File size: 30,591 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
{
    "paper_id": "2004",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:15:56.610769Z"
    },
    "title": "An EBMT System Based on Word Alignment",
    "authors": [
        {
            "first": "Hou",
            "middle": [],
            "last": "Hongxu",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "Dan",
            "middle": [],
            "last": "Deng",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "Zou",
            "middle": [],
            "last": "Gang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "Y",
            "middle": [
                "U"
            ],
            "last": "Hongkui",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "Liu",
            "middle": [],
            "last": "Yang",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "Xiong",
            "middle": [],
            "last": "Deyi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        },
        {
            "first": "",
            "middle": [],
            "last": "Liu Qun",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Chinese Academy of Sciences",
                "location": {
                    "settlement": "Beijing",
                    "country": "PR China"
                }
            },
            "email": ""
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "This system is an experiment of examples based approach. It is based on a corpus containing 220 thousand sentence pairs with word alignment. The system contains four parts: matching and search, fragment matching, fragment assembling, evaluation and post processing. We use word alignment information to find and combine fragments.",
    "pdf_parse": {
        "paper_id": "2004",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "This system is an experiment of examples based approach. It is based on a corpus containing 220 thousand sentence pairs with word alignment. The system contains four parts: matching and search, fragment matching, fragment assembling, evaluation and post processing. We use word alignment information to find and combine fragments.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "This system is our first experiment of example based approach. It is based on corpus with word alignment. The corpus contains 220 thousands of news, literal, dictionaries, dialog sentence pairs. All sentence pairs are POS tagged and word aligned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1."
            },
            {
                "text": "The system has two parts: corpus and program. The corpus includes 220 thousand sentences pairs and a 460 thousand words and phrases dictionary. The program has four parts: matching and search, fragment matching, fragment assembling, evaluation and post processing.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "System Architecture",
                "sec_num": "2."
            },
            {
                "text": "Search for the most similar sentences from corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching and searching",
                "sec_num": "2.1."
            },
            {
                "text": "Find out all matching and non-matching fragment of example sentence and corresponding fragment of translation of example sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fragment matching",
                "sec_num": "2.2."
            },
            {
                "text": "Assemble the fragment into a full sentence.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fragment assembling",
                "sec_num": "2.3."
            },
            {
                "text": "Evaluation the result of translation and determine keep or discard a non-aligned part.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation",
                "sec_num": "2.4."
            },
            {
                "text": "Process spaces, cases and punctuations.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Post processing",
                "sec_num": "2.5."
            },
            {
                "text": "This system uses a corpus having 220 thousand sentences pair. It contains news, literal, dictionaries, dialog, etc. The sentences in corpus are POS tagged and word aligned.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": "3."
            },
            {
                "text": "The source language of the corpus is Chinese, and target language is English. For Chinese POS tagging, we use the ICTCLS 2.0. It's developed by ICT. It uses Multi Layer HMM. In former test of Chinese High Technology Development and Research, it got 97.58% of accuracy and could process 31.5Kb characters per second.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "POS tag",
                "sec_num": "3.1."
            },
            {
                "text": "Word alignment is the base of our system. The arithmetic of word alignment is based on dictionary. It uses large scale bilingual dictionary, Word-Net and other human-readable dictionary. It is inspired by Ker's method [4] . This method mainly depends on similarity measured by bilingual dictionary, relative distortion information and Part-of-Speech information to align words. By setting alignment window it acquires many-to-many word alignments. On a test set of 650 translation sentence pairs of Chinese and English, in which Chinese sentence has 24.8 words in average and English 34.5, the word alignment system gets a result of recall 62.9 \uff05 at the precision of 84.0%. Our algorithm is improved on Ker's in these aspects: (1) The computation of relative distortion of Ker is improved, and the initial alignment anchors chosen by dictionary-based word similarity is added to improve alignment.",
                "cite_spans": [
                    {
                        "start": 218,
                        "end": 221,
                        "text": "[4]",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word alignment",
                "sec_num": "3.2."
            },
            {
                "text": "(2) Proposed a concept of 'alignment window'. By setting alignment window in the aligning process, many-to-many word alignments can be found.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word alignment",
                "sec_num": "3.2."
            },
            {
                "text": "The system uses a 460 thousand words and phrases bilingual dictionary. The dictionary is the base of word alignment and translation.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Dictionary",
                "sec_num": "3.3."
            },
            {
                "text": "This step is searching for the most similar sentence pairs from example base. There are two problems: how to measure the similarity of two sentences and how to find out the most similar sentence from a large scale corpus.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Matching and searching",
                "sec_num": "4."
            },
            {
                "text": "The measurement of similarity determines whether or not find out the most fitted example for translation. Because our system is based on word, we must find out the longest match fragment for translation. We use follow formula to measure the similarity,",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measure of similarity",
                "sec_num": "4.1."
            },
            {
                "text": ") ( 2 * ) ( * )) ( ( i w i match i pos w m \u2211 =",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Measure of similarity",
                "sec_num": "4.1."
            },
            {
                "text": "The first item w is the weight of POS, different POS has different weight. In our system, verbs have the largest weight and stop words and named entities have the lowest weight. The second item match is 1 if the corresponding words are matched and 0 if not. The last item w2 is the measure of concatenation of words. If there are more concatenated words matched, w2 value is larger. In our system the value of w2 calculated as follow, Figure 1 give out a example of similarity, for source sentence S, there are two most similar sentences S1 and S2, and the similarity of S1 is 0.1651 and the similarity of S2 is 0.1547. For the similarity calculation is bi-direction, the largest value is 2.0 and the lowest values is 0.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 435,
                        "end": 443,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Measure of similarity",
                "sec_num": "4.1."
            },
            {
                "text": "This step is the most time consuming step of the system. Actually, the efficiency of the step determines the efficiency of translation. In our system, an index is created for very words appeared in corpus. So, we can find all sentences which contain certain words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching",
                "sec_num": "4.2."
            },
            {
                "text": "In the system, we search the example base for each word in source sentence orderly, and the searching results are joined into a set. Through some experiments, we know some words are not helpful for finding out the most similar example and consume much long time. So, we exclude highest frequency words from searching. After searching, the most similar examples are selected as final candidate set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Searching",
                "sec_num": "4.2."
            },
            {
                "text": "The key of EBMT system is how to split sentence into fragments and how to assemble the fragments into sentence. The familiar methods are based on parsing or word. We adopt word-based method.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Fragment matching and assembling",
                "sec_num": "5."
            },
            {
                "text": "This step is finding out all matching or non-matching fragments from source sentence and example sentence. First, we find out all matched words, and then find all mismatched words but have same part of speech. Figure 2 shows a procedure of matching. S is the source sentence, and S1 is the examples. First, the matching word string \"was washed away\" is matched (labeled as 1), then \"bridge\" (labeled as 2) is not matched, but there is a noun \"web\" is funded, so \"bridge\" is matched. In this example, there is only one matched fragment, because (1) and (2) are concatenated.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 210,
                        "end": 218,
                        "text": "Figure 2",
                        "ref_id": "FIGREF2"
                    }
                ],
                "eq_spans": [],
                "section": "Fragment matching",
                "sec_num": "5.1."
            },
            {
                "text": "After finding out the matched fragments, we must find out their corresponding fragment in target example. The word alignment is the guild of this step. Figure 3 shows an example of word alignment. The upper sentence is source example, and lower sentence is corresponding target sentence. There are 3 pairs, (\"qiao\", bridge), (\"chongzou\", washed) and (\"chongzou\", away). As an example, we assume that \"qiao\" and \"bei chongzou le\" are different matched fragments. The first fragment \"qiao\" has one aligned pair, then \"The bridge was\" is the corresponding target fragment. The second fragment \"bei chongzou le\" has two aligned pairs, then \"was washed away\" is the corresponding target fragment. In this example, the word \"was\" is contained in both target fragments. It will be processed in later step.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 152,
                        "end": 160,
                        "text": "Figure 3",
                        "ref_id": "FIGREF3"
                    }
                ],
                "eq_spans": [],
                "section": "Target fragment",
                "sec_num": "5.2."
            },
            {
                "text": "After finding out the target fragments, there are several matched target fragments and non-matched target fragments. For non-matched fragments, it must be searched in candidate set again for most similar examples. If can not find more example, it will be translated using dictionary. Actually, word alignment determines the positions of target fragments. Figure 4 shows an example of fragment assembling. Word matched fragment \"was washed away\" is placed in the target sentence directly, and the POS match fragment \"bridge\" is replaced by \"web\"--the translation of \"jiaopu\".",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 355,
                        "end": 363,
                        "text": "Figure 4",
                        "ref_id": "FIGREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Fragment assembling",
                "sec_num": "5.3."
            },
            {
                "text": "In the last example, we could find the target sentence T contains many extra words, such as \"The\", \"was\". They may be the correct parts of the target sentence or wrong. So we must make choices. We use N-gram to determine which words will be hold and which words will be discarded. Figure 5 shows an example of N-gram. The first sentence contains a wrong word \"the\", and in the second sentence it be removed. The perplexities of two sentences are 938.48 and 858.60, clearly, the second sentence is better than the first one. Then, the second sentence will be the last translation result.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 281,
                        "end": 289,
                        "text": "Figure 5",
                        "ref_id": "FIGREF5"
                    }
                ],
                "eq_spans": [],
                "section": "Make choices",
                "sec_num": "5.4."
            },
            {
                "text": "Because of carelessness in submitting translation result, the official result of our system is very bad. Later, we have submitted the result with correct format. .0820 These two result are generated by same corpus and engine, but the correct result processed cases, punctuations etc. We can divided the translation result into four classes, (1) Existed in corpus There are about 8% of test sentences have already existed in the corpus. These sentences are translated extremely well.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Evaluation results",
                "sec_num": "6."
            },
            {
                "text": "The test sentence is a part of example, and well aligned, so we can easily get the translation sentence from examples. The translations of these sentences are very good. The sentence is combined by several phrases that could be found in different examples. The most errors of translations are lost or add words. (6) Small fragments Theses sentences have no similar examples in corpus, so they are often translated using dictionary. The translations of these sentence are often very bad.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "(2) Good fragments of a example",
                "sec_num": null
            },
            {
                "text": "We have only completed a rudiment of an EBMT system. It has main elements of EBMT, but there are many things to be improved.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Discussion",
                "sec_num": "7."
            },
            {
                "text": "In our system, a fragment splitting is totally blindfolded. So there are many half-balked fragments. To avoid this, we need phrase recognition to determine which positions may be divided and which position may not. Because there are many phrases in the dictionary, phrase recognition should improve the efficient of phrase in the dictionary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Phrase Recognition",
                "sec_num": "7.1."
            },
            {
                "text": "However, the accurate and recall of word alignment is still low, especially recall. So, there are large number of words need to be choose by N-gram. We must improve the arithmetic of word alignment.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word alignment",
                "sec_num": "7.2."
            },
            {
                "text": "Word cluster will be helpful for rising the accurate of sentence matching.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Word cluster",
                "sec_num": "7.3."
            },
            {
                "text": "Actually, divided examples into different class will reduce the time consuming of searching and rise the accurate of sentence matching. We can divide examples into questions, negatives and so on.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Sentence classify",
                "sec_num": "7.4."
            },
            {
                "text": "Our corpus is not complete checked for correction and fitness. There are many repeated or out of season contents.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Corpus",
                "sec_num": "7.5."
            },
            {
                "text": "After completed this experiment system, we must improve our system. An idea is combining EBMT and SMT. We have begun some attempt of SMT and other improvement.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions",
                "sec_num": "8."
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "A Hybrid Rule and Example-based Method for Machine Translation",
                "authors": [
                    {
                        "first": "Satoshi",
                        "middle": [],
                        "last": "Shirai",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Bond",
                        "suffix": ""
                    },
                    {
                        "first": "Yamato",
                        "middle": [],
                        "last": "Takahashi",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Satoshi Shirai, Francis Bond and Yamato Takahashi. \"A Hybrid Rule and Example-based Method for Machine Translation\".",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "A Matching Technique in Example-Based Machine Translation",
                "authors": [
                    {
                        "first": "Lambros",
                        "middle": [],
                        "last": "Cranias",
                        "suffix": ""
                    },
                    {
                        "first": "Harris",
                        "middle": [],
                        "last": "Papageorgiou",
                        "suffix": ""
                    },
                    {
                        "first": "Stelios",
                        "middle": [],
                        "last": "Piperidis",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Lambros Cranias, Harris Papageorgiou, Stelios Piperidis. \"A Matching Technique in Example-Based Machine Translation\".",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Adapting an Example-Based Translation System to Chinese",
                "authors": [
                    {
                        "first": "Ying",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Brown",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [
                            "E"
                        ],
                        "last": "Frederking",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ying Zhang, Ralf Brown, Robert E. Frederking. \"Adapting an Example-Based Translation System to Chinese\".",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Align more words with high precision for small bilingual corpora",
                "authors": [
                    {
                        "first": "Sue",
                        "middle": [
                            "J"
                        ],
                        "last": "Ker",
                        "suffix": ""
                    },
                    {
                        "first": "Jason",
                        "middle": [
                            "S"
                        ],
                        "last": "Chang",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Sue J. Ker, and Jason S. Chang. \"Align more words with high precision for small bilingual corpora\"[J].",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Computational Linguistics and Chinese Language Processing",
                "authors": [],
                "year": 1997,
                "venue": "",
                "volume": "2",
                "issue": "",
                "pages": "63--96",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Computational Linguistics and Chinese Language Processing, 1997, 2(2):63-96",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "uris": null,
                "text": "is the length of matching string.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF1": {
                "uris": null,
                "text": "An example of similarity.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF2": {
                "uris": null,
                "text": "An example of fragment matching.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF3": {
                "uris": null,
                "text": "Word alignment.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF4": {
                "uris": null,
                "text": "Fragment assembling.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF5": {
                "uris": null,
                "text": "An example of N-gram.",
                "num": null,
                "type_str": "figure"
            },
            "FIGREF6": {
                "uris": null,
                "text": "Replace some words These sentences are very similar to the examples, and because there are only a few words are different, the examples can be found out from corpus. The most errors of translations are the chosen of words. (4) Part of example Like (2), the sentence is the part of example, but the example is not well aligned or lost some important part. The most errors of translations are lost or add words. (5) Combine of phrases",
                "num": null,
                "type_str": "figure"
            },
            "TABREF0": {
                "type_str": "table",
                "num": null,
                "html": null,
                "text": "The score of official and correct results",
                "content": "<table><tr><td/><td>Official</td><td>Correct result</td></tr><tr><td/><td>result</td><td/></tr><tr><td>BLEU</td><td>0.0798</td><td>0.2013</td></tr><tr><td>GTM</td><td>0.3862</td><td>0.6380</td></tr><tr><td>NIST</td><td>3.6443</td><td>6.4716</td></tr><tr><td>WER</td><td>0.8466</td><td>0.6275</td></tr><tr><td>PER</td><td>0.7650</td><td>0.5187</td></tr><tr><td>Fluency</td><td>2.7180</td><td/></tr><tr><td>Adequacy</td><td>3</td><td/></tr></table>"
            }
        }
    }
}