File size: 77,388 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:24:36.350421Z"
    },
    "title": "Looking for a Role for Word Embeddings in Eye-Tracking Features Prediction: Does Semantic Similarity Help?",
    "authors": [
        {
            "first": "Lavinia",
            "middle": [],
            "last": "Salicchi",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The Hong Kong Polytechnic University",
                "location": {}
            },
            "email": "lavinia.salicchi@connect.polyu.hk"
        },
        {
            "first": "Alessandro",
            "middle": [],
            "last": "Lenci",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "University of Pisa",
                "location": {}
            },
            "email": "alessandro.lenci@unipi.it"
        },
        {
            "first": "Emmanuele",
            "middle": [],
            "last": "Chersoni",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "The Hong Kong Polytechnic University",
                "location": {}
            },
            "email": "emmanuelechersoni@gmail.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "Eye-tracking psycholinguistic studies have suggested that context-word semantic coherence and predictability influence language processing during the reading activity. In this study, we investigated the correlation between the cosine similarities computed with word embedding models (both static and contextualized) and eye-tracking data from two naturalistic reading corpora. We also studied the correlations of surprisal scores computed with three state-of-the-art language models. Our results show strong correlation for the scores computed with BERT and GloVe, suggesting that similarity can play an important role in modeling reading times.",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "Eye-tracking psycholinguistic studies have suggested that context-word semantic coherence and predictability influence language processing during the reading activity. In this study, we investigated the correlation between the cosine similarities computed with word embedding models (both static and contextualized) and eye-tracking data from two naturalistic reading corpora. We also studied the correlations of surprisal scores computed with three state-of-the-art language models. Our results show strong correlation for the scores computed with BERT and GloVe, suggesting that similarity can play an important role in modeling reading times.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "Eye-tracking data recorded during reading provide invaluable evidence about the factors influencing language comprehension. Research in computational modeling has particularly focused on two factors: i.) the semantic coherence of a word with the rest of the sentence (Ehrlich and Rayner, 1981; Pynte et al., 2008; Mitchell et al., 2010) , measured via semantic similarity metrics and ii.) its predictability from previous context, as measured by surprisal (Hale, 2001; Levy, 2008) . Intuitively, words that have low semantic coherence and low in-context predictability (i.e., high surprisal) induce longer reading times.",
                "cite_spans": [
                    {
                        "start": 267,
                        "end": 293,
                        "text": "(Ehrlich and Rayner, 1981;",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 294,
                        "end": 313,
                        "text": "Pynte et al., 2008;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 314,
                        "end": 336,
                        "text": "Mitchell et al., 2010)",
                        "ref_id": "BIBREF22"
                    },
                    {
                        "start": 456,
                        "end": 468,
                        "text": "(Hale, 2001;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 469,
                        "end": 480,
                        "text": "Levy, 2008)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "In distributional semantics (Lenci, 2018) , words and their sentence contexts are represented with dense vectors called embeddings and produced by Distributional Semantic Models (DSM). In this paper, we modeled semantic coherence with the cosine similarity between the embeddings of words and their sentence contexts, and then we tested the correlation of the metric with the eye-tracking measures annotated on the GECO and Provo corpora. We analyzed the correlations for the similarity computed with 10 different embedding models (both static and contextualized), as well as for surprisal scores computed with several state-of-the-art neural language models. Among all the features under investigation, the similarity scores obtained with BERT and GloVe obtained the best correlations across features in both the benchmark corpora.",
                "cite_spans": [
                    {
                        "start": 28,
                        "end": 41,
                        "text": "(Lenci, 2018)",
                        "ref_id": "BIBREF15"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Hollenstein et al. 2019proposed a framework to evaluate six state-of-the-art word embedding models (GloVe, Word2Vec, WordNet2Vec, Fast-Text, ELMo, BERT). The evaluation was based on the model capability to reflect semantic representations in the human mind, using cognitive data in different datasets for eye-tracking, EEG, and fMRI. Word embedding models were used to train neural networks on a regression task. While we aim at creating a computational model of the relationship between context processing and the integration of a new word during naturalistic reading, Hollenstein et al. (2019) evaluated embedding models on the prediction of out-of-context word features. The results of their analyses showed that BERT, ELMo, and FastText have the best prediction performances. On the other hand, approaches based on powerful Transformers language models were outperformed by a classifier using linguistic and psychometric features (Bestgen, 2021) in the recent CMCL 2021 Shared Task on Eye-Tracking Data Prediction (Hollenstein et al., 2021) .",
                "cite_spans": [
                    {
                        "start": 570,
                        "end": 595,
                        "text": "Hollenstein et al. (2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 934,
                        "end": 949,
                        "text": "(Bestgen, 2021)",
                        "ref_id": "BIBREF2"
                    },
                    {
                        "start": 1018,
                        "end": 1044,
                        "text": "(Hollenstein et al., 2021)",
                        "ref_id": "BIBREF13"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "A series of contributions explored the role of surprisal in modeling reading times in naturalistic settings, coming to the general conclusion that the predictive power is strongly related to the language model quality, i.e. models with better perplexity perform better (Smith and Levy, 2013; Goodkind and Bicknell, 2018) . Later work explored the most recent neural models, including LSTM (van Schijndel and Linzen, 2018), GRU (Aurnhammer and Frank, 2019) , Transformers (Merkx and Frank, 2020) and GPT-2 (Wilcox et al., 2020) , basically confirming this relationship. 1 Early studies had also found correlations between semantic distance, computed by word embeddings, and eye-tracking features in reading processes (Pynte et al., 2008; Mitchell et al., 2010) . However, the more recent work by Frank (2017) pointed out that, since word embeddings are based on co-occurrences, semantic distance may actually represent word predictability, rather than semantic relatedness, and that those early findings were actually due to a confound between these two concepts. To test this hypothesis, the author used linear regression models with and without surprisal, testing 5 surprisal measures. The results show that the effects of similarity on reading times disappear when surprisal is factored out, thereby proving the existence of a complex interplay between the two factors. Frank's experiments were carried out in a naturalistic reading setting and, to our knowledge, there have been no eye-tracking studies with controlled stimuli investigating a possible separate effect of the two components (for example, by comparing the fixation patterns of words that have low predictability, but different degrees of coherence with the sentence or with the discourse context).",
                "cite_spans": [
                    {
                        "start": 280,
                        "end": 291,
                        "text": "Levy, 2013;",
                        "ref_id": "BIBREF28"
                    },
                    {
                        "start": 292,
                        "end": 320,
                        "text": "Goodkind and Bicknell, 2018)",
                        "ref_id": "BIBREF10"
                    },
                    {
                        "start": 427,
                        "end": 455,
                        "text": "(Aurnhammer and Frank, 2019)",
                        "ref_id": "BIBREF0"
                    },
                    {
                        "start": 471,
                        "end": 494,
                        "text": "(Merkx and Frank, 2020)",
                        "ref_id": "BIBREF19"
                    },
                    {
                        "start": 499,
                        "end": 526,
                        "text": "GPT-2 (Wilcox et al., 2020)",
                        "ref_id": null
                    },
                    {
                        "start": 569,
                        "end": 570,
                        "text": "1",
                        "ref_id": null
                    },
                    {
                        "start": 716,
                        "end": 736,
                        "text": "(Pynte et al., 2008;",
                        "ref_id": "BIBREF25"
                    },
                    {
                        "start": 737,
                        "end": 759,
                        "text": "Mitchell et al., 2010)",
                        "ref_id": "BIBREF22"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "3 Experimental Setting",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Related Work",
                "sec_num": "2"
            },
            {
                "text": "Traditional corpora annotated with eye-tracking data consist of short isolated sentences (or even single words) with particular structures or lexemes, in order to investigate specific syntactic and semantic phenomena. In the present work, we used GECO (Cop et al., 2017) and Provo (Luke and Christianson, 2018), two eye-tracking corpora containing long, complete, and coherent texts. GECO is a monolingual and bilingual (English and Dutch) corpus composed of the entire Agatha Christie's novel The Mysterious Affair at Styles. The corpus is freely downloadable with a related dataset containing eye-tracking data of 33 subjects (19 of them bilingual, 14 English monolingual) reading the full novel text, presented paragraph-by-paragraph on a screen. GECO is composed of 54, 364 tokens. Provo contains 55 short English texts about various topics, with 2.5 sentences and 50 words on average, for a total of 2, 689 tokens, and a vocabu-lary of 1, 197 words. These texts were read by 85 subjects and their eye-tracking measures were collected in an available on-line dataset. GECO and Provo data are particularly interesting because they are recorded during naturalistic reading, instead of short selected stimuli.",
                "cite_spans": [
                    {
                        "start": 252,
                        "end": 270,
                        "text": "(Cop et al., 2017)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.1"
            },
            {
                "text": "For every word in the corpora, we extracted its mean total reading time, mean first fixation duration, and mean number of fixations, by averaging over the subjects. The choice of modeling mean eye-tracking measures is justified by the high intersubject consistency of the recorded data. For instance, Cop et al. (2017) report an overall intersubject correlation of 0.9 for the total reading times in GECO. Table 1 shows the embeddings types used in our experiments, consisting of 6 non-contextualized, static DSMs and 4 contextualized DSMs. The former include predict models (SGNS and FastText) (Mikolov et al., 2013; Levy and Goldberg, 2014; Bojanowski et al., 2017) and count models (SVD and GloVe) (Bullinaria and Levy, 2012; Pennington et al., 2014). 2 Four DSMs are window-based and two are syntax-based (synt). Embeddings have 300 dimensions and were trained on a corpus of 3.9 billion tokens ca. (a concatenation of ukWaC and a 2018 dump of Wikipedia). Pre-trained contextualized embeddings include the 512-dimensional vectors produced by the three layers of the ELMo bidirectional LSTM architecture (Peters et al., 2018) , the 1, 024-dimensional vectors produced by the 24-layers BERT-Large Transformer architecture (BERT-Large, Cased) (Devlin et al., 2019) , the 1, 600-dimensional vectors by GPT2-xl (Radford et al.) , and finally, the 200-dimensional vectors produced by the Neural Complexity model by van Schijndel and Linzen (2018).",
                "cite_spans": [
                    {
                        "start": 301,
                        "end": 318,
                        "text": "Cop et al. (2017)",
                        "ref_id": "BIBREF6"
                    },
                    {
                        "start": 595,
                        "end": 617,
                        "text": "(Mikolov et al., 2013;",
                        "ref_id": "BIBREF21"
                    },
                    {
                        "start": 618,
                        "end": 642,
                        "text": "Levy and Goldberg, 2014;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 643,
                        "end": 667,
                        "text": "Bojanowski et al., 2017)",
                        "ref_id": "BIBREF3"
                    },
                    {
                        "start": 1107,
                        "end": 1128,
                        "text": "(Peters et al., 2018)",
                        "ref_id": "BIBREF24"
                    },
                    {
                        "start": 1244,
                        "end": 1265,
                        "text": "(Devlin et al., 2019)",
                        "ref_id": "BIBREF7"
                    },
                    {
                        "start": 1310,
                        "end": 1326,
                        "text": "(Radford et al.)",
                        "ref_id": null
                    }
                ],
                "ref_spans": [
                    {
                        "start": 406,
                        "end": 413,
                        "text": "Table 1",
                        "ref_id": "TABREF1"
                    }
                ],
                "eq_spans": [],
                "section": "Datasets",
                "sec_num": "3.1"
            },
            {
                "text": "Our main goals were to investigate the potential contribution of cosine similarity in predicting eyetracking features, to compare different word embedding models, and then to evaluate whether the information represented by cosine similarity is similar to the one represented by surprisal.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "For each target word w in GECO and Provo, we measured the cosine similarity between the embedding of w and the embedding of the context c formed by the previous words in the same sentence. We then computed the Spearman correlation between the cosine and the eye-tracking data for w (total reading time, first fixation duration, and number of fixations). To create context embedding, we used an additive model: the context vector is the sum of all its word embeddings. Given the bidirectional nature of BERT, the input to this model needed a special pre-processing: To prevent that the vectors representing words within the context were computed using the target word itself, we passed to BERT a list of sub-sentences, each of which were composed of context words only. So given the sentence The dog chases the cat: Starting from the second sub-sentence, the cosine similarity was computed between the last word vector and the sum of words vectors belonging to the previous sub-sentence (list element). So, to compute the cosine similarity between cat and the previous context, we selected cat from S[4] and T he + dog + chases + the from S[3].",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "S[0] = [\"",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "For BERT we used as context also the embedding produced by the model for the special token CLS, which is created using a weighted additive model. As for the simple additive model, BERT was fed with sub-sentences, and for each target word the CLS-context-vector was the one computed at the previous list element. In the previous example, given cat as target word, we used the CLS vector representing all the S[3] elements.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "Given the positive effect of semantic coherence on language processing, we expected that the eyetracking data for w had a negative correlation with its cosine similarity with c: The higher the cosine, the lower the reading time of w measured by eye-tracking.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "We used BERT, GPT2-xl and Neural Complexity to compute word-by-word surprisal. Like with cosine similarity, the input sentences for BERT were organized in sub-sentences, and the last token (i.e., the target word), was replaced with the special tag [MASK] . Finally, we computed the Spearman correlation between the surprisal of w, and the eye-tracking data for the target word. Differently from the cosine, we expected the surprisal to be positively correlated with the word reading time: The less predictable a word is, the slower its processing will be.",
                "cite_spans": [
                    {
                        "start": 248,
                        "end": 254,
                        "text": "[MASK]",
                        "ref_id": null
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "The analyses have been performed with the following models: 6 values of cosine similarity between non-contextualized vectors, 51 values of cosine similarity between contextualized vectors (48 from 24 layers of BERT in two different ways to compute the context vector, and 3 from ELMo, GPT2-xl and Neural Complexity), 3 values of surprisal from BERT, GPT2-xl, Neural Complexity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Method",
                "sec_num": "3.3"
            },
            {
                "text": "Looking at the correlations results, it is clear that every model performed better on Provo. One possible explanation for this difference is that GECO eye-tracking data are recorded on participants reading a literary text, while Provo materials are online news articles, science magazines and only partially short text from works of fiction. The consequence is a difference in the syntactic complexity of sentence structure and in the frequency of words. This gap implies that the modeling of GECO contexts is less directly reducible to an additive fashion of processing, and, most importantly, is more likely to find Out Of Vocabulary words in GECO, rather than in Provo. Another aspect that is quite evident are the similar correlation values among different eye-tracking features. This aspect is not surprising: in the original datasets of GECO and Provo, it can be noticed that many words show the same value for the total reading time and the first fixation duration. This happens when i) the word is not read (0 ms for both the features); ii) the word is read only once (total reading time and first fixation duration overlap). Also regarding the similar values of the correlations between similarity and number of fixations and between similarity and total reading times, taking into account the original data gives us an explanation of the results: since the total reading time is computed summing the duration of all the multiple fixations, the higher the number of fixation, the higher the total reading time, leading to a similar tendency in the values of the two features. For these reasons, the total reading time may be considered as a \"bridge\" field, that holds close relations with both first fixation duration and number of fixations, justifying the similar correlation values in our results.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4"
            },
            {
                "text": "Comparing word embedding models, we may notice that correlations can reach very high values, up to \u22120.71 for the total reading time (by BERT CLS layer 22), suggesting that semantic coherence -modeled as cosine similarity between context and target-can be a strong predictor of eye-tracking measures of reading process. GloVe (mean correlation over eye-tracking features on GECO: \u22120.45, on Provo: \u22120.65) and BERT (mean correlation over eye-tracking features on GECO: \u22120.57, on Provo: \u22120.71) score the best results on both corpora, and in the latter case the [CLS] context model brings some advantage over the simple additive one. The lower BERT layers show a steadily decreasing performance (see Figure 1 ). This was expected because, as it was pointed out in the layers analysis by Tenney et al. (2019) , the BERT architecture reproduces the classical NLP pipeline: the lower layers process mainly the syntactic information, while the highest ones give a more precise representation of semantic relations. We also notice a strong variability among the embedding models, which is orthogonal to the contextualized vs. non-contextualized dichotomy. The ELMo contex-tualized vectors perform much worse than BERT ones, probably because they have a lower degree of contextualization, and syntax-based count models are not significantly worse than predict DSMs. Regarding the correlations between the target word surprisal computed with BERT, GPT2-xl and Neural Complexity (NC) and the eye-tracking measures (see Table 3 ), the first striking fact is that the absolute values are generally lower than the scores obtained with the cosine (higher correlations are reached by GPT2-xl con GECO, mean correlation = 0.40, and by NC on Provo, mean correlation = 0.47). This might prompt us to conclude that surprisal is a much weaker predictor than semantic coherence. However, a significant negative correlation between cosine similarity and surprisal (e.g. with BERT it is \u22120.40 on GECO and \u22120.32 on Provo) supports the hypothesis by Frank (2017) that there is a strong overlap between semantic coherence and surprisal. Factoring out the contribution of these two factors on eye-tracking features will be the next step of our research work.",
                "cite_spans": [
                    {
                        "start": 782,
                        "end": 802,
                        "text": "Tenney et al. (2019)",
                        "ref_id": "BIBREF29"
                    }
                ],
                "ref_spans": [
                    {
                        "start": 695,
                        "end": 703,
                        "text": "Figure 1",
                        "ref_id": "FIGREF1"
                    },
                    {
                        "start": 1506,
                        "end": 1513,
                        "text": "Table 3",
                        "ref_id": "TABREF4"
                    }
                ],
                "eq_spans": [],
                "section": "Results and Discussion",
                "sec_num": "4"
            },
            {
                "text": "In this paper, we have used contextualized and non-contextualized DSMs to compute the cosine between a target word and the previous sentence context. Our results show that cosine similarity is able to achieve very high correlations with the eyetracking metrics of GECO and Provo, especially with the BERT and GloVe models, providing further evidence that semantic coherence is potentially very useful in modeling reading times. Furthermore, we computed word-by-word surprisal using BERT, GPT2-xl, and Neural Complexity.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and ongoing work",
                "sec_num": "5"
            },
            {
                "text": "Among the language models, the best results have been achieved by GPT2-xl, confirming the previous findings that Transformers are very good at modeling sentence processing metrics (Wilcox et al., 2020; Hao et al., 2020; Merkx and Frank, 2021) . However, the absolute value of correlation is lower than the one obtained with cosine similarity scores: for example, the mean correlation achieved on Provo with the cosine similarity between vectors produced by BERT is \u22120.71, while the correlation between eye tracking features and the surprisal computed by the same model is 0.24. The comparison between correlations reached by cosine similarity and surprisal may lead us to the conclusion that semantic coherence is a stronger predictor of eye-tracking features than word predictability. However, given the significant degree of correlation between cosine similarity and surprisal, further investigations are needed to disentangle the two factors.",
                "cite_spans": [
                    {
                        "start": 180,
                        "end": 201,
                        "text": "(Wilcox et al., 2020;",
                        "ref_id": "BIBREF30"
                    },
                    {
                        "start": 202,
                        "end": 219,
                        "text": "Hao et al., 2020;",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 220,
                        "end": 242,
                        "text": "Merkx and Frank, 2021)",
                        "ref_id": "BIBREF20"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and ongoing work",
                "sec_num": "5"
            },
            {
                "text": "Our next step will be to include Transformersbased surprisal and vector-based cosine similarity in a large-scale regression study to predict eye tracking features, in order to ensure a close comparison with the experimental setting of Frank (2017), and to investigate if semantic similarity models can actually play a distinct role from surprisal in the prediction of reading times. Differently from Frank (2017), we plan to test with several regression models, from a simple linear regression to more advanced regression models (e.g. Gradient Boosting, Multilayer Perceptron etc.), and with different word embedding models, in order to account for the different types of semantic similarity computed by static and contextualized embeddings.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusions and ongoing work",
                "sec_num": "5"
            },
            {
                "text": "Notice however that doubts have been raised on the reliability of perplexity as a metric for comparing large pretrained models, since it does not allow to compare models with different vocabularies(Hao et al., 2020).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "For the distinction between count and predict DSM, we refer toBaroni et al. (2014).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            }
        ],
        "back_matter": [],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "Evaluating Information-theoretic Measures of Word Prediction in Naturalistic Sentence Reading. Neuropsychologia",
                "authors": [
                    {
                        "first": "Christoph",
                        "middle": [],
                        "last": "Aurnhammer",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Stefan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "134",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Christoph Aurnhammer and Stefan L Frank. 2019. Evaluating Information-theoretic Measures of Word Prediction in Naturalistic Sentence Reading. Neu- ropsychologia, 134.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Don't Count, Predict! A Systematic Comparison of Context-counting vs. Context-predicting Semantic Vectors",
                "authors": [
                    {
                        "first": "Marco",
                        "middle": [],
                        "last": "Baroni",
                        "suffix": ""
                    },
                    {
                        "first": "Georgiana",
                        "middle": [],
                        "last": "Dinu",
                        "suffix": ""
                    },
                    {
                        "first": "Germ\u00e1n",
                        "middle": [],
                        "last": "Kruszewski",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marco Baroni, Georgiana Dinu, and Germ\u00e1n Kruszewski. 2014. Don't Count, Predict! A Systematic Comparison of Context-counting vs. Context-predicting Semantic Vectors. In Proceed- ings of ACL.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach",
                "authors": [
                    {
                        "first": "Yves",
                        "middle": [],
                        "last": "Bestgen",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the NAACL Workshop on Cognitive Modeling and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yves Bestgen. 2021. LAST at CMCL 2021 Shared Task: Predicting Gaze Data During Reading with a Gradient Boosting Decision Tree Approach. In Pro- ceedings of the NAACL Workshop on Cognitive Mod- eling and Computational Linguistics.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Enriching Word Vectors with",
                "authors": [
                    {
                        "first": "Piotr",
                        "middle": [],
                        "last": "Bojanowski",
                        "suffix": ""
                    },
                    {
                        "first": "Edouard",
                        "middle": [],
                        "last": "Grave",
                        "suffix": ""
                    },
                    {
                        "first": "Armand",
                        "middle": [],
                        "last": "Joulin",
                        "suffix": ""
                    },
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching Word Vectors with",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Subword Information. Transactions of the Association for Computational Linguistics",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "5",
                "issue": "",
                "pages": "135--146",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Subword Information. Transactions of the Associa- tion for Computational Linguistics, 5:135-146.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Extracting Semantic Representations from Word Co-Occurrence Statistics",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "John",
                        "suffix": ""
                    },
                    {
                        "first": "Joseph P",
                        "middle": [],
                        "last": "Bullinaria",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2012,
                "venue": "Stop-Lists, Stemming, and SVD. Behavior Research Methods",
                "volume": "44",
                "issue": "",
                "pages": "890--907",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John A Bullinaria and Joseph P Levy. 2012. Ex- tracting Semantic Representations from Word Co- Occurrence Statistics: Stop-Lists, Stemming, and SVD. Behavior Research Methods, 44(3):890-907.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "Presenting GECO: An Eye-Tracking Corpus of Monolingual and Bilingual Sentence Reading",
                "authors": [
                    {
                        "first": "Uschi",
                        "middle": [],
                        "last": "Cop",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Dirix",
                        "suffix": ""
                    },
                    {
                        "first": "Denis",
                        "middle": [],
                        "last": "Drieghe",
                        "suffix": ""
                    },
                    {
                        "first": "Wouter",
                        "middle": [],
                        "last": "Duyck",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Behavior Reseach Methods",
                "volume": "49",
                "issue": "2",
                "pages": "602--615",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Uschi Cop, Nicolas Dirix, Denis Drieghe, and Wouter Duyck. 2017. Presenting GECO: An Eye-Tracking Corpus of Monolingual and Bilingual Sentence Reading. Behavior Reseach Methods, 49(2):602- 615.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding",
                "authors": [
                    {
                        "first": "Jacob",
                        "middle": [],
                        "last": "Devlin",
                        "suffix": ""
                    },
                    {
                        "first": "Ming-Wei",
                        "middle": [],
                        "last": "Chang",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Kristina",
                        "middle": [],
                        "last": "Toutanova",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Un- derstanding. In Proceedings of NAACL.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Contextual Effects on Word Perception and Eye Movements During Reading",
                "authors": [
                    {
                        "first": "Susan",
                        "middle": [
                            "E"
                        ],
                        "last": "Ehrlich",
                        "suffix": ""
                    },
                    {
                        "first": "Keith",
                        "middle": [],
                        "last": "Rayner",
                        "suffix": ""
                    }
                ],
                "year": 1981,
                "venue": "Journal of Verbal Learning and Verbal Behavior",
                "volume": "20",
                "issue": "",
                "pages": "641--65",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Susan E. Ehrlich and Keith Rayner. 1981. Contex- tual Effects on Word Perception and Eye Movements During Reading. Journal of Verbal Learning and Verbal Behavior, 20:641-65.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Word Embedding Distance Does not Predict Word Reading Time",
                "authors": [
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Stefan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "Proceedings of CogSci",
                "volume": "",
                "issue": "",
                "pages": "385--390",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Stefan L Frank. 2017. Word Embedding Distance Does not Predict Word Reading Time. In Proceedings of CogSci, pages 385-390.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "Predictive Power of Word Surprisal for Reading Times is a Linear Function of Language Model Quality",
                "authors": [
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Goodkind",
                        "suffix": ""
                    },
                    {
                        "first": "Klinton",
                        "middle": [],
                        "last": "Bicknell",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the LSA Workshop on Cognitive Modeling and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Adam Goodkind and Klinton Bicknell. 2018. Predic- tive Power of Word Surprisal for Reading Times is a Linear Function of Language Model Quality. In Pro- ceedings of the LSA Workshop on Cognitive Model- ing and Computational Linguistics.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "A Probabilistic Earley Parser as a Psycholinguistic Model",
                "authors": [
                    {
                        "first": "John",
                        "middle": [],
                        "last": "Hale",
                        "suffix": ""
                    }
                ],
                "year": 2001,
                "venue": "Proceedings of NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "John Hale. 2001. A Probabilistic Earley Parser as a Psycholinguistic Model. In Proceedings of NAACL.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Probabilistic Predictions of People Perusing: Evaluating Metrics of Language Model Performance for Psycholinguistic Modeling",
                "authors": [
                    {
                        "first": "Yiding",
                        "middle": [],
                        "last": "Hao",
                        "suffix": ""
                    },
                    {
                        "first": "Simon",
                        "middle": [],
                        "last": "Mendelsohn",
                        "suffix": ""
                    },
                    {
                        "first": "Rachel",
                        "middle": [],
                        "last": "Sterneck",
                        "suffix": ""
                    },
                    {
                        "first": "Randi",
                        "middle": [],
                        "last": "Martinez",
                        "suffix": ""
                    },
                    {
                        "first": "Robert",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the EMNLP Workshop on Cognitive Modeling and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Yiding Hao, Simon Mendelsohn, Rachel Sterneck, Randi Martinez, and Robert Frank. 2020. Prob- abilistic Predictions of People Perusing: Evaluat- ing Metrics of Language Model Performance for Psycholinguistic Modeling. In Proceedings of the EMNLP Workshop on Cognitive Modeling and Com- putational Linguistics.",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "CMCL 2021 Shared Task on Eye-Tracking Prediction",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Hollenstein",
                        "suffix": ""
                    },
                    {
                        "first": "Emmanuele",
                        "middle": [],
                        "last": "Chersoni",
                        "suffix": ""
                    },
                    {
                        "first": "Cassandra",
                        "middle": [
                            "L"
                        ],
                        "last": "Jacobs",
                        "suffix": ""
                    },
                    {
                        "first": "Yohei",
                        "middle": [],
                        "last": "Oseki",
                        "suffix": ""
                    },
                    {
                        "first": "Laurent",
                        "middle": [],
                        "last": "Pr\u00e9vot",
                        "suffix": ""
                    },
                    {
                        "first": "Enrico",
                        "middle": [],
                        "last": "Santus",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the NAACL Workshop on Cognitive Modeling and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nora Hollenstein, Emmanuele Chersoni, Cassandra L Jacobs, Yohei Oseki, Laurent Pr\u00e9vot, and Enrico Santus. 2021. CMCL 2021 Shared Task on Eye- Tracking Prediction. In Proceedings of the NAACL Workshop on Cognitive Modeling and Computa- tional Linguistics.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "CogniVal: A Framework for Cognitive Word Embedding Evaluation",
                "authors": [
                    {
                        "first": "Nora",
                        "middle": [],
                        "last": "Hollenstein",
                        "suffix": ""
                    },
                    {
                        "first": "Antonio",
                        "middle": [],
                        "last": "De La Torre",
                        "suffix": ""
                    },
                    {
                        "first": "Nicolas",
                        "middle": [],
                        "last": "Langer",
                        "suffix": ""
                    },
                    {
                        "first": "Ce",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of CONLL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nora Hollenstein, Antonio de la Torre, Nicolas Langer, and Ce Zhang. 2019. CogniVal: A Framework for Cognitive Word Embedding Evaluation. In Proceed- ings of CONLL.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Distributional Models of Word Meaning",
                "authors": [
                    {
                        "first": "Alessandro",
                        "middle": [],
                        "last": "Lenci",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Annual Review of Linguistics",
                "volume": "4",
                "issue": "",
                "pages": "151--171",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alessandro Lenci. 2018. Distributional Models of Word Meaning. Annual Review of Linguistics, 4:151-171.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Dependency-Based Word Embeddings",
                "authors": [
                    {
                        "first": "Omer",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    },
                    {
                        "first": "Yoav",
                        "middle": [],
                        "last": "Goldberg",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Omer Levy and Yoav Goldberg. 2014. Dependency- Based Word Embeddings. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "Expectation-based Syntactic Comprehension",
                "authors": [
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "Cognition",
                "volume": "106",
                "issue": "3",
                "pages": "1126--1177",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Roger Levy. 2008. Expectation-based Syntactic Com- prehension. Cognition, 106(3):1126-1177.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "The Provo Corpus: A Large Eye-tracking Corpus with Predictability Norms",
                "authors": [
                    {
                        "first": "G",
                        "middle": [],
                        "last": "Steven",
                        "suffix": ""
                    },
                    {
                        "first": "Kiel",
                        "middle": [],
                        "last": "Luke",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Christianson",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Behavior Research Methods",
                "volume": "50",
                "issue": "2",
                "pages": "826--833",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Steven G Luke and Kiel Christianson. 2018. The Provo Corpus: A Large Eye-tracking Corpus with Predictability Norms. Behavior Research Methods, 50(2):826-833.",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Comparing Transformers and RNNs on Predicting Human Sentence Processing Data",
                "authors": [
                    {
                        "first": "Danny",
                        "middle": [],
                        "last": "Merkx",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Stefan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:2005.09471"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Danny Merkx and Stefan L Frank. 2020. Com- paring Transformers and RNNs on Predicting Hu- man Sentence Processing Data. arXiv preprint arXiv:2005.09471.",
                "links": null
            },
            "BIBREF20": {
                "ref_id": "b20",
                "title": "Human Sentence Processing: Recurrence or Attention?",
                "authors": [
                    {
                        "first": "Danny",
                        "middle": [],
                        "last": "Merkx",
                        "suffix": ""
                    },
                    {
                        "first": "L",
                        "middle": [],
                        "last": "Stefan",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Frank",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "Proceedings of the NAACL Workshop on Cognitive Modeling and Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Danny Merkx and Stefan L Frank. 2021. Human Sen- tence Processing: Recurrence or Attention? In Pro- ceedings of the NAACL Workshop on Cognitive Mod- eling and Computational Linguistics.",
                "links": null
            },
            "BIBREF21": {
                "ref_id": "b21",
                "title": "Efficient Estimation of Word Representations in Vector Space",
                "authors": [
                    {
                        "first": "Tomas",
                        "middle": [],
                        "last": "Mikolov",
                        "suffix": ""
                    },
                    {
                        "first": "Kai",
                        "middle": [],
                        "last": "Chen",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Corrado",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Dean",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1301.3781"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Tomas Mikolov, Kai Chen, Greg Corrado, and Jef- frey Dean. 2013. Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.",
                "links": null
            },
            "BIBREF22": {
                "ref_id": "b22",
                "title": "Syntactic and Semantic Factors in Processing Difficulty: An Integrated Measure",
                "authors": [
                    {
                        "first": "Jeff",
                        "middle": [],
                        "last": "Mitchell",
                        "suffix": ""
                    },
                    {
                        "first": "Mirella",
                        "middle": [],
                        "last": "Lapata",
                        "suffix": ""
                    },
                    {
                        "first": "Vera",
                        "middle": [],
                        "last": "Demberg",
                        "suffix": ""
                    },
                    {
                        "first": "Frank",
                        "middle": [],
                        "last": "Keller",
                        "suffix": ""
                    }
                ],
                "year": 2010,
                "venue": "Proceedings of ACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeff Mitchell, Mirella Lapata, Vera Demberg, and Frank Keller. 2010. Syntactic and Semantic Factors in Processing Difficulty: An Integrated Measure. In Proceedings of ACL.",
                "links": null
            },
            "BIBREF23": {
                "ref_id": "b23",
                "title": "Glove: Global Vectors for Word Representation",
                "authors": [
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Pennington",
                        "suffix": ""
                    },
                    {
                        "first": "Richard",
                        "middle": [],
                        "last": "Socher",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Manning",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove: Global Vectors for Word Representation. In Proceedings of EMNLP.",
                "links": null
            },
            "BIBREF24": {
                "ref_id": "b24",
                "title": "Deep Contextualized Word Representations",
                "authors": [
                    {
                        "first": "Matthew",
                        "middle": [
                            "E"
                        ],
                        "last": "Peters",
                        "suffix": ""
                    },
                    {
                        "first": "Mark",
                        "middle": [],
                        "last": "Neumann",
                        "suffix": ""
                    },
                    {
                        "first": "Mohit",
                        "middle": [],
                        "last": "Iyyer",
                        "suffix": ""
                    },
                    {
                        "first": "Matt",
                        "middle": [],
                        "last": "Gardner",
                        "suffix": ""
                    },
                    {
                        "first": "Christopher",
                        "middle": [],
                        "last": "Clark",
                        "suffix": ""
                    },
                    {
                        "first": "Kenton",
                        "middle": [],
                        "last": "Lee",
                        "suffix": ""
                    },
                    {
                        "first": "Luke",
                        "middle": [],
                        "last": "Zettlemoyer",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of NAACL",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Rep- resentations. In Proceedings of NAACL.",
                "links": null
            },
            "BIBREF25": {
                "ref_id": "b25",
                "title": "Online Contextual Influences During Reading Normal Text: A Multiple-Regression Analysis. Vision research",
                "authors": [
                    {
                        "first": "Joel",
                        "middle": [],
                        "last": "Pynte",
                        "suffix": ""
                    },
                    {
                        "first": "Boris",
                        "middle": [],
                        "last": "New",
                        "suffix": ""
                    },
                    {
                        "first": "Alan",
                        "middle": [],
                        "last": "Kennedy",
                        "suffix": ""
                    }
                ],
                "year": 2008,
                "venue": "",
                "volume": "48",
                "issue": "",
                "pages": "2172--2183",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Joel Pynte, Boris New, and Alan Kennedy. 2008. On- line Contextual Influences During Reading Normal Text: A Multiple-Regression Analysis. Vision re- search, 48(21):2172-2183.",
                "links": null
            },
            "BIBREF26": {
                "ref_id": "b26",
                "title": "Language Models are Unsupervised Multitask Learners",
                "authors": [
                    {
                        "first": "A",
                        "middle": [],
                        "last": "Radford",
                        "suffix": ""
                    },
                    {
                        "first": "Jeffrey",
                        "middle": [],
                        "last": "Wu",
                        "suffix": ""
                    },
                    {
                        "first": "R",
                        "middle": [],
                        "last": "Child",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Luan",
                        "suffix": ""
                    },
                    {
                        "first": "Dario",
                        "middle": [],
                        "last": "Amodei",
                        "suffix": ""
                    },
                    {
                        "first": "Ilya",
                        "middle": [],
                        "last": "Sutskever",
                        "suffix": ""
                    }
                ],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "A. Radford, Jeffrey Wu, R. Child, David Luan, Dario Amodei, and Ilya Sutskever. Language Models are Unsupervised Multitask Learners. In Open-AI Blog.",
                "links": null
            },
            "BIBREF27": {
                "ref_id": "b27",
                "title": "A Neural Model of Adaptation in Reading",
                "authors": [
                    {
                        "first": "Marten",
                        "middle": [],
                        "last": "Van Schijndel",
                        "suffix": ""
                    },
                    {
                        "first": "Tal",
                        "middle": [],
                        "last": "Linzen",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of EMNLP",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Marten van Schijndel and Tal Linzen. 2018. A Neural Model of Adaptation in Reading. In Proceedings of EMNLP.",
                "links": null
            },
            "BIBREF28": {
                "ref_id": "b28",
                "title": "The Effect of Word Predictability on Reading Time Is Logarithmic",
                "authors": [
                    {
                        "first": "J",
                        "middle": [],
                        "last": "Nathaniel",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Smith",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2013,
                "venue": "Cognition",
                "volume": "128",
                "issue": "3",
                "pages": "302--319",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nathaniel J Smith and Roger Levy. 2013. The Effect of Word Predictability on Reading Time Is Logarith- mic. Cognition, 128(3):302-319.",
                "links": null
            },
            "BIBREF29": {
                "ref_id": "b29",
                "title": "BERT Rediscovers the Classical NLP Pipeline",
                "authors": [
                    {
                        "first": "Ian",
                        "middle": [],
                        "last": "Tenney",
                        "suffix": ""
                    },
                    {
                        "first": "Dipanjan",
                        "middle": [],
                        "last": "Das",
                        "suffix": ""
                    },
                    {
                        "first": "Ellie",
                        "middle": [],
                        "last": "Pavlick",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1905.05950"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. BERT Rediscovers the Classical NLP Pipeline. arXiv preprint arXiv:1905.05950.",
                "links": null
            },
            "BIBREF30": {
                "ref_id": "b30",
                "title": "On the Predictive Power of Neural Language Models for Human Real-Time Comprehension Behavior",
                "authors": [
                    {
                        "first": "Ethan",
                        "middle": [
                            "Gotlieb"
                        ],
                        "last": "Wilcox",
                        "suffix": ""
                    },
                    {
                        "first": "Jon",
                        "middle": [],
                        "last": "Gauthier",
                        "suffix": ""
                    },
                    {
                        "first": "Jennifer",
                        "middle": [],
                        "last": "Hu",
                        "suffix": ""
                    },
                    {
                        "first": "Peng",
                        "middle": [],
                        "last": "Qian",
                        "suffix": ""
                    },
                    {
                        "first": "Roger",
                        "middle": [],
                        "last": "Levy",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Ethan Gotlieb Wilcox, Jon Gauthier, Jennifer Hu, Peng Qian, and Roger Levy. 2020. On the Predictive Power of Neural Language Models for Human Real- Time Comprehension Behavior.",
                "links": null
            }
        },
        "ref_entries": {
            "FIGREF0": {
                "type_str": "figure",
                "uris": null,
                "text": "The\"] S[1] = [\"The dog\"] S[2] = [\"The dog chases\"] S[3] = [\"The dog chases the\"] S[4] = [\"The dog chases the cat\"]",
                "num": null
            },
            "FIGREF1": {
                "type_str": "figure",
                "uris": null,
                "text": "Spearman's correlation of different layers of BERT on GECO.",
                "num": null
            },
            "TABREF0": {
                "text": "ModelHyperparameters Non-contextualized DSMs SVD.w2count DSM with 345K window-selected context words, window of width 2, reduced with SVD SVD.synt count DSM with 345K syntactically typed context words reduced with SVD GloVe count DSM with context window of width 2, reduced with log-bilinear regression SGNS.w2Skip-gram with negative sampling, context window of width 2, 15 negative examples SGNS.synt Skip-gram with negative sampling, syntactically-typed context words, 15 negative examples FastText Skip-gram with subword information, context window of width 2, 15 negative examples Contextualized DSMs ELMo Pretrained ELMo embeddings on the 1 Billion Word Benchmark BERT Pretrained BERT-Large embeddings on the concatenation of the Books corpus and Wikipedia",
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>GPT2-xl</td><td>Pretrained GPT2-xl embeddings on WebText</td></tr><tr><td>Neural Complexity</td><td>Pretrained Neural Complexity embeddings on Wikipedia</td></tr></table>"
            },
            "TABREF1": {
                "text": "List of the embedding models used for the study, together with their hyperparameter settings.",
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table/>"
            },
            "TABREF3": {
                "text": "Spearman correlations between the target-context cosine and the eye-tracking measures. Numbers in parenthesis indicate models' layers.",
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table><tr><td>Corpus</td><td>Model</td><td colspan=\"3\">total reading time 1st fixation duration number fixations</td></tr><tr><td/><td>BERT</td><td>0.28</td><td>0.26</td><td>0.28</td></tr><tr><td>GECO</td><td>GPT2-xl</td><td>0.41</td><td>0.39</td><td>0.41</td></tr><tr><td/><td>NC</td><td>0.31</td><td>0.30</td><td>0.32</td></tr><tr><td/><td>BERT</td><td>0.25</td><td>0.24</td><td>0.24</td></tr><tr><td>Provo</td><td>GPT2-xl</td><td>0.44</td><td>0.43</td><td>0.44</td></tr><tr><td/><td>NC</td><td>0.46</td><td>0.48</td><td>0.46</td></tr></table>"
            },
            "TABREF4": {
                "text": "Spearman correlations between surprisal and eye-tracking measures.",
                "html": null,
                "type_str": "table",
                "num": null,
                "content": "<table/>"
            }
        }
    }
}