td>Your coffee or tea</td></tr><tr><td colspan=\"2\">+Rescoring Would you like coffee or tea</td></tr><tr><td>Reference</td><td>Would you like coffee or tea</td></tr><tr><td>Baseline</td><td>A room with a bath</td></tr><tr><td colspan=\"2\">+Rescoring I would like a twin room with a bath</td></tr><tr><td>Reference</td><td>A twin room with bath</td></tr><tr><td>Baseline</td><td>How much is that will be that room</td></tr><tr><td colspan=\"2\">+Rescoring How much is that room including tax</td></tr><tr><td>Reference</td><td>How much is the room including tax</td></tr><tr><td>Baseline</td><td>Onions</td></tr><tr><td colspan=\"2\">+Rescoring I would like onion</td></tr><tr><td>Reference</td><td>I would like onions please</td></tr></table>",
                "text": "Translation examples for the Chinese-English supplied data track: effect of rescoring.",
                "num": null
            },
            "TABREF8": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>: late</td></tr></table>",
                "text": "Translation results for ASR input in the Chinese-English supplied data track on the IWSLT'05 test set (",
                "num": null
            },
            "TABREF9": {
                "html": null,
                "type_str": "table",
                "content": "<table><tr><td>Input</td><td>Translation</td></tr><tr><td>1-Best</td><td>Is there a pair of room with a bath</td></tr><tr><td>Lattice</td><td>I would like a twin room with a bath</td></tr><tr><td colspan=\"2\">Reference A double room including a bath</td></tr><tr><td>1-Best</td><td>Please take a picture of our</td></tr><tr><td>Lattice</td><td>May I take a picture here</td></tr><tr><td colspan=\"2\">Reference Am I permitted to take photos here</td></tr><tr><td>1-Best</td><td>I'm in a does the interesting</td></tr><tr><td>Lattice</td><td>I'm in an interesting movie</td></tr><tr><td colspan=\"2\">Reference A good movie is on</td></tr></table>",
                "text": "Translation examples for ASR input in the Chinese-English supplied data track.",
                "num": null
            }
        }
    }
}