File size: 50,712 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
{
    "paper_id": "2004",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:22:36.187148Z"
    },
    "title": "Minimum Error Training of Log-Linear Translation Models",
    "authors": [
        {
            "first": "Mauro",
            "middle": [],
            "last": "Cettolo",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "ITC-irst -Centro per la Ricerca Scientifica e Tecnologica",
                "location": {
                    "postCode": "I-38100",
                    "settlement": "Povo -Trento",
                    "country": "Italy"
                }
            },
            "email": "cettolo@itc.it"
        },
        {
            "first": "Marcello",
            "middle": [],
            "last": "Federico",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "ITC-irst -Centro per la Ricerca Scientifica e Tecnologica",
                "location": {
                    "postCode": "I-38100",
                    "settlement": "Povo -Trento",
                    "country": "Italy"
                }
            },
            "email": "federico@itc.it"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Recent work on training of log-linear interpolation models for statistical machine translation reported performance improvements by optimizing parameters with respect to translation quality, rather than to likelihood oriented criteria. This work presents an alternative and more direct training procedure for log-linear interpolation models. In addition, we point out the subtle interaction between log-linear models and the beam search algorithm. Experimental results are reported on two Chinese-English evaluation sets, C-Star 2003 and Nist 2003, by using a statistical phrase-based model derived from Model 4. By optimizing parameters with respect to the BLUE score, performance relative improvements by 9.6% and 2.8% were achieved, respectively.",
    "pdf_parse": {
        "paper_id": "2004",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Recent work on training of log-linear interpolation models for statistical machine translation reported performance improvements by optimizing parameters with respect to translation quality, rather than to likelihood oriented criteria. This work presents an alternative and more direct training procedure for log-linear interpolation models. In addition, we point out the subtle interaction between log-linear models and the beam search algorithm. Experimental results are reported on two Chinese-English evaluation sets, C-Star 2003 and Nist 2003, by using a statistical phrase-based model derived from Model 4. By optimizing parameters with respect to the BLUE score, performance relative improvements by 9.6% and 2.8% were achieved, respectively.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Log-linear interpolation models, which can be formally derived within the maximum entropy framework [1] , have been only recently applied to statistical machine translation (SMT) [2] . In addition, and similarly to what proposed for speech recognition [3] , optimization of interpolation parameters can directly address translation quality, rather than the usual maximum likelihood criterion [4] .",
                "cite_spans": [
                    {
                        "start": 100,
                        "end": 103,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 179,
                        "end": 182,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 252,
                        "end": 255,
                        "text": "[3]",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 392,
                        "end": 395,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "This paper goes along the direction of [4] , and proposes an alternative and more direct training procedure, but computationally more intensive. Moreover, a subtle relationship between the parameter optimization and the beam search algorithm is pointed out, which might have an important impact on the choice of optimal parameters.",
                "cite_spans": [
                    {
                        "start": 39,
                        "end": 42,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "Given a source string f and a target string e, the framework of maximum entropy [5] provides a mean to directly address the posterior probability Pr(e | f ). By introducing the hidden alignment variable a, the usual SMT optimization criterion is expressed by:",
                "cite_spans": [
                    {
                        "start": 80,
                        "end": 83,
                        "text": "[5]",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "e * = arg max e a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "Pr(e, a | f )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "\u2248 arg max e,a",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "Pr(e, a | f )",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "The conditional distribution Pr(e, a | f ) is determined through suitable real valued features functions h i (e, f , a), i = 1 . . . M , and takes the parametric form:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "p \u03bb (e, a | f ) = exp{ i \u03bb i h i (e, f , a)} e,a exp{ i \u03bb i h i (e, f , a)}",
                        "eq_num": "(2)"
                    }
                ],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "The maximum entropy criterion suggests to compute values \u03bb i , which maximize the log-likelihood over a training sample T :",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb * = arg max \u03bb (e,f ,a)\u2208T log p \u03bb (e, a | f )",
                        "eq_num": "(3)"
                    }
                ],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "An interesting log-linear model results if the following feature functions derived from Model 4 [6] are used: h 1 (e, f , a) = log Pr(e) h 2 (e, f , a) = log Pr(\u03c6 | e) h 3 (e, f , a) = log Pr(\u03c4 | e, \u03c6) h 4 (e, f , a) = log Pr(\u03c0 | e, \u03c6, \u03c4 ), which explain f and a for e in terms of fertilities \u03c6, tablets \u03c4 and permutations \u03c0. In fact, after simple manipulations, the usual decoding criterion for Model 4 results, with the addition of four scaling factors: Pr(e)",
                "cite_spans": [
                    {
                        "start": 96,
                        "end": 99,
                        "text": "[6]",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "e * \u2248 arg max",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb 1 \u2022 Pr(\u03c6 | e) \u03bb 2 \u2022 Pr(\u03c4 | e, \u03c6) \u03bb 3 \u2022 Pr(\u03c0 | e, \u03c6, \u03c4 ) \u03bb 4",
                        "eq_num": "(5)"
                    }
                ],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "To tackle the optimization problem of eq. (5), a search algorithm can be devised which incrementally extends partial translation hypotheses (\u1ebd,\u00e3) of the source string, until an optimal complete translation is found. A translation is said partial if its corresponding alignment a does not cover all positions in f . The complexity of the search algorithm mainly depends on the number of possible translations and of target positions to be considered for each source word. To avoid exponential complexity, constraints on both factors are generally introduced. Moreover, the so-called pruning of hypotheses is deployed, too. Hence, at each step (or target string length), only a beam with the most \"promising\" hypotheses is considered for extension. The following are two very popular pruning methods, which are usually applied to partial translations of the same length and/or covering the same source positions:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "\u2022 threshold pruning: partial hypotheses (\u1ebd,\u00e3) whose score Q(\u2022) is smaller than the (local) optimum score Q * times a given factor T , i.e. Q(\u1ebd,\u00e3; \u03bb)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Q * < T ,",
                        "eq_num": "(6)"
                    }
                ],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "are eliminated;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "\u2022 histogram pruning: hypotheses not among the top N best scoring ones are pruned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Log-Linear Model for SMT",
                "sec_num": "2."
            },
            {
                "text": "In place of the criterion (3), [4] recently proposed to estimate parameters by minimizing the number of translation errors. We assume that a function E D (\u03bb) is available, which measures the translation errors made by running a model defined by parameter values \u03bb on a development set D. Hence, parameters are searched by:",
                "cite_spans": [
                    {
                        "start": 31,
                        "end": 34,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Error Training",
                "sec_num": "3."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "\u03bb * = arg min \u03bb E D (\u03bb)",
                        "eq_num": "(7)"
                    }
                ],
                "section": "Minimum Error Training",
                "sec_num": "3."
            },
            {
                "text": "Unlike the log-likelihood criterion (3), the objective function E D (\u2022) might have many local minima. Hence, finding an optimal solution can be very hard. In this work, we use the simplex method [7] , an algorithm for multivariate function minimization which requires relatively few function evaluations. The same algorithm was already applied for the same task in [8] and for training log-linear language models in [1] .",
                "cite_spans": [
                    {
                        "start": 195,
                        "end": 198,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 365,
                        "end": 368,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 416,
                        "end": 419,
                        "text": "[1]",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Minimum Error Training",
                "sec_num": "3."
            },
            {
                "text": "The optimization process, besides tuning the parameters of the statistical model, may also interfere with the beam search. The reason is in the following property of the scoring function (4):",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interaction with Beam Search",
                "sec_num": "3.1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Q(\u1ebd,\u00e3; \u03b1\u03bb) = Q(\u1ebd,\u00e3; \u03bb) \u03b1",
                        "eq_num": "(8)"
                    }
                ],
                "section": "Interaction with Beam Search",
                "sec_num": "3.1."
            },
            {
                "text": "for any positive real number \u03b1. As a consequence, the threshold criterion (6) is affected by any change of the parameter vector \u03bb which corresponds to a scaling transformation. For instance, a contraction of the parameter vector by a factor \u03b1 = 0.5 would implicitly determine the search to prune hypotheses according to the more relaxed constraint: Q(\u1ebd,\u00e3; \u03bb)",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interaction with Beam Search",
                "sec_num": "3.1."
            },
            {
                "text": "EQUATION",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [
                    {
                        "start": 0,
                        "end": 8,
                        "text": "EQUATION",
                        "ref_id": "EQREF",
                        "raw_str": "Q * < T 2",
                        "eq_num": "(9)"
                    }
                ],
                "section": "Interaction with Beam Search",
                "sec_num": "3.1."
            },
            {
                "text": "Hence, we can expect that any optimization algorithm would be easily attracted by parameter values which relax the pruning threshold, and reduce the error rate at the expense of more computations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Interaction with Beam Search",
                "sec_num": "3.1."
            },
            {
                "text": "To remove the impact of the pruning threshold, the simplex method is started from a parameter configuration inducing a loose threshold, so that any further widening of it does not give tangible effect on performance. A potential problem of this approach could be its high computational cost. In our implementation, the optimization remains feasible because the cost of search is also bounded by the histogram pruning. Moreover, optimization of parameters is no more influenced by the beam search, given that there is no relationship between the histogram pruning and the parameters. Another possibility could be to normalize the parameter vector (like in [2] ), or to fix one important parameter and let vary only the others.",
                "cite_spans": [
                    {
                        "start": 655,
                        "end": 658,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Simplex Initialization",
                "sec_num": "3.2."
            },
            {
                "text": "The core of the translation system is a statistical model, based on the IBM Model 4 and extended to deal with phrases rather than with single words [9] . The corresponding log-linear model is similar to that shown in eq. (5) with the addition of two terms, which explicitly scale the fertility and distortion probabilities of the null word. Search is performed by a decoder based on dynamic programming. Both in training and testing, sentences are pre-processed in order to reduce data sparseness. Pre-processing includes: Chinese word segmentation, separation of words from punctuation, handling of acronyms and abbreviations, number extraction, case normalization, etc.",
                "cite_spans": [
                    {
                        "start": 148,
                        "end": 151,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baseline System",
                "sec_num": "4.1."
            },
            {
                "text": "In the following, we will refer to the baseline system when uniform parameters are assumed, which can be possibly scaled up or down to modify the beam-search pruning.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Baseline System",
                "sec_num": "4.1."
            },
            {
                "text": "We evaluated our approach on two Chinese-English translation tasks: the Nist 2003 MT evaluation task 1 , large-data case-insensitive conditions, and the C-Star 2003 evaluation campaign 2 . The first task concerns with translation of new agencies, while the second task concerns with basic traveling expressions [10] . Test sentences are provided with 4 and 16 human translations, respectively. Tables 1 and 2 report detailed statistics about the used training and test data. For parameter optimization, the Nist 2002 MT evaluation data and 1,000 sentences extracted from the C-Star training data were used, respectively.",
                "cite_spans": [
                    {
                        "start": 311,
                        "end": 315,
                        "text": "[10]",
                        "ref_id": "BIBREF9"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 394,
                        "end": 408,
                        "text": "Tables 1 and 2",
                        "ref_id": "TABREF0"
                    }
                ],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "4.2."
            },
            {
                "text": "It is worth noticing that the C-Star 2003 test set has been used as development set for the IWSLT-2004 evalu- ation campaign (see [9] ).",
                "cite_spans": [
                    {
                        "start": 130,
                        "end": 133,
                        "text": "[9]",
                        "ref_id": "BIBREF8"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Data",
                "sec_num": "4.2."
            },
            {
                "text": "Minimum error training was based on two well established MT objective quality measures, that adequately correlate with human subjective evaluations: namely the BLEU [11] and NIST 3 scores. Moreover, in order to compute time requirements independently from the hardware platform and CPU load, the number of hypotheses generated by the search algorithm was assumed as a reliable measure.",
                "cite_spans": [
                    {
                        "start": 165,
                        "end": 169,
                        "text": "[11]",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Performance Evaluation",
                "sec_num": "4.3."
            },
            {
                "text": "Best achieved performance for each task are reported in Table 3 and Table 4 . In both cases consistent performance improvements were achieved with respect to baseline systems with comparable search complexity. On the Nist 2003 evaluation set, the BLEU score improved by 2.8% relative, while the NIST score by 1.7% relative. More significant gains were achieved on the C-Star task: 9.6% relative improvement on the BLEU score and 1.8% on the NIST score. Interestingly, for the C-Star task, a slightly better NIST score was obtained by optimizing parameters with respect to the BLEU score (see Table 4 ). In general, optimizing the NIST score results much harder than optimizing the BLEU score.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 56,
                        "end": 63,
                        "text": "Table 3",
                        "ref_id": "TABREF2"
                    },
                    {
                        "start": 68,
                        "end": 75,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    },
                    {
                        "start": 592,
                        "end": 599,
                        "text": "Table 4",
                        "ref_id": "TABREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5."
            },
            {
                "text": "A comparison considering many beam-search working points is shown, for the C-Star 2003 task, in Figure 1 . The two plotted curves represent performance of the baseline (using uniform parameters) and the log-linear model with parameters optimizing the BLEU score. In both cases, different working points of the search algorithm were obtained by linearly scaling the parameter 3 www.nist.gov/speech/tests/mt vector. Figure 2 is the analogous of Figure 1 , but refers to parameters optimal with respect to the NIST score. At equal computational costs, we observe performance gains between 7-10% on the BLEU score, and 1-2% on the NIST score, when optimized parameters are used instead of uniform ones. These achievements are significant, since parameter optimization on the test set allows for an improvement of 12.8% and 3.7%, respectively, which are fair approximations of the best achievable scores on that test set.",
                "cite_spans": [
                    {
                        "start": 375,
                        "end": 376,
                        "text": "3",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 96,
                        "end": 104,
                        "text": "Figure 1",
                        "ref_id": null
                    },
                    {
                        "start": 414,
                        "end": 422,
                        "text": "Figure 2",
                        "ref_id": null
                    },
                    {
                        "start": 443,
                        "end": 451,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5."
            },
            {
                "text": "In addition, we notice that best BLEU performance obtained by the baseline (best score of the baseline in Figure 1 ) is reached by the minimum error trained system with almost 50% less search cost.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 106,
                        "end": 114,
                        "text": "Figure 1",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results",
                "sec_num": "5."
            },
            {
                "text": "The estimation of the translation probability Pr(e | f ) in the framework of maximum entropy was suggested by [2] . In [4] , parameter estimation of a log-linear translation model was done by optimizing the error rate instead of the likelihood. Error minimization relied on the availability of a set of n-best candidate translations for each input sentence, produced by the search algorithm. During training, optimal parameters were searched through the Powell's algorithm [7] . Since the n-best list can significantly change by modifying the parameters, the procedure is iterated until the n-best list remains stable. The author claims that, in practice, 5-7 iteration are enough for convergence.",
                "cite_spans": [
                    {
                        "start": 110,
                        "end": 113,
                        "text": "[2]",
                        "ref_id": "BIBREF1"
                    },
                    {
                        "start": 119,
                        "end": 122,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 473,
                        "end": 476,
                        "text": "[7]",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work and Discussion",
                "sec_num": "6."
            },
            {
                "text": "Unlike that in [4] , our optimization method exploits all possible solutions of the search algorithm and does not limit the search to n-best lists. As a consequence, our procedure is computationally more expensive. Each Although we measured consistent and stable improvements with two different MT scores and along many different beam-search configurations, our performance gains are significantly lower than those shown in [4] . Nevertheless, as pointed out in [8] , the simplex \"method has the advantage that it is not limited to the model scaling factors as the method described in\" [4] , but it also allows to optimize parameters of the models to be interpolated. Then, a direct comparison of the two approaches would be desirable: with this goal in mind, we are currently developing optimization methods exploiting n-best lists.",
                "cite_spans": [
                    {
                        "start": 15,
                        "end": 18,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 424,
                        "end": 427,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 462,
                        "end": 465,
                        "text": "[8]",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 586,
                        "end": 589,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Previous Work and Discussion",
                "sec_num": "6."
            },
            {
                "text": "www.nist.gov/speech/tests/mt 2 www.c-star.org",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [
            {
                "text": "This work was partially financed by the European Commission under the project PF-STAR -Preparing Future Speech Translation Research (IST-2001-37599, http://pfstar.itc.it), and by the Province of Trento (FDR-PAT program) under the project WebFAQ.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": "7."
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Log-linear interpolation of language models",
                "authors": [
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Klakow",
                        "suffix": ""
                    }
                ],
                "year": 1998,
                "venue": "Proc. of ICSLP",
                "volume": "",
                "issue": "",
                "pages": "1695--1698",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "D. Klakow, \"Log-linear interpolation of language models,\" in Proc. of ICSLP, Sidney, Australia, 1998, pp. 1695-1698.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Discriminative training and maximum entropy models for statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of the ACL",
                "volume": "",
                "issue": "",
                "pages": "295--302",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F.J. Och and H. Ney, \"Discriminative training and maximum entropy models for statistical machine translation,\" in Proc. of the ACL, Philadelphia, PA, 2002, pp. 295-302.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Discriminative model combination",
                "authors": [
                    {
                        "first": "P",
                        "middle": [],
                        "last": "Beyerlein",
                        "suffix": ""
                    }
                ],
                "year": 1997,
                "venue": "Proc. of IEEE ASRU",
                "volume": "",
                "issue": "",
                "pages": "238--245",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P. Beyerlein, \"Discriminative model combination,\" in Proc. of IEEE ASRU, S. Barbara, CA, 1997, pp. 238-245.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Minimum error rate training in statistical machine translation",
                "authors": [
                    {
                        "first": "F",
                        "middle": [
                            "J"
                        ],
                        "last": "Och",
                        "suffix": ""
                    }
                ],
                "year": 2003,
                "venue": "Proc. of the ACL",
                "volume": "",
                "issue": "",
                "pages": "160--167",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "F.J. Och, \"Minimum error rate training in statistical machine translation,\" in Proc. of the ACL, Sapporo, Japan, 2003, pp. 160-167.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "A maximum entropy approach to natural language processing",
                "authors": [
                    {
                        "first": "A",
                        "middle": [
                            "L"
                        ],
                        "last": "Berger",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    }
                ],
                "year": 1996,
                "venue": "Computational Linguistics",
                "volume": "22",
                "issue": "1",
                "pages": "39--71",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A.L. Berger, S.A. Della Pietra, and V.J. Della Pietra, \"A maximum entropy approach to natural language processing,\" Computational Linguistics, vol. 22, no. 1, pp. 39-71, 1996.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "The mathematics of statistical machine translation: parameter estimation",
                "authors": [
                    {
                        "first": "P",
                        "middle": [
                            "F"
                        ],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [
                            "J"
                        ],
                        "last": "Della Pietra",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "L"
                        ],
                        "last": "Mercer",
                        "suffix": ""
                    }
                ],
                "year": 1993,
                "venue": "Computational Linguistics",
                "volume": "19",
                "issue": "2",
                "pages": "263--312",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, and Robert L. Mercer, \"The mathematics of statistical machine translation: parameter estimation,\" Com- putational Linguistics, vol. 19, no. 2, pp. 263-312, 1993.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Numerical recipes in C: the art of scientific computing",
                "authors": [
                    {
                        "first": "W",
                        "middle": [
                            "M"
                        ],
                        "last": "Press",
                        "suffix": ""
                    },
                    {
                        "first": "B",
                        "middle": [
                            "P"
                        ],
                        "last": "Flannery",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [
                            "A"
                        ],
                        "last": "Teukolsky",
                        "suffix": ""
                    },
                    {
                        "first": "W",
                        "middle": [
                            "T"
                        ],
                        "last": "Vetterling",
                        "suffix": ""
                    }
                ],
                "year": 1992,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "W.M. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical recipes in C: the art of scientific computing, Cambridge Univ. Press, 1992.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Improvements in phrasebased statistical machine translation",
                "authors": [
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Zens",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2004,
                "venue": "Proc. of HLT/NAACL",
                "volume": "",
                "issue": "",
                "pages": "257--264",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "R. Zens, and H. Ney, \"Improvements in phrase- based statistical machine translation\", in Proc. of HLT/NAACL, Boston, MA, 2004, pp. 257-264.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "The ITC-irst statistical machine translation system for IWSLT-2004",
                "authors": [
                    {
                        "first": "N",
                        "middle": [],
                        "last": "Bertoldi",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Cattoni",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Cettolo",
                        "suffix": ""
                    },
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Federico",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "N. Bertoldi, R. Cattoni, M. Cettolo, and M. Fed- erico, \"The ITC-irst statistical machine translation system for IWSLT-2004\", in these proceedings.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Toward a broad-coverage bilingual corpus for speech translation of travel conversations in the real world",
                "authors": [
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Takezawa",
                        "suffix": ""
                    },
                    {
                        "first": "E",
                        "middle": [],
                        "last": "Sumita",
                        "suffix": ""
                    },
                    {
                        "first": "F",
                        "middle": [],
                        "last": "Sugaya",
                        "suffix": ""
                    },
                    {
                        "first": "H",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Yamamoto",
                        "suffix": ""
                    }
                ],
                "year": 2002,
                "venue": "Proc. of LREC",
                "volume": "",
                "issue": "",
                "pages": "147--152",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, and S. Yamamoto, \"Toward a broad-coverage bilin- gual corpus for speech translation of travel conver- sations in the real world,\" in Proc. of LREC, Las Palmas, Spain, 2002, pp. 147-152.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Bleu: a method for automatic evaluation of machine translation",
                "authors": [
                    {
                        "first": "K",
                        "middle": [],
                        "last": "Papineni",
                        "suffix": ""
                    },
                    {
                        "first": "S",
                        "middle": [],
                        "last": "Roukos",
                        "suffix": ""
                    },
                    {
                        "first": "T",
                        "middle": [],
                        "last": "Ward",
                        "suffix": ""
                    },
                    {
                        "first": "W.-J",
                        "middle": [],
                        "last": "Zhu",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, \"Bleu: a method for automatic evaluation of ma- chine translation,\" Research Report RC22176, IBM Research Division, Thomas J. Watson Research Center, 2001.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF1": {
                "uris": null,
                "num": null,
                "type_str": "figure",
                "text": "BLEU score as function of the number of generated hypotheses. NIST score as function of the number of generated hypotheses. iteration of the simplex algorithm requires translating the full development set. Practically, each iteration on the Nist 2003 development data takes about 7 minutes with 12 CPUs, while a solution is found in about 100 steps."
            },
            "TABREF0": {
                "type_str": "table",
                "html": null,
                "text": "Statistics of training data.",
                "num": null,
                "content": "<table><tr><td/><td/><td colspan=\"2\">Nist C-Star</td></tr><tr><td>vocabulary</td><td>source</td><td>148K</td><td>12K</td></tr><tr><td/><td>target</td><td>110K</td><td>11K</td></tr><tr><td>#words</td><td colspan=\"2\">source 13.1M</td><td>434K</td></tr><tr><td/><td>target</td><td>13.5M</td><td>45K</td></tr><tr><td>#sentence pairs</td><td/><td>687K</td><td>48K</td></tr><tr><td>#phrase pairs</td><td/><td>4.4M</td><td>381K</td></tr></table>"
            },
            "TABREF1": {
                "type_str": "table",
                "html": null,
                "text": "Statistics of test data.",
                "num": null,
                "content": "<table><tr><td/><td colspan=\"3\">#sentences #words OOV rate</td></tr><tr><td>Nist 2003</td><td colspan=\"2\">919 27,254</td><td>1.89%</td></tr><tr><td>C-Star 2003</td><td>506</td><td>3,770</td><td>1.62%</td></tr></table>"
            },
            "TABREF2": {
                "type_str": "table",
                "html": null,
                "text": "Best translation results on the Nist 2003 task with different parameter settings: optimizing BLEU, optimizing NIST, and uniform.",
                "num": null,
                "content": "<table><tr><td>Criterion</td><td>BLEU</td><td>NIST</td><td># hyp</td></tr><tr><td>BLEU</td><td>0.1854</td><td>7.2882</td><td>116M</td></tr><tr><td>NIST</td><td>0.1840</td><td>7.3362</td><td>115M</td></tr><tr><td>Baseline</td><td>0.1803</td><td>7.2115</td><td>116M</td></tr></table>"
            },
            "TABREF3": {
                "type_str": "table",
                "html": null,
                "text": "",
                "num": null,
                "content": "<table><tr><td colspan=\"4\">Best translation results on the C-Star 2003 task</td></tr><tr><td colspan=\"4\">with different parameter settings: optimizing BLEU, op-</td></tr><tr><td colspan=\"2\">timizing NIST, and uniform.</td><td/><td/></tr><tr><td>Criterion</td><td>BLEU</td><td>NIST</td><td># hyp</td></tr><tr><td>BLEU</td><td>0.4614</td><td>8.4945</td><td>14.9M</td></tr><tr><td>NIST</td><td>0.4581</td><td>8.4675</td><td>14.9M</td></tr><tr><td>Baseline</td><td>0.4208</td><td>8.3169</td><td>14.8M</td></tr></table>"
            }
        }
    }
}