File size: 81,261 Bytes
6fa4bc9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
{
    "paper_id": "2021",
    "header": {
        "generated_with": "S2ORC 1.0.0",
        "date_generated": "2023-01-19T07:33:41.820049Z"
    },
    "title": "Low-Resource ASR with an Augmented Language Model",
    "authors": [
        {
            "first": "Timofey",
            "middle": [],
            "last": "Arkhangelskiy",
            "suffix": "",
            "affiliation": {
                "laboratory": "",
                "institution": "Universit\u00e4t Hamburg",
                "location": {}
            },
            "email": "timarkh@gmail.com"
        }
    ],
    "year": "",
    "venue": null,
    "identifiers": {},
    "abstract": "It is widely known that a good language model (LM) can dramatically improve the quality of automatic speech recognition (ASR). However, when dealing with a lowresource language, it is often the case that not only aligned audio data is scarce, but there are also not enough texts to train a good LM. This is the case of Beserman, an unwritten dialect of Udmurt (Uralic > Permic). With about 10 hours of aligned audio and about 164K words of texts available for training, the word error rate of a Deepspeech model with the best set of parameters equals 56.4%. However, there are other linguistic resources available for Beserman, namely a bilingual Beserman-Russian dictionary and a rule-based morphological analyzer. The goal of this paper is to explore whether and how these additional resources can be exploited to improve the ASR quality. Specifically, I attempt to use them in order to expand the existing LM by generating a large number of fake sentences that in some way look like genuine Beserman text. It turns out that a sophisticated enough augmented LM generator can indeed improve the ASR quality. Nevertheless, the improvement is far from dramatic, with about 5% decrease in word error rate (WER) and 2% decrease in character error rate (CER).",
    "pdf_parse": {
        "paper_id": "2021",
        "_pdf_hash": "",
        "abstract": [
            {
                "text": "It is widely known that a good language model (LM) can dramatically improve the quality of automatic speech recognition (ASR). However, when dealing with a lowresource language, it is often the case that not only aligned audio data is scarce, but there are also not enough texts to train a good LM. This is the case of Beserman, an unwritten dialect of Udmurt (Uralic > Permic). With about 10 hours of aligned audio and about 164K words of texts available for training, the word error rate of a Deepspeech model with the best set of parameters equals 56.4%. However, there are other linguistic resources available for Beserman, namely a bilingual Beserman-Russian dictionary and a rule-based morphological analyzer. The goal of this paper is to explore whether and how these additional resources can be exploited to improve the ASR quality. Specifically, I attempt to use them in order to expand the existing LM by generating a large number of fake sentences that in some way look like genuine Beserman text. It turns out that a sophisticated enough augmented LM generator can indeed improve the ASR quality. Nevertheless, the improvement is far from dramatic, with about 5% decrease in word error rate (WER) and 2% decrease in character error rate (CER).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Abstract",
                "sec_num": null
            }
        ],
        "body_text": [
            {
                "text": "\u043a\u0435 \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0432\u0430\u0442\u0435\u043b\u0435\u0437 \u0434\u044b\u0448\u0435\u0442\u043e\u043d \u043f\u043e\u043d\u043d\u0430 \u0432\u043e\u043b\u044f\u0442\u044d\u043c \u043a\u0443\u0430\u0440\u0430, \u043e\u0437\u044c\u044b \u0438\u043a \u0443\u043c\u043e\u0439 \u043a\u044b\u043b \u043c\u043e\u0434\u0435\u043b\u0435\u0437 \u0434\u044b\u0448\u0435\u0442\u043e\u043d \u043f\u043e\u043d\u043d\u0430 \u0442\u0435\u043a\u0441\u0442\u044a\u0451\u0441 \u04f5\u0435\u043c\u044b\u0441\u044c \u0442\u0443\u0436 \u04e7\u0436\u044b\u0442 \u043b\u0443\u043e. \u04f4\u0430\u043f\u0430\u043a \u0442\u0430\u04f5\u0435 \u044e\u0433\u0434\u0443\u0440 \u0443\u0434\u043c\u0443\u0440\u0442 \u043a\u044b\u043b\u043b\u044d\u043d \u0433\u043e\u0436\u044a\u044f\u0441\u044c\u043a\u0435\u0442\u0442\u044d\u043c \u0431\u0435\u0441\u0435\u0440\u043c\u0430\u043d \u0432\u0435\u0440\u0430\u0441\u044c\u043a\u0435\u0442\u044d\u043d\u044b\u0437 \u043a\u044b\u043b\u0434\u044d\u043c\u044b\u043d. \u041a\u0438 \u0443\u043b\u0430\u043c\u044b \u0432\u0430\u043d\u044c 10 \u0447\u0430\u0441 \u043f\u0430\u043b\u0430 \u0432\u043e\u043b\u044f\u0442\u044d\u043c \u043d\u043e \u0440\u0430\u0441\u0448\u0438\u0444\u0440\u043e\u0432\u0430\u0442\u044c \u043a\u0430\u0440\u0435\u043c \u043a\u0443\u0430\u0440\u0430 \u043d\u043e 164 \u0441\u044e\u0440\u0441 \u043f\u0430\u043b\u0430 \u0443\u0436\u0435 \u043a\u0443\u0442\u044d\u043c \u043a\u044b\u043b\u044a\u0451\u0441\u044b\u043d \u0442\u0435\u043a\u0441\u0442\u044a\u0451\u0441. \u0422\u0430 \u0442\u043e\u0434\u044d\u0442\u044a\u0451\u0441\u044b\u043d \u0434\u044b\u0448\u0435\u0442\u0441\u043a\u044b\u0441\u0430, Deepspeech \u0441\u0438\u0441\u0442\u0435\u043c\u0430 \u0432\u043e\u0437\u044c\u043c\u0430\u0442\u044d 56,4% WER (\u043c\u044b\u0434\u043b\u0430\u043d\u044c \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0442\u044c \u043a\u0430\u0440\u0435\u043c \u043a\u044b\u043b\u044a\u0451\u0441\u043b\u044d\u043d \u043f\u0440\u043e\u0446\u0435\u043d\u0442\u0441\u044b).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "\u041e\u0437\u044c\u044b \u043a\u0435 \u043d\u043e \u0431\u0435\u0441\u0435\u0440\u043c\u0430\u043d \u0432\u0435\u0440\u0430\u0441\u044c\u043a\u0435\u0442\u044a\u044f \u0432\u0430\u043d\u044c \u043d\u0430 \u043c\u0443\u043a\u0435\u0442 \u043a\u044b\u043b\u0442\u043e\u0434\u043e\u043d \u0432\u0430\u043d\u0451\u0441\u044a\u0451\u0441: \u0431\u0435\u0441\u0435\u0440\u043c\u0430\u043d-\u04df\u0443\u0447 \u043a\u044b\u043b\u043b\u044e\u043a\u0430\u043c \u043d\u043e \u0448\u043e\u043d\u0435\u0440\u0440\u0430\u0434\u044a\u044f\u043d \u043c\u043e\u0440\u0444\u043e\u043b\u043e\u0433\u0438 \u0430\u043d\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440. \u0422\u0430 \u0443\u0436\u043b\u044d\u043d \u0446\u0435\u043b\u0435\u0437 -\u0432\u0430\u043b\u0430\u043d\u044b, \u043b\u0443\u044d-\u0430 \u0432\u0435\u0440\u0430\u0441\u044c\u043a\u0435\u043c\u0435\u0437 \u0430\u0441\u044d\u0440\u043a\u0430\u0437 \u0442\u043e\u0434\u043c\u0430\u043d\u043b\u044d\u0441\u044c \u04df\u0435\u0447\u043b\u044b\u043a\u0441\u044d \u0431\u0443\u0434\u044d\u0442\u043e\u043d \u043f\u043e\u043d\u043d\u0430 \u0442\u0430 \u0432\u0430\u0442\u0441\u0430\u043c \u0440\u0435\u0441\u0443\u0440\u0441\u044a\u0451\u0441\u0442\u044b \u0443\u0436\u0435 \u043a\u0443\u0442\u044b\u043d\u044b. \u041a\u044b\u043b\u0441\u044f\u0440\u044b\u0441\u044c, \u0441\u043e\u043e\u0441 \u0432\u044b\u043b\u044d \u043f\u044b\u043a\u044a\u044f\u0441\u044c\u043a\u044b\u0441\u0430, \u0442\u0443\u0440\u0442\u0442\u044d\u043c\u044b\u043d \u043a\u044b\u043b \u043c\u043e\u0434\u0435\u043b\u0435\u0437 \u043f\u0430\u0441\u044c\u043a\u044b\u0442\u0430\u0442\u044b\u043d\u044b, \u0441\u043e \u043f\u043e\u043d\u043d\u0430 \u043a\u044b\u043b\u0434\u044b\u0442\u044d\u043c\u044b\u043d \u0432\u0430\u043b \u0442\u0440\u043e\u0441 \u0437\u044d\u043c\u043e\u0441 \u043b\u0443\u0438\u0441\u044c\u0442\u044d\u043c \u0448\u0443\u043e\u0441\u044a\u0451\u0441, \u043a\u0443\u0434\u044a\u0451\u0441\u044b\u0437 \u043a\u0443\u0434-\u043e\u0433 \u043b\u0430\u0441\u044f\u043d\u044c \u0442\u0443\u043f\u0430\u043b\u043e \u0437\u044d\u043c\u043e\u0441 \u0431\u0435\u0441\u0435\u0440\u043c\u0430\u043d \u0442\u0435\u043a\u0441\u0442\u043b\u044b. \u0428\u0443\u043e\u0441\u044a\u0451\u0441\u0442\u044b \u043a\u044b\u043b\u0434\u044b\u0442\u04e5\u0441\u044c \u0433\u0435\u043d\u0435\u0440\u0430\u0442\u043e\u0440 \u0442\u044b\u0440\u043c\u044b\u0442 \u00ab\u0432\u0438\u0437\u044c\u043c\u043e\u00bb \u043a\u0435, \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0432\u0430\u043d\u0438\u043b\u044d\u043d \u04df\u0435\u0447\u043b\u044b\u043a\u0435\u0437 \u0437\u044d\u043c\u0437\u044d \u043d\u043e \u0431\u0443\u0434\u044d \u0432\u044b\u043b\u044d\u043c. \u041e\u0437\u044c\u044b \u043a\u0435 \u043d\u043e \u0442\u0430 \u0443\u043c\u043e\u044f\u043d \u0448\u04e7\u0434\u0441\u043a\u044b\u043c\u043e\u043d \u043b\u0443\u044d \u0448\u0443\u044b\u0441\u0430, \u0432\u0435\u0440\u0430\u043d\u044b \u0443\u0433 \u043b\u0443\u044b: WER \u0432\u043e\u0437\u044c\u043c\u0430\u0442\u043e\u043d \u0443\u0441\u0435 5%-\u043b\u044b \u043f\u0430\u043b\u0430, \u043d\u043e\u0448 CER (\u043c\u044b\u0434\u043b\u0430\u043d\u044c \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0442\u044c \u043a\u0430\u0440\u0435\u043c \u0431\u0443\u043a\u0432\u0430\u043e\u0441\u043b\u044d\u043d \u043f\u0440\u043e\u0446\u0435\u043d\u0442\u0441\u044b) -2%-\u043b\u044b. \u043e\u0431\u0443\u0447\u0435\u043d\u0438\u044f \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0432\u0430\u0442\u0435\u043b\u044f, \u043d\u043e \u0438 \u0441\u043b\u0438\u0448\u043a\u043e\u043c \u043c\u0430\u043b\u043e \u0442\u0435\u043a\u0441\u0442\u043e\u0432 \u0434\u043b\u044f \u043e\u0431\u0443\u0447\u0435\u043d\u0438\u044f \u0445\u043e\u0440\u043e\u0448\u0435\u0439 \u044f\u0437\u044b\u043a\u043e\u0432\u043e\u0439 \u043c\u043e\u0434\u0435\u043b\u0438. \u0418\u043c\u0435\u043d\u043d\u043e \u0442\u0430\u043a\u043e\u0432 \u0441\u043b\u0443\u0447\u0430\u0439 \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u043e\u0433\u043e -\u0431\u0435\u0441\u043f\u0438\u0441\u044c\u043c\u0435\u043d\u043d\u043e\u0433\u043e \u0434\u0438\u0430\u043b\u0435\u043a\u0442\u0430 \u0443\u0434\u043c\u0443\u0440\u0442\u0441\u043a\u043e\u0433\u043e \u044f\u0437\u044b\u043a\u0430. \u0412 \u043d\u0430\u0448\u0435\u043c \u0440\u0430\u0441\u043f\u043e\u0440\u044f\u0436\u0435\u043d\u0438\u0438 \u0438\u043c\u0435\u044e\u0442\u0441\u044f \u043e\u043a\u043e\u043b\u043e 10 \u0447\u0430\u0441\u043e\u0432 \u0437\u0432\u0443\u043a\u0430, \u0432\u044b\u0440\u043e\u0432\u043d\u0435\u043d\u043d\u043e\u0433\u043e \u0441 \u0440\u0430\u0441\u0448\u0438\u0444\u0440\u043e\u0432\u043a\u0430\u043c\u0438, \u0438 \u0442\u0435\u043a\u0441\u0442\u044b \u043e\u0431\u044a\u0451\u043c\u043e\u043c \u043e\u043a\u043e\u043b\u043e 164 \u0442\u044b\u0441. \u0441\u043b\u043e\u0432\u043e\u0443\u043f\u043e\u0442\u0440\u0435\u0431\u043b\u0435\u043d\u0438\u0439. \u041e\u0431\u0443\u0447\u0438\u0432\u0448\u0438\u0441\u044c \u043d\u0430 \u044d\u0442\u0438\u0445 \u0434\u0430\u043d\u043d\u044b\u0445, \u0441\u0438\u0441\u0442\u0435\u043c\u0430 Deepspeech \u0434\u0435\u043c\u043e\u043d\u0441\u0442\u0440\u0438\u0440\u0443\u0435\u0442 WER (\u043f\u0440\u043e\u0446\u0435\u043d\u0442 \u043d\u0435\u043f\u0440\u0430\u0432\u0438\u043b\u044c\u043d\u043e \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u043d\u043d\u044b\u0445 \u0441\u043b\u043e\u0432), \u0440\u0430\u0432\u043d\u044b\u0439 56,4%. \u041e\u0434\u043d\u0430\u043a\u043e \u0434\u043b\u044f \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u043e\u0433\u043e \u0441\u0443\u0449\u0435\u0441\u0442\u0432\u0443\u044e\u0442 \u0434\u0440\u0443\u0433\u0438\u0435 \u043b\u0438\u043d\u0433\u0432\u0438\u0441\u0442\u0438\u0447\u0435\u0441\u043a\u0438\u0435 \u0440\u0435\u0441\u0443\u0440\u0441\u044b, \u0430 \u0438\u043c\u0435\u043d\u043d\u043e \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u043e-\u0440\u0443\u0441\u0441\u043a\u0438\u0439 \u0441\u043b\u043e\u0432\u0430\u0440\u044c \u0438 \u043f\u0440\u0430\u0432\u0438\u043b\u043e\u0432\u044b\u0439 \u043c\u043e\u0440\u0444\u043e\u043b\u043e\u0433\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u0430\u043d\u0430\u043b\u0438\u0437\u0430\u0442\u043e\u0440. \u0426\u0435\u043b\u044c \u044d\u0442\u043e\u0439 \u0440\u0430\u0431\u043e\u0442\u044b -\u0432\u044b\u044f\u0441\u043d\u0438\u0442\u044c, \u043c\u043e\u0436\u043d\u043e \u043b\u0438 \u0438\u0441\u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u044c \u044d\u0442\u0438 \u0434\u043e\u043f\u043e\u043b\u043d\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0435 \u0440\u0435\u0441\u0443\u0440\u0441\u044b \u0434\u043b\u044f \u0443\u043b\u0443\u0447\u0448\u0435\u043d\u0438\u044f \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0432\u0430\u043d\u0438\u044f \u0440\u0435\u0447\u0438. \u0412 \u0447\u0430\u0441\u0442\u043d\u043e\u0441\u0442\u0438, \u043f\u0440\u0435\u0434\u043f\u0440\u0438\u043d\u0438\u043c\u0430\u0435\u0442\u0441\u044f \u043f\u043e\u043f\u044b\u0442\u043a\u0430 \u0440\u0430\u0441\u0448\u0438\u0440\u0438\u0442\u044c \u0441 \u0438\u0445 \u043f\u043e\u043c\u043e\u0449\u044c\u044e \u044f\u0437\u044b\u043a\u043e\u0432\u0443\u044e \u043c\u043e\u0434\u0435\u043b\u044c \u043f\u0443\u0442\u0451\u043c \u043f\u043e\u0440\u043e\u0436\u0434\u0435\u043d\u0438\u044f \u0431\u043e\u043b\u044c\u0448\u043e\u0433\u043e \u043a\u043e\u043b\u0438\u0447\u0435\u0441\u0442\u0432\u0430 \u043d\u0435\u043d\u0430\u0441\u0442\u043e\u044f\u0449\u0438\u0445 \u043f\u0440\u0435\u0434\u043b\u043e\u0436\u0435\u043d\u0438\u0439, \u043a\u043e\u0442\u043e\u0440\u044b\u0435 \u0432 \u043d\u0435\u043a\u043e\u0442\u043e\u0440\u044b\u0445 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u044f\u0445 \u043f\u043e\u0445\u043e\u0436\u0438 \u043d\u0430 \u043d\u0430\u0441\u0442\u043e\u044f\u0449\u0438\u0439 \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u0438\u0439 \u0442\u0435\u043a\u0441\u0442. \u041e\u043a\u0430\u0437\u044b\u0432\u0430\u0435\u0442\u0441\u044f, \u0447\u0442\u043e \u0435\u0441\u043b\u0438 \u0433\u0435\u043d\u0435\u0440\u0430\u0442\u043e\u0440 \u043f\u0440\u0435\u0434\u043b\u043e\u0436\u0435\u043d\u0438\u0439 \u0434\u043e\u0441\u0442\u0430\u0442\u043e\u0447\u043d\u043e \"\u0443\u043c\u0451\u043d\", \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u043e \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u0432\u0430\u043d\u0438\u044f \u043f\u043e\u0441\u043b\u0435 \u044d\u0442\u043e\u0433\u043e \u0434\u0435\u0439\u0441\u0442\u0432\u0438\u0442\u0435\u043b\u044c\u043d\u043e \u0432\u043e\u0437\u0440\u0430\u0441\u0442\u0430\u0435\u0442. \u041e\u0434\u043d\u0430\u043a\u043e \u044d\u0442\u043e \u0443\u043b\u0443\u0447\u0448\u0435\u043d\u0438\u0435 \u0432\u0440\u044f\u0434 \u043b\u0438 \u043c\u043e\u0436\u043d\u043e \u043d\u0430\u0437\u0432\u0430\u0442\u044c \u0441\u0443\u0449\u0435\u0441\u0442\u0432\u0435\u043d\u043d\u044b\u043c: \u043f\u043e\u043a\u0430\u0437\u0430\u0442\u0435\u043b\u044c WER \u043f\u0430\u0434\u0430\u0435\u0442 \u043f\u0440\u0438\u043c\u0435\u0440\u043d\u043e \u043d\u0430 5%, \u0430 CER (\u043f\u0440\u043e\u0446\u0435\u043d\u0442 \u043d\u0435\u043f\u0440\u0430\u0432\u0438\u043b\u044c\u043d\u043e \u0440\u0430\u0441\u043f\u043e\u0437\u043d\u0430\u043d\u043d\u044b\u0445 \u0431\u0443\u043a\u0432) -\u043d\u0430 2%.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "",
                "sec_num": null
            },
            {
                "text": "The key to reaching good ASR quality is having lots of data, i.e. thousands or at least hundreds of hours of text-aligned sound recordings. For most languages in the world, however, resources of that size are unavailable. With only a dozen hours of sound at hand, it is currently impossible to reach a WER low enough for the system to be usable in real-world applications. Nevertheless, a system with a WER, which is high, but lower than a certain threshold (e.g. 50%), could still be used in practice. Specifically, the primary motivation behind this research was the need to transcribe large amounts of spoken Beserman for subsequent linguistic research. If an ASR system, despite its high WER, could facilitate and accelerate manual transcription, that would be a useful practical application, even if limited in scope. Other possible applications of such undertrained noisy ASR systems have been proposed by Tyers and Meyer (2021) . This is why it makes sense to experiment with datasets that small.",
                "cite_spans": [
                    {
                        "start": 912,
                        "end": 934,
                        "text": "Tyers and Meyer (2021)",
                        "ref_id": "BIBREF17"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "A number of techniques have been used to achieve better results in low-resource ASR systems. This includes pre-training the model on the data from another (possibly related or phonologically similar) language (Stoian et al., 2020) , augmenting the sound data with label-preserving transformations (T\u00fcske et al., 2014; Park et al., 2019) , and training the LM on a larger set of texts taken e.g. from a written corpus (Leinonen et al., 2018) . That a good language model can play an important role can be seen e.g. from the experiments on ASR for varieties of Komi, a language closely related to Udmurt, as described by (Hjortnaes et al., 2020b) and (Hjortnaes et al., 2020a) . Replacing a LM with a larger and more suitable one (in terms of domain) can decrease WER significantly.",
                "cite_spans": [
                    {
                        "start": 209,
                        "end": 230,
                        "text": "(Stoian et al., 2020)",
                        "ref_id": "BIBREF15"
                    },
                    {
                        "start": 297,
                        "end": 317,
                        "text": "(T\u00fcske et al., 2014;",
                        "ref_id": "BIBREF16"
                    },
                    {
                        "start": 318,
                        "end": 336,
                        "text": "Park et al., 2019)",
                        "ref_id": "BIBREF14"
                    },
                    {
                        "start": 417,
                        "end": 440,
                        "text": "(Leinonen et al., 2018)",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 619,
                        "end": 644,
                        "text": "(Hjortnaes et al., 2020b)",
                        "ref_id": "BIBREF8"
                    },
                    {
                        "start": 649,
                        "end": 674,
                        "text": "(Hjortnaes et al., 2020a)",
                        "ref_id": "BIBREF7"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "Beserman is traditionally classified as a dialect of Udmurt (Uralic > Permic) and is spoken by around 2200 people in NW Udmurtia, Russia. Unlike standard Udmurt, it lacks a codified orthography and is not used in the written form outside of scientific publications. This paper describes experiments with training Deepspeech (Hannun et al., 2014) on transcribed and elicited Beserman data. I am particularly interested in augmenting the LM with the help of linguistic resources that exist for Beserman: a Beserman-Russian dictionary and a morphological analyzer. The former is used, among other things, to transfer information from a model trained on Russian data. Same kinds of data augmentation could be relevant for many other under-resourced languages and dialects, since bilingual dictionaries and rule-based tools often exist for varieties, which are poor in raw data.",
                "cite_spans": [
                    {
                        "start": 324,
                        "end": 345,
                        "text": "(Hannun et al., 2014)",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The paper is organized as follows. In Section 2, I describe the dataset and lay out the reasons why improving the LM could be challenging. In Section 3, the training setup is outlined. In Section 4, I describe how the artificially augmented LM was generated. In 5, the original results are compared to that of the augmented LM. This is followed by a conclusion.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Introduction",
                "sec_num": "1"
            },
            {
                "text": "The Beserman dataset I have at hand consists of about 15,000 transcribed sound files with recordings from 10 speakers, both male and female, total-ing about 10 hours (with almost no trailing silence). Most of them come from a sound-aligned Beserman corpus, whose recordings were made in 2012-2019 and have varying quality. Another 2,700 files, totaling 2.5 hours, come from a sound dictionary and contain three pronunciations of a headword each. The duration of most files lies between 1 and 5 seconds. In addition to the texts of the sound-aligned corpus, there are transcriptions of older recordings, which are not sound-aligned as of now, and a corpus of usage examples based on the Beserman-Russian dictionary\u00b9 (Arkhangelskiy, 2019). All these sources combined contain about 27,400 written Beserman sentences (some very short, some occurring more than once), with a total of 164K words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The data",
                "sec_num": "2"
            },
            {
                "text": "Such amount of textual data is insufficient for producing a well performing LM. Since Beserman is a morphologically rich language, most forms of most lexemes are absent from the sample and thus cannot be recognized, being out-of-vocabulary words. Unlike in some other studies mentioned above, it is hardly possible to find Beserman texts elsewhere. One way of doing that would be to use texts in literary Udmurt, which are available in larger quantities (tens of millions of words). Although I have not explored that option yet\u00b2, I doubt it could have the desired effect because the available Udmurt texts belong to a completely different domain. While most Beserman texts are narratives about the past or the life in the village, or everyday dialogues, most Udmurt texts available in digital form come from mass media. There is a pronounced difference between the vocabularies and grammatical constructions used in these two domains.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The data",
                "sec_num": "2"
            },
            {
                "text": "Instead, I attempt to utilize linguistic resources available for Beserman: a Beserman-Russian dictionary comprising about 6,000 entries and a morphological analyzer. The latter is rule-based and is based on the dictionary itself. Apart from the information necessary for morphological analysis, it contains some grammatical tags, such as animacy for nouns and transitivity for verbs. The analyzer \u00b9Available for search at http://beserman.ru; a large part of it has been published as Usacheva et al. (2017) .",
                "cite_spans": [
                    {
                        "start": 483,
                        "end": 505,
                        "text": "Usacheva et al. (2017)",
                        "ref_id": "BIBREF18"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The data",
                "sec_num": "2"
            },
            {
                "text": "\u00b2There are certain phonological, morphological and lexical differences between the standard language and the Beserman dialect. Before an Udmurt model can be used in Beserman ASR, the texts should be \"translated\" into Beserman. Although such attempts have been made (Miller, 2017) , making the translations look Beserman enough would require quite a lot of effort. recognizes about 97% of words in the textual part of the Beserman dataset. A small set of Constraint Grammar rules (Karlsson, 1990; Bick and Didriksen, 2015 ) is applied after the analysis, which reduces the average ambiguity to 1.25 analyses per analyzed word.",
                "cite_spans": [
                    {
                        "start": 265,
                        "end": 279,
                        "text": "(Miller, 2017)",
                        "ref_id": "BIBREF12"
                    },
                    {
                        "start": 479,
                        "end": 495,
                        "text": "(Karlsson, 1990;",
                        "ref_id": "BIBREF9"
                    },
                    {
                        "start": 496,
                        "end": 520,
                        "text": "Bick and Didriksen, 2015",
                        "ref_id": "BIBREF3"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The data",
                "sec_num": "2"
            },
            {
                "text": "The idea is to inflate the text corpus used to produce the LM by generating a large number of fake sentences, using real corpus sentences as the starting point and the source of lemma frequencies, and incorporating data from the linguistic resources in the process.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "The data",
                "sec_num": "2"
            },
            {
                "text": "All Beserman texts were encoded in a version of the Uralic Phonetic Alphabet so that each Unicode character represents one phoneme. Although there are a couple of regular phonetic processes not reflected in the transcription, such as optional final devoicing or regressive voicing of certain consonants, the characters almost always correspond to actual sounds. Therefore, CER values reported below must closely resemble PER (phone error rates)\u00b3. All sound files were transformed into 16 KHz, singlechannel format.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deepspeech training",
                "sec_num": "3"
            },
            {
                "text": "Deepspeech architecture (Hannun et al., 2014 ) (Mozilla implementation\u2074) was used for training. This involves training a 5-layer neural network with one unidirectional LSTM layer. After each epoch, the quality is checked against a development dataset not used in training. After the training is complete, the evaluation is performed on the test dataset. The train/development/test split was randomly created once and did not change during the experiments. The development dataset contains 1737 sentences; the test dataset, 267 sentences. No sound dictionary examples were included in either development or test datasets, otherwise their unnaturally high quality would lead to overly optimistic WER and CER values. It has to be pointed out though that the training dataset contains data from all speakers of the test dataset. This is in line with the primary usage scenario I had in mind, i.e. pretranscription of field data, because most untranscribed recordings in my collection are generated by the same speakers. However, for a real-world scenario where the set of potential speakers is unlimited, this setting would \u00b3This property is the reason why UPA rather than Udmurt Cyrillic script was used for encoding. Otherwise, the choice of encoding is hardly important because UPA can be converted to Cyrillics and vice versa.",
                "cite_spans": [
                    {
                        "start": 24,
                        "end": 44,
                        "text": "(Hannun et al., 2014",
                        "ref_id": "BIBREF5"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deepspeech training",
                "sec_num": "3"
            },
            {
                "text": "\u2074https://github.com/mozilla/DeepSpeech produce an overly optimistic estimate. No transfer learning was applied.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deepspeech training",
                "sec_num": "3"
            },
            {
                "text": "A number of hyperparameter values were tested: learning rate between 0.00005 and 0.001, dropout rate 0.3 or 0.4, training batch size between 16 and 36. These value ranges have been demonstrated to yield optimal results on a dataset of similar size by (Agarwal and Zesch, 2019) . The results did not depend in any significant way on these values, except for almost immediate overfitting when the learning rate was close to 0.001. Under all these settings, the training ran for 8 or 9 epochs, after which the loss on the development dataset started rising due to overfitting. The model used for the evaluation was trained with the following parameters: learning rate 0.0002, droupout rate 0.4, training batch size 24.",
                "cite_spans": [
                    {
                        "start": 251,
                        "end": 276,
                        "text": "(Agarwal and Zesch, 2019)",
                        "ref_id": "BIBREF0"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deepspeech training",
                "sec_num": "3"
            },
            {
                "text": "The output of the trained Deepspeech model is filtered using kenlm, an n-gram language model (Heafield, 2011) . 3-gram and 4-gram models were tried, with no substantial difference; the figures below refer to the 4-gram models. When using the model with Deepspeech, there are two adjustable parameters, \u03b1 and \u03b2. \u03b1 (between 0 and 1) is the LM weight: higher values make the filter pay more attention to the n-gram probabilities provided by the model. \u03b2 defines the penalty for having too many words: higher values increase the average number of words in transcribed sentences and decrease the average length of a word. A number of \u03b1 and \u03b2 combinations were tested (see below).",
                "cite_spans": [
                    {
                        "start": 93,
                        "end": 109,
                        "text": "(Heafield, 2011)",
                        "ref_id": "BIBREF6"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Deepspeech training",
                "sec_num": "3"
            },
            {
                "text": "As could be immediately seen from the test results, at least one of the reasons why the automatic transcription was wrong in many cases is that the corpus used to train the LM simply lacked the forms. Since Beserman is morphologically rich, a corpus of 164K words will inevitably lack most forms of most lexemes. Thankfully, this gap can be filled relatively easily, since Beserman morphological analyzer and dictionary can be turned into a morphological generator. (Another option, not explored here, would be to use subwords instead of words (Leinonen et al., 2018; Egorova and Burget, 2018) .) However, if one just generated all possible word forms and added them to the corpus packed into random sentences, that would completely skew the occurrence and co-occurrence probabilities of forms, which would lead to even worse performance. The real trick would be to add the lacking forms without losing too much information from the original model, i.e. without significantly distorting the probabilities. Specifically, one would need to make the following values as close to the original ones as possible:",
                "cite_spans": [
                    {
                        "start": 544,
                        "end": 567,
                        "text": "(Leinonen et al., 2018;",
                        "ref_id": "BIBREF11"
                    },
                    {
                        "start": 568,
                        "end": 593,
                        "text": "Egorova and Burget, 2018)",
                        "ref_id": "BIBREF4"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "\u2022 relative frequencies of lemmata;",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "\u2022 relative frequencies of affix combinations, such as \"genitive plural\";",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "\u2022 constraints on co-occurrence of certain grammatical forms (e.g. \"verb in the first person is not expected after a second-person pronoun\");",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "\u2022 lexical constraints on contexts (e.g. \"mother eats apples\" should be fine, while \"apple eat mother\" should not).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "Of course, traditional word-based text generation models strive to achieve exactly that. However, they could hardly be applied here because the objective of correctly generating a lot of previously unseen forms would be missed. Instead, I developed a sentence generator that utilizes not only the texts, but also the linguistic resources available for Beserman.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "After a series of sequential improvements, the resulting sentence generator works as follows.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "First, the sentences from the Beserman corpora are morphologically analyzed and turned into sentence templates. In a template, content words (nouns, verbs, adjectives, adverbs and numerals) are replaced with \"slots\", while the rest (pronouns, postpositions etc.) are left untouched. The idea is that the lemma in a slot can be replaced by another lemma with similar characteristics, while the remaining words should not be replaced with anything else. Certain high-frequency or irregular verbs or adverbs are also not turned into slots, e.g. negative verbs or discourse clitics. Templates where less than one-third of the elements were turned into slots, or that contain fewer than three words, are discarded.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "A slot contains the inflectional affixes the word used to have, its tags (e.g. \"N,anim\" for \"animate noun\"), as well as the original lemma.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "Second, the data from the grammatical dictionary of the analyzer is processed. For each item, its lemma, stem(s) and tags (part of speech among them) is loaded. A global frequency dictionary is created. If a lemma is present in the corpora, its total number of occurrences is stored as its frequency; for the remainder of the lemmata, the frequency is set to 1.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "Third, semantic similarity matrices are created for nouns, verbs and adjectives separately. The semantic similarities are induced from the Russian translations the lemmata have in the Beserman-Russian dictionary.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "Each translation is stripped of usage notes in brackets and parentheses and of one-letter words.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "After that, the first word of the remaining string is taken as the Russian equivalent of the Beserman word. The similarities between Russian translations are then calculated with an embedding model ruwikiruscorpora_upos_skipgram_300_2_2019\u2075 trained on the data of Russian National Corpus and Russian Wikipedia (Kutuzov and Kuzmenko, 2017) . The resulting pairwise similarities are then condensed into a JSON file where each Beserman lemma contains its closest semantic neighbors together with the corresponding similarity value. The similarity threshold of 0.39 was set to only keep lemmata which are sufficiently similar to the lemma in question in terms of their distribution. After that, an average lemma contains about 66 semantic neighbors.",
                "cite_spans": [
                    {
                        "start": 310,
                        "end": 338,
                        "text": "(Kutuzov and Kuzmenko, 2017)",
                        "ref_id": "BIBREF10"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "After these preparatory steps, the sentence generation starts. A template is chosen at random, after which each slot is filled with a word. If a slot contains multiple ambiguous analyses, one of them is chosen at random with equal probability, apart from several manually defined cases where one of the analyses is much more probable than the others. The original lemma of the slot is looked up in the list of semantic neighbors. If found, its semantic neighbors are used as its possible substitutes. Neighbors whose tags differ from the slot tags (e.g. inanimate nouns instead of animate) are filtered out. A random similarity threshold is chosen, which can further narrow down the list of substitutes. This way, more similar lemmata have a higher chance of ending up on the list of potential substitutes. When the list is ready, a lemma is chosen at random, with probability of each lemma proportional to its frequency in the global frequency list. Its stem is combined with the inflectional affixes in the slot, taking certain morphophonological alternations into account. The resulting word is added to the sentence. Template elements that are not slots are generally used as is, but words from a certain manually defined list can be omitted with a probability of 0.2 (this mostly includes discourse particles).",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "\u2075https://rusvectores.org/en/models/ The sentences generated this way do not always make sense, but many of them at least are not completely ungrammatical, and some actually sound quite acceptable.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Augmented language model",
                "sec_num": "4"
            },
            {
                "text": "I did not check how the size of the training dataset affects the quality of the model. However, it is interesting to note that the addition of 2.5 hours of triple headword pronunciations from the sound dictionary apparently did not add to the quality. The results were almost the same when they were omitted from the training set.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "As already mentioned in Section 3, the output of a trained Deepspeech model is filtered with an n-gram model trained on a text corpus, with parameters \u03b1 and \u03b2. I evaluated the model on the test dataset with three kenlm models: based only on the real Beserman sentences (base), and two augmented models trained on real and generated sentences (gen). The first augmented model was trained on 2M additional sentences (about 170K word types), the second, on 10M additional sentences (about 300K word types). The difference between the two augmented models was almost nonexistent. The larger model performed slightly better than the smaller for most parameter values, except in the case of \u03b1 = 1.0; the difference in WER in most cases did not exceed 0.5%. The figures below are given for the larger model.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "The following \u03b1 values were tested: 1.0, 0.9, 0.75, 0.6, 0.4. The values of \u03b2 between 1.0 and 7.0 with the step of 1 were tested. The WER values for \u03b2 \u2265 5.0 were always worse than with lower \u03b2 values and are not represented below.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "One can see that the values obtained with the augmented model are better than the baseline across the board, so the sentence generation has had a positive effect on ASR quality. Also, the augmented model tolerates larger \u03b2 values, whereas the baseline model starts producing too much short words in place of longer words absent from its vocabulary in that case. Nevertheless, the difference is not that large: the best gen value, 51.4, is lower than the best base value, 56.4, only by 5%. The difference in CER is even less pronounced:",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "A more in-depth analysis of the data reveals that the effect of LM augmentation is most visible on longer sound files. If only tested on sentences whose ground-truth transcription contained at least 6 words, the best WER value for gen equals 52.1, as \u03b2 = 1 \u03b2 = 2 \u03b2 = 3 \u03b2 = 4 \u03b1 = 1.0 57.3 / 55.6 56.5 / 54.1 57.7 / 52.7 58.8 / 52.4 \u03b1 = 0.9 57.0 / 53.3 56.8 / 52.7 58.4 / 51.6 59.6 / 53.5 \u03b1 = 0.75 56.4 / 52.9 57.2 / 51.9 58.7 / 51.4 60.9 / 53.4 \u03b1 = 0.6 57.1 / 52.9 58.9 / 51.9 60.4 / 53.8 64.9 / 56.3 \u03b1 = 0.4 59.6 / 55.5 62.3 / 56.4 67.0 / 59.8 75.4 / 66.1 Table 1 : WER for base (before slash) and gen (after slash) models with different \u03b1 and \u03b2 values. \u03b2 = 1 \u03b2 = 2 \u03b2 = 3 \u03b2 = 4 \u03b1 = 1.0 35.0 / 34.4 33.9 / 33.3 33.3 / 32.0 32.8 / 30.9 \u03b1 = 0.9 34.0 / 32.5 33.4 / 32.1 33.0 / 30.7 32.7 / 30.2 \u03b1 = 0.75 32.9 / 31.5 32.4 / 30.4 32.0 / 29.7 31.9 / 29.2 \u03b1 = 0.6 32.2 / 30.1 31.5 / 29.9 31.5 / 29.6 31.7 / 29.3 \u03b1 = 0.4 31.6 / 30.1 31.3 / 29.6 31.3 / 30.3 31.8 / 30.8 Table 2 : CER for base (before slash) and gen (after slash) models with different \u03b1 and \u03b2 values. opposed to only 59.5 for base. On short files, however, the added benefit of having plausibly looking n-grams in the corpus stops playing any role. For sentences (or, rather, sentence fragments) that contained at most 3 words, the best WER value for gen equals 60.5, compared to 61.5 for base.",
                "cite_spans": [],
                "ref_spans": [
                    {
                        "start": 556,
                        "end": 563,
                        "text": "Table 1",
                        "ref_id": null
                    },
                    {
                        "start": 959,
                        "end": 966,
                        "text": "Table 2",
                        "ref_id": null
                    }
                ],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "As we can see, the LM augmentation did improve the ASR quality, even if marginally. The most important takeaway from this experiment, however, was that using a bilingual dictionary and a Russian model for approximating semantic similarity was a crucial part of the LM augmentation. Without that step, the generated LM did not visibly differ from base, even when lemma frequencies and tags were taken into account.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "Since, to the best of my knowledge, no Deepspeech (or any other) ASR models existed for standard Udmurt when the experiments were conducted, it was impossible to compare ASR quality for Beserman and standard Udmurt.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Results and comparison",
                "sec_num": "5"
            },
            {
                "text": "There is a famous statement by Frederick Jelinek, made exactly in the context of ASR development, \"Whenever I fire a linguist our system performance improves\". Indeed, contemporary ASR is largely an engineering enterprise and relies on algorithms and large amounts of data rather than on any linguistic insights. Still, if there is not enough data, can linguistic resources -resources created by linguists and for linguists -be of any help at all? The results of the experiments with the Beserman data are not conclusive. On the one hand, linguistic interven-tion did improve the ASR results, lowering WER by 5% and even more so in the case of longer sentences. Linguistic resources, such as the rule-based analyzer turned into a generator, and the Beserman-Russian dictionary, as well as the corpus of usage examples, seemed indispensable in the process. On the other hand, the result is yet another experimental model for a low-resource language with suboptimal performance, which might be not good enough even for auxiliary uses. In order to make it usable, one would still have to either add more data or change the algorithm (e.g. (Baevski et al., 2021) report results for comparable amounts of Tatar and Kyrgyz data that almost look like magic). It would be interesting to see if the \"linguistic\" LM augmentation adds anything in that case.",
                "cite_spans": [
                    {
                        "start": 1136,
                        "end": 1158,
                        "text": "(Baevski et al., 2021)",
                        "ref_id": "BIBREF2"
                    }
                ],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Conclusion",
                "sec_num": "6"
            }
        ],
        "back_matter": [
            {
                "text": "This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -Project ID 428175960.",
                "cite_spans": [],
                "ref_spans": [],
                "eq_spans": [],
                "section": "Acknowledgments",
                "sec_num": null
            }
        ],
        "bib_entries": {
            "BIBREF0": {
                "ref_id": "b0",
                "title": "German endto-end speech recognition based on DeepSpeech",
                "authors": [
                    {
                        "first": "Aashish",
                        "middle": [],
                        "last": "Agarwal",
                        "suffix": ""
                    },
                    {
                        "first": "Torsten",
                        "middle": [],
                        "last": "Zesch",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Aashish Agarwal and Torsten Zesch. 2019. German end- to-end speech recognition based on DeepSpeech. In KONVENS.",
                "links": null
            },
            "BIBREF1": {
                "ref_id": "b1",
                "title": "Corpus of usage examples: What is it good for?",
                "authors": [
                    {
                        "first": "Timofey",
                        "middle": [],
                        "last": "Arkhangelskiy",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered Languages",
                "volume": "1",
                "issue": "",
                "pages": "56--63",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Timofey Arkhangelskiy. 2019. Corpus of usage exam- ples: What is it good for? In Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered Languages Volume 1 (Pa- pers), pages 56-63, Honolulu. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF2": {
                "ref_id": "b2",
                "title": "Unsupervised speech recognition",
                "authors": [
                    {
                        "first": "Alexei",
                        "middle": [],
                        "last": "Baevski",
                        "suffix": ""
                    },
                    {
                        "first": "Wei-Ning",
                        "middle": [],
                        "last": "Hsu",
                        "suffix": ""
                    },
                    {
                        "first": "Alexis",
                        "middle": [],
                        "last": "Conneau",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Auli",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli. 2021. Unsupervised speech recogni- tion.",
                "links": null
            },
            "BIBREF3": {
                "ref_id": "b3",
                "title": "Cg-3 -beyond classical constraint grammar",
                "authors": [
                    {
                        "first": "Eckhard",
                        "middle": [],
                        "last": "Bick",
                        "suffix": ""
                    },
                    {
                        "first": "Tino",
                        "middle": [],
                        "last": "Didriksen",
                        "suffix": ""
                    }
                ],
                "year": 2015,
                "venue": "Proceedings of the 20th Nordic Conference of Computational Linguistics",
                "volume": "",
                "issue": "",
                "pages": "31--39",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eckhard Bick and Tino Didriksen. 2015. Cg-3 -be- yond classical constraint grammar. In Proceedings of the 20th Nordic Conference of Computational Linguis- tics, NODALIDA, pages 31-39. Link\u00f6ping University Electronic Press, Link\u00f6pings universitet.",
                "links": null
            },
            "BIBREF4": {
                "ref_id": "b4",
                "title": "Out-ofvocabulary word recovery using fst-based subword unit clustering in a hybrid asr system",
                "authors": [
                    {
                        "first": "Ekaterina",
                        "middle": [],
                        "last": "Egorova",
                        "suffix": ""
                    },
                    {
                        "first": "Luk\u00e1\u0161",
                        "middle": [],
                        "last": "Burget",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "5919--5923",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP.2018.8462221"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Ekaterina Egorova and Luk\u00e1\u0161 Burget. 2018. Out-of- vocabulary word recovery using fst-based subword unit clustering in a hybrid asr system. In 2018 IEEE International Conference on Acoustics, Speech and Sig- nal Processing (ICASSP), pages 5919-5923.",
                "links": null
            },
            "BIBREF5": {
                "ref_id": "b5",
                "title": "Deep Speech: Scaling up end-to-end speech recognition. arXiv e-prints",
                "authors": [
                    {
                        "first": "Awni",
                        "middle": [],
                        "last": "Hannun",
                        "suffix": ""
                    },
                    {
                        "first": "Carl",
                        "middle": [],
                        "last": "Case",
                        "suffix": ""
                    },
                    {
                        "first": "Jared",
                        "middle": [],
                        "last": "Casper",
                        "suffix": ""
                    },
                    {
                        "first": "Bryan",
                        "middle": [],
                        "last": "Catanzaro",
                        "suffix": ""
                    },
                    {
                        "first": "Greg",
                        "middle": [],
                        "last": "Diamos",
                        "suffix": ""
                    },
                    {
                        "first": "Erich",
                        "middle": [],
                        "last": "Elsen",
                        "suffix": ""
                    },
                    {
                        "first": "Ryan",
                        "middle": [],
                        "last": "Prenger",
                        "suffix": ""
                    },
                    {
                        "first": "Sanjeev",
                        "middle": [],
                        "last": "Satheesh",
                        "suffix": ""
                    },
                    {
                        "first": "Shubho",
                        "middle": [],
                        "last": "Sengupta",
                        "suffix": ""
                    },
                    {
                        "first": "Adam",
                        "middle": [],
                        "last": "Coates",
                        "suffix": ""
                    },
                    {
                        "first": "Andrew",
                        "middle": [
                            "Y"
                        ],
                        "last": "Ng",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "arXiv": [
                        "arXiv:1412.5567"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Awni Hannun, Carl Case, Jared Casper, Bryan Catan- zaro, Greg Diamos, Erich Elsen, Ryan Prenger, San- jeev Satheesh, Shubho Sengupta, Adam Coates, and Andrew Y. Ng. 2014. Deep Speech: Scaling up end-to-end speech recognition. arXiv e-prints, page arXiv:1412.5567.",
                "links": null
            },
            "BIBREF6": {
                "ref_id": "b6",
                "title": "KenLM: Faster and smaller language model queries",
                "authors": [
                    {
                        "first": "Kenneth",
                        "middle": [],
                        "last": "Heafield",
                        "suffix": ""
                    }
                ],
                "year": 2011,
                "venue": "Proceedings of the Sixth Workshop on Statistical Machine Translation",
                "volume": "",
                "issue": "",
                "pages": "187--197",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Kenneth Heafield. 2011. KenLM: Faster and smaller language model queries. In Proceedings of the Sixth Workshop on Statistical Machine Translation, pages 187-197, Edinburgh, Scotland. Association for Com- putational Linguistics.",
                "links": null
            },
            "BIBREF7": {
                "ref_id": "b7",
                "title": "Improving the language model for low-resource ASR with online text corpora",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Hjortnaes",
                        "suffix": ""
                    },
                    {
                        "first": "Timofey",
                        "middle": [],
                        "last": "Arkhangelskiy",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
                "volume": "",
                "issue": "",
                "pages": "336--341",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Hjortnaes, Timofey Arkhangelskiy, Niko Partanen, Michael Rie\u00dfler, and Francis Tyers. 2020a. Im- proving the language model for low-resource ASR with online text corpora. In Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collabora- tion and Computing for Under-Resourced Languages (CCURL), pages 336-341, Marseille, France. Euro- pean Language Resources association.",
                "links": null
            },
            "BIBREF8": {
                "ref_id": "b8",
                "title": "Towards a speech recognizer for Komi, an endangered and low-resource uralic language",
                "authors": [
                    {
                        "first": "Nils",
                        "middle": [],
                        "last": "Hjortnaes",
                        "suffix": ""
                    },
                    {
                        "first": "Niko",
                        "middle": [],
                        "last": "Partanen",
                        "suffix": ""
                    },
                    {
                        "first": "Michael",
                        "middle": [],
                        "last": "Rie\u00dfler",
                        "suffix": ""
                    },
                    {
                        "first": "Francis",
                        "middle": [
                            "M"
                        ],
                        "last": "Tyers",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "Proceedings of the Sixth International Workshop on Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "31--37",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Nils Hjortnaes, Niko Partanen, Michael Rie\u00dfler, and Francis M. Tyers. 2020b. Towards a speech rec- ognizer for Komi, an endangered and low-resource uralic language. In Proceedings of the Sixth Inter- national Workshop on Computational Linguistics of Uralic Languages, pages 31-37, Wien, Austria. As- sociation for Computational Linguistics.",
                "links": null
            },
            "BIBREF9": {
                "ref_id": "b9",
                "title": "Constraint grammar as a framework for parsing unrestricted text",
                "authors": [
                    {
                        "first": "Fred",
                        "middle": [],
                        "last": "Karlsson",
                        "suffix": ""
                    }
                ],
                "year": 1990,
                "venue": "Proceedings of the 13th International Conference of Computational Linguistics",
                "volume": "3",
                "issue": "",
                "pages": "168--173",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Fred Karlsson. 1990. Constraint grammar as a frame- work for parsing unrestricted text. In Proceedings of the 13th International Conference of Computational Linguistics, volume 3, pages 168-173, Helsinki.",
                "links": null
            },
            "BIBREF10": {
                "ref_id": "b10",
                "title": "We-bVectors: A Toolkit for Building Web Interfaces for Vector Semantic Models",
                "authors": [
                    {
                        "first": "Andrey",
                        "middle": [],
                        "last": "Kutuzov",
                        "suffix": ""
                    },
                    {
                        "first": "Elizaveta",
                        "middle": [],
                        "last": "Kuzmenko",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {
                    "DOI": [
                        "10.1007/978-3-319-52920-2{_}15"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Andrey Kutuzov and Elizaveta Kuzmenko. 2017. We- bVectors: A Toolkit for Building Web Interfaces for Vector Semantic Models. Springer International Pub- lishing, Cham.",
                "links": null
            },
            "BIBREF11": {
                "ref_id": "b11",
                "title": "New baseline in automatic speech recognition for Northern S\u00e1mi",
                "authors": [
                    {
                        "first": "Juho",
                        "middle": [],
                        "last": "Leinonen",
                        "suffix": ""
                    },
                    {
                        "first": "Peter",
                        "middle": [],
                        "last": "Smit",
                        "suffix": ""
                    },
                    {
                        "first": "Sami",
                        "middle": [],
                        "last": "Virpioja",
                        "suffix": ""
                    },
                    {
                        "first": "Mikko",
                        "middle": [],
                        "last": "Kurimo",
                        "suffix": ""
                    }
                ],
                "year": 2018,
                "venue": "Proceedings of the Fourth International Workshop on Computational Linguistics of Uralic Languages",
                "volume": "",
                "issue": "",
                "pages": "87--97",
                "other_ids": {
                    "DOI": [
                        "10.18653/v1/W18-0208"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Juho Leinonen, Peter Smit, Sami Virpioja, and Mikko Kurimo. 2018. New baseline in automatic speech recognition for Northern S\u00e1mi. In Proceedings of the Fourth International Workshop on Computational Lin- guistics of Uralic Languages, pages 87-97, Helsinki, Finland. Association for Computational Linguistics.",
                "links": null
            },
            "BIBREF12": {
                "ref_id": "b12",
                "title": "Avtomaticheskoe vyravnivanie slovarej literaturnogo udmurtskogo i jazyka i besermjanskogo dialekta",
                "authors": [
                    {
                        "first": "Eugenia",
                        "middle": [],
                        "last": "Miller",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Eugenia Miller. 2017. Avtomaticheskoe vyravnivanie slovarej literaturnogo udmurtskogo i jazyka i beser- mjanskogo dialekta [Automatic alignment of literary Udmurt and Beserman dictionaries].",
                "links": null
            },
            "BIBREF13": {
                "ref_id": "b13",
                "title": "Elektronnaja pismennost narodov Rossijskoj Federacii: opyt, problemy i perspektivy",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "In Elektronnaja pismennost narodov Rossijskoj Federacii: opyt, prob- lemy i perspektivy [Electronic writing of the peoples of the Russian Federation: Experience, challenges and perspectives], Syktyvkar, Russia. KRAGSiU.",
                "links": null
            },
            "BIBREF14": {
                "ref_id": "b14",
                "title": "SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition",
                "authors": [
                    {
                        "first": "Daniel",
                        "middle": [
                            "S"
                        ],
                        "last": "Park",
                        "suffix": ""
                    },
                    {
                        "first": "William",
                        "middle": [],
                        "last": "Chan",
                        "suffix": ""
                    },
                    {
                        "first": "Yu",
                        "middle": [],
                        "last": "Zhang",
                        "suffix": ""
                    },
                    {
                        "first": "Chung-Cheng",
                        "middle": [],
                        "last": "Chiu",
                        "suffix": ""
                    },
                    {
                        "first": "Barret",
                        "middle": [],
                        "last": "Zoph",
                        "suffix": ""
                    },
                    {
                        "first": "D",
                        "middle": [],
                        "last": "Ekin",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Cubuk",
                        "suffix": ""
                    },
                    {
                        "first": "V",
                        "middle": [],
                        "last": "Quoc",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Le",
                        "suffix": ""
                    }
                ],
                "year": 2019,
                "venue": "Proc. Interspeech",
                "volume": "",
                "issue": "",
                "pages": "2613--2617",
                "other_ids": {
                    "DOI": [
                        "10.21437/Interspeech.2019-2680"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le. 2019. SpecAugment: A Simple Data Augmentation Method for Automatic Speech Recognition. In Proc. Interspeech 2019, pages 2613-2617.",
                "links": null
            },
            "BIBREF15": {
                "ref_id": "b15",
                "title": "Analyzing ASR pretraining for lowresource speech-to-text translation",
                "authors": [
                    {
                        "first": "C",
                        "middle": [],
                        "last": "Mihaela",
                        "suffix": ""
                    },
                    {
                        "first": "Sameer",
                        "middle": [],
                        "last": "Stoian",
                        "suffix": ""
                    },
                    {
                        "first": "Sharon",
                        "middle": [],
                        "last": "Bansal",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Goldwater",
                        "suffix": ""
                    }
                ],
                "year": 2020,
                "venue": "ICASSP 2020 -2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)",
                "volume": "",
                "issue": "",
                "pages": "7909--7913",
                "other_ids": {
                    "DOI": [
                        "10.1109/ICASSP40776.2020.9053847"
                    ]
                },
                "num": null,
                "urls": [],
                "raw_text": "Mihaela C. Stoian, Sameer Bansal, and Sharon Gold- water. 2020. Analyzing ASR pretraining for low- resource speech-to-text translation. In ICASSP 2020 -2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 7909- 7913.",
                "links": null
            },
            "BIBREF16": {
                "ref_id": "b16",
                "title": "Data augmentation, feature combination, and multilingual neural networks to improve asr and kws performance for low-resource languages",
                "authors": [
                    {
                        "first": "Zolt\u00e1n",
                        "middle": [],
                        "last": "T\u00fcske",
                        "suffix": ""
                    },
                    {
                        "first": "Pavel",
                        "middle": [],
                        "last": "Golik",
                        "suffix": ""
                    },
                    {
                        "first": "David",
                        "middle": [],
                        "last": "Nolden",
                        "suffix": ""
                    },
                    {
                        "first": "Ralf",
                        "middle": [],
                        "last": "Schl\u00fcter",
                        "suffix": ""
                    },
                    {
                        "first": "Hermann",
                        "middle": [],
                        "last": "Ney",
                        "suffix": ""
                    }
                ],
                "year": 2014,
                "venue": "INTERSPEECH-2014",
                "volume": "",
                "issue": "",
                "pages": "1420--1424",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Zolt\u00e1n T\u00fcske, Pavel Golik, David Nolden, Ralf Schl\u00fcter, and Hermann Ney. 2014. Data augmentation, feature combination, and multilingual neural networks to im- prove asr and kws performance for low-resource lan- guages. In INTERSPEECH-2014, pages 1420-1424.",
                "links": null
            },
            "BIBREF17": {
                "ref_id": "b17",
                "title": "What shall we do with an hour of data? Speech recognition for the un-and under-served languages of Common Voice",
                "authors": [
                    {
                        "first": "M",
                        "middle": [],
                        "last": "Francis",
                        "suffix": ""
                    },
                    {
                        "first": "Josh",
                        "middle": [],
                        "last": "Tyers",
                        "suffix": ""
                    },
                    {
                        "first": "",
                        "middle": [],
                        "last": "Meyer",
                        "suffix": ""
                    }
                ],
                "year": 2021,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Francis M. Tyers and Josh Meyer. 2021. What shall we do with an hour of data? Speech recognition for the un-and under-served languages of Common Voice.",
                "links": null
            },
            "BIBREF18": {
                "ref_id": "b18",
                "title": "\u0422\u0435\u0437\u0430\u0443\u0440\u0443\u0441 \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u043e\u0433\u043e \u043d\u0430\u0440\u0435\u0447\u0438\u044f: \u0418\u043c\u0435\u043d\u0430 \u0438 \u0441\u043b\u0443\u0436\u0435\u0431\u043d\u044b\u0435 \u0447\u0430\u0441\u0442\u0438 \u0440\u0435\u0447\u0438 (\u0433\u043e\u0432\u043e\u0440 \u0434\u0435\u0440\u0435\u0432\u043d\u0438 \u0428\u0430\u043c\u0430\u0440\u0434\u0430\u043d) [Thesaurus of the Beserman dialect: Nouns and auxiliary parts of speech",
                "authors": [
                    {
                        "first": "Maria",
                        "middle": [],
                        "last": "Usacheva",
                        "suffix": ""
                    },
                    {
                        "first": "Timofey",
                        "middle": [],
                        "last": "Arkhangelskiy",
                        "suffix": ""
                    },
                    {
                        "first": "Olga",
                        "middle": [],
                        "last": "Biryuk",
                        "suffix": ""
                    },
                    {
                        "first": "Vladimir",
                        "middle": [],
                        "last": "Ivanov",
                        "suffix": ""
                    },
                    {
                        "first": "Ruslan",
                        "middle": [],
                        "last": "Idrisov",
                        "suffix": ""
                    }
                ],
                "year": 2017,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Maria Usacheva, Timofey Arkhangelskiy, Olga Biryuk, Vladimir Ivanov, and Ruslan Idrisov, editors. 2017. \u0422\u0435\u0437\u0430\u0443\u0440\u0443\u0441 \u0431\u0435\u0441\u0435\u0440\u043c\u044f\u043d\u0441\u043a\u043e\u0433\u043e \u043d\u0430\u0440\u0435\u0447\u0438\u044f: \u0418\u043c\u0435\u043d\u0430 \u0438 \u0441\u043b\u0443\u0436\u0435\u0431\u043d\u044b\u0435 \u0447\u0430\u0441\u0442\u0438 \u0440\u0435\u0447\u0438 (\u0433\u043e\u0432\u043e\u0440 \u0434\u0435\u0440\u0435\u0432\u043d\u0438 \u0428\u0430\u043c\u0430\u0440\u0434\u0430\u043d) [Thesaurus of the Beserman dialect: Nouns and aux- iliary parts of speech (Shamardan village variety)].",
                "links": null
            },
            "BIBREF19": {
                "ref_id": "b19",
                "title": "Izdatelskie resheniya",
                "authors": [],
                "year": null,
                "venue": "",
                "volume": "",
                "issue": "",
                "pages": "",
                "other_ids": {},
                "num": null,
                "urls": [],
                "raw_text": "Izdatelskie resheniya, Moscow.",
                "links": null
            }
        },
        "ref_entries": {}
    }
}